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ABSTRACT The COVID-19 has become a pressing public health concern recently due to its 

dramatic impact. It spreads quickly, and it is beyond the ability of health staff to detect patients 

with the disease immediately.  However, the ability to diagnose SARS-CoV-2 in a short time is 

critical for fighting the disease. The primary objective of this study is to develop deep neural 

networks to diagnose disease in a quick, safe, and cheap way. We classify the cases as normal, 

COVID-19, and pneumonia. Deep neural networks are developed to perform a three-class 

classification task. Ten deep learning models are evaluated on a large dataset. Although all 

DCNNs demonstrated promising potential for classification, hybrid neural networks delivered 

the most promising outcome with the highest accuracies. The first hybrid model is named 

MICOVID. The second hybrid model is named VVCOVID. These models are developed 

through transfer learning by using pre-trained deep learning models. Performance metrics results 

showed that MICOVID and VVCOVID models have an accuracy of 94% for COVID-19 

detection. This is higher than other classification models. These findings suggest that two novel 

hybrid models that we proposed have great potential to be embedded into computer-aided 

systems to predict disease in radiology departments. 
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1. INTRODUCTION 

Since 2019, SARS-CoV-2 has spread from China to other countries. Coronavirus disease 2019 

(COVID-19) has quickly become a pandemic [1]. By April 2020, more than 30 million were confirmed 

as coronavirus cases, 28 million recovered, and more than 1 million deaths were reported [2].  Early 

diagnosis is critical to prevent infection to healthy people. The reverse-transcription polymerase chain 

reaction (RT-PCR) is the standard technique for diagnosing the disease. However, it may give false-

negative results in the early stages of diseases. By comparison, CXR imaging or CT imaging technique 

is more helpful for COVID-19 detection. Bilateral and peripheral predominant ground-glass opacities 

(GGO) in the lobes are common initial findings on CT images. Besides bilateral multifocal GGO, septal 

thickening and pleural thickening are other common manifestations in the later stages [3, 4]. At the 

early stage of disease, it may be hard to view GGO. Therefore, images must be interpreted by only 

expert radiologists.  Early diagnosis is getting more difficult in the face of the immense amount of the 

suspected cases and a limited number of expert radiologists. Computer-aided diagnosis systems (CAD) 

are necessary to solve such problems. Artificial intelligence solutions provide powerful tools for 

overcoming these difficulties. 

Deep learning (DL) approaches are considered as the sub-class of machine learning (ML) methods. 

These methods have been used widely in the field of medicine. DL methods are capable of feature 
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extraction and representation from raw data without any hand-craft method, augmentation, or 

segmentation. This situation provides an advantage compared to ML methods (thanks to improved 

diagnosis or smooth classification process, shorter time, and less cost). For controlling and combating 

novel coronavirus, DL methods can provide a quick and efficient solution. DL-based models have 

shown high performance in detecting COVID-19 [5- 9]. 

Compared to other techniques, Chest CT is considered to have sensitivity for clinical findings [10, 

11]. Abbasian Ardakani et al. (2020) proposed an AI-based method for radiologists to improve the 

diagnosis of COVID-19. In their study, ten convolutional neural networks were used (AlexNet, VGG-

16, VGG-19, ResNet-18, ResNet-50, ResNet-101, Xception, GoogleNet, MobileNet-V2, and 

SqueezeNet). The best performance was obtained by Xception (99.02% accuracy rate) and ResNet-101 

(99.51% accuracy rate). Also, as a highly sensitive model, ResNet-101 [12] can be considered. Zhang 

et al. proposed another AI system developed on CT database from 3.777 patients. The AI system 

performance was tested by using U-net, DRUNET, FCN, DeepLabv3 (segmentation frameworks). For 

an accurate diagnosis of NCP, 40.880 slices were used from 260 patients (including 83 NCP patients, 

86 normal patients, and 91 pneumonia patients) as a test to the classifier model. A 92.49% accuracy, a 

94.93% recall, a 91.13% specificity, and a 97.97% AUROC [13] were achieved by using the proposed 

system. Attallah et al. constructed an efficient MULTI-DEEP CAD system based on multiple CNNs for 

detecting the disease. The CAD system comprises different four scenarios. Scenario I is composed of 

four pre-trained CNNs for classification (accuracy (78.29%). In scenario II, features were extracted 

from pre-trained CNNs (AlexNet, GoogleNet, ShuffleNet, and ResNet-18), and SVM was used as a 

classifier (accuracy (92.5%). For scenario III, the principal component analysis was applied to each 

feature extracted from pre-trained CNN, and selected principal components were used to train the SVM 

classifiers (accuracy (94%). In the last scenario, for capable of with compare scenario III, the four 

features were extracted from pre-trained CNN, and these features were used to train the SVM classifier 

(The accuracy is 94.7%). This verified system detected COVID-19 with high accuracy [14]. In another 

article, 386 Covid-19 and 1010 Non-Covid-19 CT lung images [15] were studied. Data were augmented 

with noise-adding, distortion, brightness, and contrast-changing methods. Within the scope of the study, 

23-layer CNN architecture was proposed for classification. The study achieved the best accuracy rate 

of 93.94% and 95.70%, for 2-fold cross-validation and 10-fold cross-validation, respectively. Stephanie 

et al. obtained 90.8% accuracy, 93% specificity, and 84% sensitivity for the classification of 1337 

patients with deep learning algorithms (Grad-CAM method) [16]. Jaiswal et al. used DenseNet-201 

based deep transfer learning to detect NCP on SARS-CoV-2 CT scan images with AUC of 97%, an 

accuracy of 96.25%, a specificity of 96.21%, an F-measure of 96.29%, a recall of 96.29%, and a 

precision of 96.29% [17]. Li et al. developed a DL-based method to analyse the NCP from thick-section 

CT scans. The DL-based method has the ability to obtain good results with an AUC of 96.8% [18]. M. 

Hasan et al. built a feature extraction method comprising of DL and Q-deformed entropy algorithm. 
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These features were classified by employing LSTM for NCP, pneumonia, and normal cases with an 

accuracy of 99.68% [19]. Ko et al. utilized a 2D deep learning framework to COVID-19 pneumonia 

diagnosis on the lung CT image. This framework was named FCONet. FCONet framework use 

Xception, Inception-v3, ResNet-50, and VGG16 pre-trained models as its backbone. It showed 

excellent performance with a sensitivity of 99.58%, an accuracy of 99.87%, and a specificity of 100% 

[20]. 

DL-based approaches applied for automated detection of COVID-19 are summarized in Table 1 

(using CXR or CT images). The CNN-based frameworks for novel coronavirus pneumonia (NCP) 

diagnosis were suggested in other studies. But, in usual, the effectiveness of concatenating deep models 

were not considered in previous research studies. To address this void in the literature, two novel hybrid 

deep neural networks are proposed in this article. The first hybrid model integrates MobileNet and 

Inception-V3 architectures (MICOVID). The second hybrid model integrates VGG16 and VGG19 

architectures (VVCOVID). We also compared our proposed hybrid models with other deep learning 

models (DPN98, Xception, Inception-ResNet-V2, MobileNet, Inception-V3, VGG16, VGG19, 

SqueezeNet) in terms of model accuracy, precision, recall, f1-score, and confusion matrix. All these 

models were evaluated on 2019nCoVR, a large public dataset of the China National Center for Bio-

information. 

Table 1. A summary of previous research studies 

Paper Dataset             Method   Results 

Attallah et al. [14] 347 COVID-19 

397 non-COVID-19  

ResNet-18 Accuracy (78.29%) 
AUC (83.82%) 
Sensitivity (76.9%) 
Specificity (79.9%) 
Precision (81%) 
F1-score (78.9%) 

Ahuja et al. [21]  

 
178 COVID-19 

228 non-COVID-19 

 

ResNet-18 

 
Accuracy (99.4%) 
AUC (99.65%) 
Sensitivity (100%) 
Specificity (98.6%) 

 
Dansana et al. [22] 

 
360 COVID-19 

34 non-COVID-19 

 

VGG16 Accuracy (91%) 
Sensitivity (94%) 
Precision (100%) 
F1-score (97%) 

 
Panwar et al. [23] 

 
192 COVID-19 

145 non-COVID-19 

 

nCOVnet 

 
Accuracy (97.62%) 
Sensitivity (97.62%) 
Specificity (78.57%) 

 
Karar et al. [24] 

 
69 COVID-19 

237 non-COVID-19 

 

ResNet50V2 and VGG16 

 
Accuracy (99.90%) 

 

Mamunur et al. [25] 

 
260 COVID-19 
600 non-COVID-19 

 

VGG19 

 
Accuracy (89.3%) 
Sensitivity (89%) 
Precision (90%) 
F1-score (90%) 

 
Elasnaoui et al.[26] 

 
1493 COVID-19 

4594 non-COVID-19 

 

Inception-ResNetV2 

 
Accuracy (92.18%) 
Sensitivity (92.11%) 
Specificity (96.06%) 
Precision (92.38%) 
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F1-score (92.07%) 
 

Abbasian Ardakani [12] 

 
108 COVID-19 
912 non-COVID-19 

 

ResNet-101 

 
Accuracy (99.51%) 
AUC (99.4%) 
Sensitivity (100%) 
Specificity (99.02%) 

 
Abbasian Ardakani [12] 

 
108 COVID-19 

912 non-COVID-19 

 

Xception 

 
Accuracy (99.02%) 
AUC (99.4%) 
Sensitivity (98.04%) 
Specificity (100%) 

 
Jaiswal et al. [17] 1262 COVID-19 

1230 non-COVID-19 

 

DenseNet-201 Accuracy (96.25%) 
Sensitivity (96.29%) 
Specificity (96.21%) 
Precision (96.29%) 
F1-score (96.29%) 

 

The general flow diagram of the study is given in Fig. 1. This study aims to develop deep learning 

algorithms for predicting disease in real-time. So, safety mechanisms can be utilized to prevent death 

and serious consequences. A deep learning framework was employed to predict disease from CT 

images. We use CNN features (deep learning framework) that directly predict from raw data without 

any need for hand-crafted features, unlike classical machine learning approaches for feature extraction 

(hand-crafted). 

 

Figure 1. Flow diagram of the study 

2. MATERIALS AND METHODS 

2.1 DATASET 

The 2019nCoVR dataset consists of CT images (2019nCoVR database, which is available at 

http://ncov-ai.big.ac.cn/download?lang=en). These images are constructed from the China Consortium of 

Chest CT Image Investigation, and they are classified as SARS-CoV-2 virus, pneumonia, and normal. 

This dataset is publicly available with the aim to combat disease. 31 files containing CT scans of COVID-

19, 32 files containing CT scans of pneumonia, and 27 files containing CT scans of normal have been 

structured in the dataset [27]. We prepared a subset of CT images from the 2019nCoVR dataset. The 

combined dataset consists of 137.263 CT images, 114.416 training, and 22.847 testing samples. This 
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dataset consists of 50.145 CT scans of COVID-19,  30.014 CT scans of pneumonia, and 34.257 CT scans 

of normal. The dataset is organized in 2 folders (train, test), as given in Table 2. CT images are resized to 

256x256 before fed to DNN. 

Table 2. General distribution of dataset in this study 

Dataset COVID-19 Pneumonia Normal (Healthy) 

2019nCoVR [1] 50.145 30.014 34.257 

Training Set 40.114 24.011 27.444 

Test Set 10.031 6.003 6.813 

 

2.2 THE PROPOSED FRAMEWORK 

In this study, ten deep learning models are applied to perform the classification. These models are a 

DPN98 [28] model, an Xception [29] model, an Inception-ResNet-V2 [30] model, a MobileNet [31] 

model, an Inception-V3 [32-34] model, a VGG16 [35] model, a VGG19 [35] model, a SqueezeNet [36] 

model and two hybrid models (MICOVID and VVCOVID) (Fig. 2). Transfer learning with popular pre-

trained deep neural networks (DPN98, Xception, Inception-ResNet-V2, MobileNet, Inception-V3, 

VGG16, VGG19, and SqueezeNet) are applied to the training images of the 2019nCoVR dataset. 

2.2.1 TRANSFER LEARNING APPROACH 

Transfer learning is used in the field of deep-learning as a basic method. It allows a model trained 

on one task to be repurposed to another task through adopting. Thus, it utilizes previously learned 

knowledge in new classification problems. Consequently, it is able to obtain faster and better results. 

This approach is very useful for medical image classification.   

Pre-trained models can be used for different tasks. In this study, they are used as a feature extractor 

(pre-trained CNN features). For classification, a classifier is trained on top of the pre-trained models. 

For this reason, we only fine-tune the last layer of deep neural networks (as three-class). Eight popular 

pre-trained models were evaluated: DPN98, Xception, Inception-ResNet-V2, MobileNet, Inception-V3, 

VGG16, VGG19, and SqueezeNet. 

2.2.2 CNN 

CNN architecture is composed of different layers: convolution, pooling and fully connected ones. 

The convolution layer is applied to input data (images, etc.) to produce a feature map by convolution 

filter (kernel). After the convolution layer, the pooling layer is generally applied to reduce the 

dimensions (to provide a down-sample for each feature map, to reduce the number of parameters). The 

output feature map and pooling process are obtained in Equation (1) and Equation (2), respectively. In 

Equation (1), 𝑿𝒊
𝒍−𝟏, 𝒌𝒊𝒋

𝒍 ,𝒃𝒋
𝒍, and f()  represent the local features, kernel (filter), bias, and activation 

function, respectively. In Equation (2), down() represents down-sampling process of pooling layer. 
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  (1) [37] 

                              (2) [38] 

Finally, a fully connected layer (the last layer) takes the output of previous layers (convolution or 

pooling) and predicts the label of input data for the classification decision. 

2.2.3 COVID-19 DETECTION USING DPN98, XCEPTION, INCEPTION-RESNET-V2, 

MOBILENET, INCEPTION-V3, VGG16, VGG19, AND SQUEEZENET 

Transfer learning on a dataset is used to train eight convolutional neural networks, including 

SqueezeNet, VGG19, VGG16, Inception-V3, MobileNet, Inception-ResNet-V2, Xception, and DPN98 

to identify disease in 114.416 CT images. We evaluated these models on 22.847 CT images. So, instead 

of building a CNN architecture, we used some pre-trained CNN models. The detailed information about 

pre-trained models are as follows: 

. Two of the models are the pre-trained VGG16 and VGG19, trained on the ImageNet dataset. 

VGG16 and VGG19 obtained good results in the ILSVRC-2014. These networks are a subset of the 

VGG network. VGG16 architecture consists of 16 convolutional layers. VGG19 architecture consists 

of 19 convolutional layers. These models are deeper CNN architectures. For both models, the default 

image input sizes are 224*224 with three channels. 

. SqueezeNet model is a CNN architecture. The model has a convolution layer (independent, 

conv1), fire modules (eight, fire2-9), and the last convolution layer. Although 50 X smaller the size of 

this model compared to AlexNet, it gives higher performance. For this model, the dimensions of images 

in the input layer are 224 x 224 x 3. 

. Inception-V3 CNN architecture was introduced by Szegedy et al. in 2015. The model was first 

introduced as a structure consisting of 22 layers (Inception-V1-GoogleNet).  Later, the model was 

reintroduced as Inception-V2 (with batch normalization), and the final iteration has been referred to as 

Inception-V3 (with additional factorization). In addition Inception-V1 and Inception-V2, the Inception-

V3 network uses a splitting method for dividing volume integrals. The Inception module, as a typical 

CNN architecture, contains convolution and pooling layers. For this model, the dimensions of images 

in the input layer are 229 x 229 x 3. 

. Inception-ResNet-V2 is a hybrid network combining Inception architecture and residual 

connections [39]. Inception-ResNet-V2 is a residual version of Inception, which is roughly the 

computational cost of the Inception-v4 network. While Inception networks utilize filter concatenation, 

Inception-ResNet networks utilize residual connections.   
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.  MobileNet is a popular deep learning model. While this CNN model has fewer parameters, it also 

has less calculation cost because of its general construction. Based on the depth-wise separable 

convolution, it has 28 layers. Except for the final layer, all layers are followed by a ReLU and a batch 

norm layer in the architecture. The model is designed for mobile devices and shows excellent 

performance for embedded industrial equipment. 

. Xception was proposed by Francois Chollet. This model is another improvement of Inception-V3 

deep learning model. The model contains depthwise separable convolutional layers with residual 

connections. For this model, image dimensions in the input layer are 229 x 229 x 3. 

. DPN98 is a variation of Dual-Path Network (DPN) proposed by Yunpeng Chen, etc. It is a family 

of CNNs, and it has cost about fewer parameters than ResNeXt-101. DPN has the advantages of 

DenseNet (exploring new features) and ResNet (feature reuses). This model is very suitable for 

optimization and classification. It is especially used for image classification, segmentation, and object 

detection. DPN showed high accuracy on Places365-Standard and ImageNet-1k datasets [28]. The 

model has obtained the best results in the ILSVRC-2017 Challenge.  

2.2.4 COVID-19 DETECTION USING MICOVID AND VVCOVID 

As hybrid models, we present two novel concatenated CNN based approaches for COVID-19 

detection in this study. The first proposed hybrid model is a combination of MobileNet and Inception-

V3. This model is named MICOVID in the study. The second proposed hybrid model is a combination 

of VGG16 and VGG19. This model is named VVCOVID in the study. The proposed hybrid models 

have five steps as shown in Fig. 2.  

These steps are as follows: 

. CT scan images have been reshaped to 256*256 with three channels. 

. The learned weights of the pre-trained models are used on ImageNet (for the first hybrid model: 

MobileNet, Inception-V3, and for second hybrid model: VGG16, VGG19). Thus, features are extracted 

automatically for each CT image.  

. The obtained features are concatenated after applying “GlobalAveragePooling Layer”.  

. We use the stacking model to concatenate the output shape of models for each hybrid model through 

“Concatenate Layer”. The concatenate layer returns a single tensor.  

. Finally, two “Fully Connected Layers” consisting of 512 neurons are used. In the output layer, 

classification is made with the “Softmax Layer”.  
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Figure 2. A general illustration of proposed framework. 

MICOVID and VVCOVID layer, output shape and parameter details are given in Table 3. 

Table 3. Proposed hybrid models details for detection of COVID-19 

Model Layer  Output Shape Parameter Total 

Parameter 

 
 

 

 
 

 

MICOVID 

input_1 (None,256,256,3)      0  
mobilenet_1.00_224 (None,8,8,1024) 3228864  
inception_v3 (None,6,6,2048) 21802784  
global_average_pooling_2d_1      (None,1024)      0  
global_average_pooling_2d_2      (None,2048)      0                     26,869,219 
concatenate_1 (None,3072)      0  
dense_1 (None,512) 1573376  
dense_2 (None,512) 262656  
dense_3 (None,3)   1539  

 
 

 

 
 

VVCOVID 

input_1 (None,256,256,3)      0  
vgg19 (None,8,8,512) 14714688  
vgg16 (None,8,8,512) 21802784  
global_average_pooling_2d_1      (None,512)      0  
global_average_pooling_2d_2      (None,512)      0                     35,528,067 
concatenate_1 (None,1024)      0  
dense_1 (None,512) 1311232  
dense_2 (None,512) 262656  
dense_3 (None,3)   1026  

 

3. EXPERIMENTAL RESULTS 

All model implementations and evaluations are done in Keras [40] by using a computer having an 

Intel(R) Core(TM) i7-7700 CPU, 24 GB memory and GeForce GT 730 GPU (NVIDIA). 

3.1 DEEP LEARNING MODELS HYPER-PARAMETERS 

Deep learning networks are trained for 500 epochs. The batch size is set to 32, an ADAM optimizer 

function and a learning rate of 0.0001. Trainable parameter, non-trainable parameter and total parameter 

size of DCNN models are given Table 4. 
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Table 4. Trainable parameter, non-trainable parameter and total parameter size of DCNN models in this study 

Model Trainable parameter Non-trainable parameter Total parameter 

Inception-V3 23,081,635 

 

34,432 23,116,067 

MobileNet 3,995,971 21,888 4,017,859 

Vgg16 15,241,539 0 15,241,539 

Vgg19 20,551,235 0 20,551,235 

SqueezeNet 1,249,347 0 1,249,347 

InceptionResNetV2 55,327,331 60,544 55,387,875 

DPN98 60,654,435 148,320 60,506,115 

Xception 22,120,235 54,528 22,174,763 

MobileNet+Inception-V3 26,812,899 56,320 26,869,219 

Vgg19+Vgg16 35,528,067 0 35,528,067 

 

3.2 EVALUATION METRICS 

For each of the different DL models, we evaluated the classification performance in terms of 

sensitivity (recall), precision, accuracy, and F1-score. Table 5 and Table 6 summarize the classification 

performances of DCNN models. As seen in the tables, DCNN models give promising results for 

COVID-19 diagnosis. VVCOVID and MICOVID obtained the best accuracy rate of 94%. These hybrid 

models showed better performance than other DCNN models in terms of accuracy rate. VVCOVID, 

MICOVID, MobileNet, Inception-V3, VGG16, SqueezeNet, Inception-ResNet-V2, and Xception 

models obtained the sensitivity rate of ~95% ± 2%. Each model has achieved around 90% precision and 

F1-score rates. DCNNs have achieved the specificity rate of ~92% ± 6.7%. For COVID-19 diagnosis, 

the results have shown that Inception-ResNet-V2 model had the poorest classification performance with 

a specificity rate of 91.73%. 

Table 5. Classification results of pre-trained models 

 Class MobileNet Inception-

V3 

VGG16 VGG19 SqueezeNet Inception-

ResNet-

V2 

DPN98 Xception 

Sensitivity 

(%) 

Covid 97 92 94 87 96 97 75 96 

Precision 
(%) 

Covid 98 94 97 90 94 90 98 94 

Accuracy 

(%) 

Covid 93 86 92 86 93 89 71 93 

F1-score 
(%) 

Covid 98 93 95 89 95  94 85  95 

Specificity 

(%) 

Covid 98.51 95.79 98.55 92.22 95.27 91.73 98.75 95.27 

 

Table 6. Classification results of deep hybrid models  

 VVCOVID MICOVID 

Sensitivity (%)        96    97 

Precision (%)        96    97  

Accuracy (%)        94    94 

F1-score (%)        96    97 

Specificity (%)      97.77 97.09 

 

The confusion matrix is a heuristic metric used to obtain the sensitivity (TPR), specificity (TNR), 

precision (PPV), accuracy (ACC), and F1-scores of the model, which are described in Equation (3), 
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Equation (4), Equation (5), Equation (6), and Equation (7). Table 7 shows true positives (TP), false 

positives (FP), true negatives (TN), and false negatives (FN) based on three-class (COVID-19, 

pneumonia, and normal). So, we expressed performance metrics with subscripts for COVID-19 class 

as “covid”, for pneumonia class as “pneumonia” and the healthy (normal) class as “normal”. For 

example, TPcovid is the number of COVID-19 testing data correctly classified. TNcovid is the number of 

non-COVID-19 testing data correctly classified. FNcovid is the number of non-COVID-19 testing data 

misclassified. FPcovid is the number of COVID-19 testing data misclassified. TPpneumonia is the number of 

pneumonia testing data correctly classified. TNpneumonia is the number of non-pneumonia testing data 

correctly classified. FNpneumonia is the number of non-pneumonia testing data misclassified. FPpneumonia is 

the number of pneumonia testing data misclassified. TPnormal is the number of normal testing data 

correctly classified. TNnormal is the number of non-normal testing data correctly classified. FNnormal is the 

number of non-normal testing data misclassified. FPnormal is the number of normal testing data 

misclassified.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP + FN
                          (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP
                          (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
                              (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
                (6) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 x precision x sensitivity

TP + TN + FP + FN
    (7) 

 

Table 7. Confusion matrix of the observed deep learning algorithms on 2019nCoVR dataset 

DCNNs Actual Classes 
Predicted 

Covid pneumonia normal 

MobileNet 
Covid 

pneumonia 

normal 

9763 (TP) 
130 (FP) 

60 (FP) 

252 (FN) 
6679 (TN) 

1107 (TN) 

16 (FN) 
4 (TN) 

4836 (TN) 

Inception-

V3 

Covid 
pneumonia 

              normal 

9254 (TP) 
515 (FP) 

24 (FP) 

376 (FN) 
6192 (TN) 

1742 (TN) 

401 (FN) 
106 (TN) 

4237 (TN) 

VGG16 

Covid 

pneumonia 
               normal 

9391 (TP) 

133 (FP) 
123 (FP) 

572 (FN) 

6649 (TN) 
945 (TN) 

68 (FN) 

31 (TN) 
4935 (TN) 

VGG19 

Covid 

pneumonia 
              normal 

8755 (TP) 

582 (FP) 
415 (FP) 

710 (FN) 

5948 (TN) 
714 (TN) 

566 (FN) 

283 (TN) 
4874 (TN) 

SqueezeNet 

Covid 

pneumonia 

              normal 

9603 (TP) 

471 (FP) 

134 (FP) 

308 (FN) 

6199 (TN) 

410 (TN) 

120 (FN) 

143 (TN) 

5459 (TN) 

Inception-
ResNet-V2 

Covid 

pneumonia 

              normal 

9766 (TP) 

691 (FP) 

368 (FP) 

168 (FN) 

6086 (TN) 

1103 (TN) 

97 (FN) 

36 (TN) 

4532 (TN) 

DPN98 

Covid 

pneumonia 

               normal 

7562 (TP) 

85 (FP) 

75 (FP) 

48 (FN) 

3118 (TN) 

359 (TN) 

2421 (FN) 

3610 (TN) 

5569 (TN) 

Xception 
Covid 

pneumonia 

              normal 

9603 (TP) 
471 (FP) 

134 (FP) 

308 (FN) 
6199 (TN) 

410 (TN) 

120 (FN) 
143 (TN) 

5459 (TN) 

VVCOVID Covid 9660 (TP) 227 (FN) 144 (FN) 
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pneumonia 

              normal 

317 (FP) 

55 (FP) 

6331 (TN) 

402 (TN) 

165 (TN) 

5546 (TN) 

MICOVID 

Covid 

pneumonia 

              normal 

9715 (TP) 

236 (FP) 

49 (FP) 

298 (FN) 

6557 (TN) 

685 (TN) 

18 (FN) 

20 (TN) 

5269 (TN) 

 

4. DISCUSSION-CONCLUSIONS 

Chest CT may play an important role, especially where the PCR resulting in false-negatives in 

COVID-19 diagnosis. Since a limited number of CXR images is publicly available for COVID-19, 

besides CXR images, we have resorted to CT images . We have reported a framework comprising of 

DCNN models for COVID-19 detection from CT images. Also, two novel deep hybrid models are 

developed using the images obtained. These models were trained and tested on the 2019nCoVR sub-

dataset (114.416 training set and 22.847 testing set). To report a summarizing performance of deep 

learning models, we provide the confusion matrix, accuracy, precision, sensitivity, specificity, and f1-

scores for each of these models. When the results are generally examined, this proposed framework 

promises using CT scan images for disease diagnostics. Besides pre-trained models, with the novel 

proposed deep hybrid models, the sensitivity, specificity, accuracy, precision, and F1-scores for 

classifying COVID-19 are obtained, and these are ~96%, ~97%, ~94%, ~96%, and ~96%, respectively. 

The best accuracy rate of 94% is obtained with MICOVID and VVCOVID. MobileNet- SqueezeNet-

Xception (93%), VGG16 (92%), Inception-ResNet-V2 (89%), Inception-V3-VGG19 (86%), and 

DPN98 (71%) follows it.  

Because of the mounting amount of COVID-19-infected patients, health staff is having more 

difficulty in combating the disease. So, the rapid development of AI methods is critical. Consequently, 

DCNN based-CAD systems are recommended for the diagnosis of COVID-19 in this paper. These 

proposed models deliver faster results than the classical PCR testing method. Thus, in addition to pre-

trained models, MICOVID and VVCOVID can become rapid and efficient diagnostic tools for COVID-

19. 
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