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Abstract
With this study it is aimed to introduce and analyze a new SIS epidemic model including vaccination
effect. Vaccination considered in the model provides a temporary protection effect and is administered
to both susceptible and new members of the population. The study provides a different aspect to the
SIS models used to express, mathematically, some infectious diseases which are not eradicated by the
immune system. The model given this study is designed by considering varying processes from person
to person in the disease transmission, the recovery from disease (recovery without immunity) and in the
loss of protective effect provided by the vaccine. The processes that change according to individuals are
explained by distributed delays used in the relevant differential equations that provide the transition
between compartments. The differences in the model are especially evident in these parts. In analyzing
the model, firstly, the disease-free and endemic equilibrium points related to the model are determined.
Then, the basic reproduction numberR0 is calculated with the next generation matrix method. Next, the
dynamics about locally asymptotically stable of the model at the disease-free and endemic equilibriums
are examined according to the basic reproduction numberR0. Attempts intended to reduce the spread
of the disease are, of course, in the direction supporting the lowering the valueR0. In this context, the
reducing and enhancing effects of the parameters used in the model on the valueR0 have been interpreted
mathematically and suggestions were made to implement control measures in this direction. Also, in
order to evaluate the support provided by the vaccine during the spread of the disease, the model has
been examined as vaccinated and unvaccinated, and by some mathematical process, it has been seen that
the vaccination has a crucial effect on disease control by decreasing the basic reproduction number. In
other respects, by explored that the effect of parameters related to vaccination on the change of R0, a
result about the minimum vaccination ratio of new members required for the elimination of the disease
in the population within the scope of the target ofR0 < 1 has been obtained.

Keywords: Local Asymptotic Stability; Sensitivity Analysis; SIS model; Vaccine Effect; Disease-free equilibrium point; Endemic
equilibrium point; Basic Reproduction Number.

AMS Subject Classification (2020): Primary: 34D05; Secondary: 34D20; 34D23; 34K20; 92B05; 92D25; 92D30.

Received : 08-05-2021, Accepted : 29-11-2021

https://doi.org/10.36753/mathenot.935016


Local asymptotic stability and sensitivity analysis 51

1. Introduction
Mathematical modeling has been used to describe and analyze behaviors of many phenomena in the practical

application areas such as theoretical ecology, mathematical epidemiology, economics, medicine, physics, chemical,
biology, engineering and so on, [1–7]. Specially, the technique of compartmental modeling has become substantial
tools in mathematical epidemiology for analyzing of the spread and control of infectious diseases. The modeling
idea related to epidemic disease transmitted in a closed population consisting of susceptibles (S), infectives (I),
and recovereds (R) were firstly considered by Kermack and McKendrick in 1927, [8]. Then, a lot of authors have
dealt with various details to carry further forward this modeling technique. Along with, the historical adventure
of compartmental modeling in mathematical epidemiology has proceeded from basic models to more detailed
models. It is usually difficult or almost impossible the analytical examination of detailed models and so their
usefulness for theoretical objectives is restricted, even though they may include substantial strategic values. On the
other hand simple models may be inadequate for public health authorities who are faced with the need to make
recommendations on strategies to deal with a particular situation. Therefore, the researches on the dynamics of
basic but slightly more detailed models have folded day by day. Especially, it has been concentrated on seeing
whether the variations in the models which are studied can lead to significant differences in behaviors related
to qualitative and stability, with respect to models in classical type. Hereby, by using the general principles of
modeling of epidemics, various models to describe the course of some epidemic diseases have been formulated,
[9–18].

With the details studied in the epidemic models, specific principles including factors such as vaccination,
quarantine, treatment; differences in systems reflecting transmission dynamics (such as being difference, differential,
integral or integro-differential equations) or using of the delay element in the projected system ... etc. are meant.
Vaccination appears as one of the significant factors between control measures for the dynamics in diseases
transmission. Li and Ma studied on SIS epidemic model with vaccination in [19]. Cai and Li [20] examined the
global stability of their SEIV epidemic model with a nonlinear incidence rate.

In this paper, we formulate a new SIS model with distributed delays by adding the vaccination effect, too.
To do this we use three distribute functions. Vaccination strategy in the model presented in this study base on
administering to both susceptible and new members of the population. Also, in the model, we assume that the
vaccinated individuals have temporary immunity and the losing of efficacy of vaccination varies from individual to
individual depending on the fact that efficiency of any vaccine does not usually continue lifetime of the individual.
On the other hand, it is thought that the infectiousness period in the transition from S to I and the recovery
without immunity in transition from I to S vary from individual to individual. The fact that the system consists of
integro-differential equations is originated from these effects varying according to individuals.

In the literature, there are studies that take into account the relative infectivity, [21–23], as well as the studies
that assume that the immunity formed after vaccination is not permanent, [24].

On the other hand, by using nonlinear classical differential equations, models in which the delay period is the
same and constant for all individuals can be made. However, nonlinear integro-differential equations are needed
to express the delay process with distributed manner, provided that the delay process remains within a certain
interval and varies according to individuals.

In the model introduced in this study, it is assumed that both the infectivity differs according to the individuals
over time and the protection provided by the vaccination that does not create permanent immunity changes over
time. In addition, the assumption that vaccinated individuals become relatively susceptible again with the loss of
immunity is also reflected in the model. The study aims to contribute to the mathematical epidemiology literature
with these novel aspects.

We continue this study to which we begin with introducing the model, with the qualitative and stability analysis
of the model. In what follows, we evaluate the impact of vaccination on the model dynamics and discuss sensitivity
analysis utilizing the normalized forward sensitivity index.

2. The Main Results Related to Research
The model which have been constructed by using the distribution function in three directions of transmission

and adding vaccination effect is governed by a system of nonlinear integro-differential equations below.

dS

dt
= (1− p) b− βS (t)

h1∫
0

f (τ) I (t− τ) dτ − σS (t)− µS (t) + ξ

h2∫
0

g (θ)V (t− θ) dθ + η

h3∫
0

k (γ) I (t− γ) dγ,
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dI

dt
= βS (t)

h1∫
0

f (τ) I (t− τ) dτ − η
h3∫
0

k (γ) I (t− γ) dγ − δI (t)− µI (t) , (2.1)

dV

dt
= pb+ σS (t)− ξ

h2∫
0

g (θ)V (t− θ) dθ − µV (t) .

According to the model, the population was divided into three categories: Susceptible (S), Vaccinated (V ), and
Infectious (I) individuals.

The susceptible class consists the individuals who are susceptible to the disease and have not any immunity. By
infectious individuals, it is meant the individuals who are infected by the disease and are able to spread the disease
to susceptible individuals.

Here S(t), I(t) and V (t) represent the numbers of susceptible, infectious and vaccinated individuals at time t,
respectively. The total population size at time t isN(t) and for all t ≥ 0, N(t) = S(t)+I(t)+V (t). Also it is assumed
that all functions and parameters used in the model are nonnegative. The inclusion of all newborn individuals into
the population is provided by giving input to the susceptible and vaccinated classes with the constant rate b in total.
The rates of natural death and the disease induced death are represented by µ and δ, respectively. β denotes the
effective contact rate between infectious and susceptible individuals.

h1 is maximum infectiousness period and τ indicates the period of time for each individual becomes infectious
such that 0 ≤ τ ≤ h1. By using f which is first distribution function used in the model, the density of individuals
whose infectious period τ is indicated with f(τ). Classically, it is supposed that f is non-negative and continuous

on [0, h1]. Also f satisfies
h1∫
0

f (τ) dτ = 1. The term f (τ) I (t− τ) corresponds to number of surviving individuals

at time t who infected at time t − τ and have infectiousness period τ. The integral βS (t)
h1∫
0

f (τ) I (t− τ) dτ is

expression that reflects transition of individuals to the compartment I as a result of effective contact between the
susceptible and infectious individuals within their infectiousness period.

The model envisions a vaccination strategy in which the vaccine is effective on all individuals and vaccinated
individuals are not become infected during their protection period. But the effectiveness of the vaccination loses
over time. p shows the vaccination rate of newborns while (1− p) b represents the inclusion rate of newborns
without vaccination to the susceptibles. Also σ is the vaccination rate of individuals in susceptible group and ξ is
the losing rate of effectiveness of the vaccine.

Besides these, g is the second distribution function such that g (θ) shows the ratio of individuals whose protection
period provided by the vaccine is θ. h2 is the maximum protection period provided by vaccination. So θ = 0 means
that the vaccine is completely ineffective. Also, 0 < θ ≤ h2 means that the vaccinated individuals gain only a finite
protection period (partial protection). Classically it is supposed that g is non-negative and continuous on [0, h2] in

addition that g satisfies
h2∫
0

g (θ) dθ = 1. The term g (θ)V (t− θ) corresponds to number of surviving individuals at

time t who have been vaccinated at time t− θ and whose protection period is θ.
According to this model, the vaccination does not provide a protective effect that will last forever. So, when

the protection period is finished, the vaccinated individuals who no longer has any protection turns again to the

susceptible compartment. To reflect this transition, we have used the expression ξ
h2∫
0

g (θ)V (t− θ) dθ in the model.

On the other hand, with entering the individuals to the recovery process, the amount of pathogens in the
host individual’s body become sufficiently low in the rate that the individual is no longer capable of transmitting
the disease. Individuals who complete the recovery process return to class S because they have not acquire any
immunity to the disease. η indicates the recovery rate of infectious individuals (recovery without immunity) and
h3 is maximum recovery period. γ indicates the time of recovery period of each individual with 0 ≤ γ ≤ h3.
k is third distribution function used in the model such that k(γ) denotes the density of individuals whose their
recovery period is γ. Again, classically, it is supposed that k denotes non-negative and k is continuous on [0, h3],

such that k satisfies
h3∫
0

k(γ)dγ = 1. The term k(γ)I (t− γ) represents the number of surviving individuals at time

t who have been infectious at time t − γ and whose recovery period is γ. According to our model the recovery
period is also a process that varies according to the individuals, just like the infectiousness period. Thus we use the
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mathematical expression η
h3∫
0

k (γ) I (t− γ) dγ in the transition from I to S to reflect the changing of the recovery

process according to individuals.

2.1 The Qualitative Analysis Results
Before moving on to the analysis of the model, we have to be sure that solutions of the system (2.1) remain in a

biologically feasible region for all parameters t belong to time. After preparation to this particular, we determine
the equilibrium points and basic reproduction number of the model.

2.1.1 Feasible Positive Invariant Region for the Model
Theorem 2.1. The bounded set

Θ =

{
(S, I, V ) : S ∈ C (R+,R+) , I ∈ C ([−max {τ, γ} ,∞) ,R+) , V ∈ C ([−θ,∞) ,R+) : N(t) ≤ b

µ

}
(2.2)

is positively invariant for the model, where R+ = [0,∞) .

Proof. By the sum of the differential equations that make up the system (2.1), the differential inequality

N ′ (t) =
dS

dt
+
dI

dt
+
dV

dt
= b− µ (S (t) + I (t) + V (t))− δI (t)

≤ b− µ (N (t)) (2.3)

is obtained. The solution of this differential inequality is achieved from solving the differential equation

N ′ (t) + µN (t) = b.

Then, we get the solution

N (t) = N(0)e−µt +
b

µ

(
1− e−µt

)
(2.4)

for the initial condition t = 0. Standard Comparison Theorem [25] says that the right side of the equality (2.4) is the
maximal solution of inequality (2.3). Thus we write

N (t) ≤ N(0)e−µt +
b

µ

(
1− e−µt

)
for all t ≥ 0.

It is obvious that N(t) ≤ b/µ for all t > 0 when N(0) ≤ b/µ. Hence, Θ is positively invariant for the system (2.1).
On the other hand, it can be derived that N (t) is bounded above with b/µ.
Consequently Θ is an asymptotic global attractor for all solutions of (2.1). Thus examining of the dynamics of

(2.1) in the region Θ would be appropriate epidemiologically.

2.1.2 Disease-Free Equilibrium Point
Since an equilibrium point of the system (2.1) is a constant solution of the system, it holds the equations

constituting the system and so it is written as:

0 = (1− p) b− βS0I0 − σS0 − µS0 + ξV0 + ηI0,

0 = pb+ σS0 − ξV0 − µV0.

From first and second equations, it is obtained respectively that

S0 =
(1− p) b+ ξV0

σ + µ
(2.5)

and
V0 =

pb+ σS0

ξ + µ
, (2.6)
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for I0 6= 0. Substituting the equality (2.6) into (2.5), we get

S0

[
σξ + σµ+ µξ + µ2 − σξ

]
= bξ + bµ (1− p)

and so

S0 =
b (ξ + µ (1− p))
µ (ξ + µ+ σ)

.

If this value is rewritten in (2.6), it is obtained that

V0 =
b (pµ+ σ)

µ (ξ + µ+ σ)
.

Hence, the disease-free equilibrium point of the model is

DFE = (S0, I0, V0) =

(
b (ξ + µ (1− p))
µ (ξ + µ+ σ)

, 0,
b (pµ+ σ)

µ (ξ + µ+ σ)

)
. (2.7)

2.1.3 Basic Reproduction Number
The basic reproduction number denoted by R0 is described as the average number of new cases (secondary

infections) created from one infectious individual in the wholly susceptible population through the entire length of
him/her infectiousness period.

In this part, we determine the basic reproduction number of the model by using the next generation matrix
approach, [26].

The dynamic system given by (2.1) can be written in matrix form as

dW

dt
=


·
I
·
S
·
V

 ,
where W = (I, S, V )T .

For the system written in the form
dW

dt
= Y(W )−Z(W ),

Y(W ) and Z(W ) are the following matrices, respectively:

Y(W ) =

 βS (t)
h1∫
0

f (τ) I (t− τ) dτ

0
0


and

Z(W ) =

 Z(W )11
Z(W )21
Z(W )31

 ,
where

Z(W )11 = η

h3∫
0

k (γ) I (t− γ) dγ + (δ + µ) I (t) ,

Z(W )21 = βS (t)

h1∫
0

f (τ) I (t− τ) dτ + σS (t)− ξ
h2∫
0

g (θ)V (t− θ) dθ − η
h3∫
0

k (γ) I (t− γ) dγ + µS (t)− (1− p) b,

Z(W )31 = ξ

h2∫
0

g (θ)V (t− θ) dθ + µV (t)− σS (t)− pb.
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In this splitting, Y(W ) is the matrix formed by writing of the partitionings in which new infections appear in
compartments I, S and V , respectively; and Z(W ) is the matrix formed by writing of the partitionings in which
other transitions between compartments I, S, V, and other compartments, respectively.

Now we find the correspondences at the DFE of the derivative matrices of Y(W ) and Z(W ) with respect to I, S
and V, respectively.

dY(DFE) =

 βS0 βI0 0
0 0 0
0 0 0


and

dZ(DFE) =

 η + δ + µ 0 0
βS0 − η βI0 + σ + µ −ξ

0 −σ ξ + µ

 .
Now, considering that the infection can only exist in compartment I, let us constitute the block matrices Y and Z as

Y = Y11 = [βS0]

and
Z = Z11 = [η + δ + µ] .

Hence

Y Z−1 =

[
βS0

η + µ+ δ

]
.

From the biological meanings of Y and Z, it follows that Y is entrywise non-negative and Z is a non-singular
M -matrix, so Z−1 is entrywise non-negative. Let φ (0) shows the number of initially infected individuals. Then
Y Z−1φ (0) is an entrywise non-negative vector giving the expected number of new infections. The matrix Y Z−1

has (1; 1) entry equal to the expected number of secondary infections in compartments I produced by an infected
individual introduced in compartments I . Thus Y Z−1 is the next generation matrix andR0 = ρ

(
Y Z−1

)
; where ρ

denotes the spectral radius.
Considering the component

S0 =
b (ξ + µ (1− p))
µ (ξ + µ+ σ)

of the DFE, the basic reproduction number of the system (2.1) is obtained as

R0 = ρ
(
Y Z−1

)
=

βS0

η + µ+ δ

=
bβ (ξ + µ (1− p))

µ (ξ + µ+ σ) (η + µ+ δ)
.

2.1.4 Existence and Uniqueness of Endemic Equilibrium Point
Now, we handle the problem of existence and uniqueness of endemic equilibrium point of the presented model.

The endemic equilibrium EE (S∗, I∗, V ∗) which is a constant solution of differential equations constituting the
system (2.1) satisfies the algebraic equations

0 = (1− p) b− βS∗I∗ − σS∗ − µS∗ + ξV ∗ + ηI∗,

0 = βS∗I∗ − ηI∗ − (µ+ δ) I∗,

0 = pb+ σS∗ − ξV ∗ − µV ∗, (2.8)

such that I∗ 6= 0. From second equation of this algebraic system, we write

I∗ (βS∗ − η − (µ+ δ)) = 0.

So, it must be
βS∗ − η − (µ+ δ) = 0.
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Then

S∗ =
η + µ+ δ

β
. (2.9)

If S∗ obtained in (2.9) is written in third equation of (2.8), V ∗ is found as

V ∗ =
pbβ + σ (η + µ+ δ)

β (ξ + µ)
.

On the other hand, by consideringR0, S
∗ and V ∗ are written as

S∗ =
b (ξ + µ (1− p))
µ (ξ + µ+ σ)R0

and

V ∗ =
pbµ (ξ + µ+ σ)R0 + σb (ξ + µ (1− p))

µ (ξ + µ) (ξ + µ+ σ)R0
.

Now, by using these equalities we have obtained, we will focus on the first equation of the system (2.8).[
β
b (ξ + µ (1− p))
µ (ξ + µ+ σ)R0

− η
]
I∗ = (1− p) b− (σ + µ)

b (ξ + µ (1− p))
µ (ξ + µ+ σ)R0

+ ξ
pbµ (ξ + µ+ σ)R0 + σb (ξ + µ (1− p))

µ (ξ + µ) (ξ + µ+ σ)R0
.

After regulations, we write

I∗ =

(1− p) bµ (ξ + µ+ σ) (ξ + µ)R0 − b (σ + µ) (ξ + µ (1− p)) (ξ + µ)
+ξ [pbµ (ξ + µ+ σ)R0 + σb (ξ + µ (1− p))]

(ξ + µ) [bβ (ξ + µ (1− p))− ηµ (ξ + µ+ σ)R0]
.

Precisely in this part, it has great importance to regulate the numerator of this fraction with careful operations. The
numerator part of I∗ can be written as

(1− p) bµ (ξ + µ+ σ) (ξ + µ)R0−b (σ + µ) ξ (ξ + µ)−bµ (1− p) (σ + µ) (ξ + µ)+ξpbµ (ξ + µ+ σ)R0+ξσb (ξ + µ (1− p)) .

If the first and fourth terms of the numerator consisting of five sums are taken into the common factor ( (ξ + µ+ σ)R0

) parenthesis, it is obtained the term (ξ + µ+ σ)R0bµ (ξ + µ (1− p)) . From second and third terms, it comes
−b (ξ + µ) (σ + µ) (ξ + µ (1− p)). If this last term and the fifth term of the sum are considered together, it is
obtained that −bµ (ξ + σ + µ) (ξ + µ (1− p)) .

So with the last rearrangement of the numerator part, we obtain

I∗ =
bµ (ξ + µ (1− p)) (ξ + µ+ σ) [R0 − 1]

(ξ + µ)

 bβ (ξ + µ (1− p))︸ ︷︷ ︸
µ(ξ+µ+σ)(η+µ+δ)R0

− ηµ (ξ + µ+ σ)R0


=

b (ξ + µ (1− p)) (R0 − 1)

(µ+ δ) (ξ + µ)R0
.

Hence I∗ is meaningful for onlyR0 > 1. Thus, we say that the system (2.1) has a unique endemic equilibrium
point formulated by equality

EE = (S∗, I∗, V ∗)

=

(
b (ξ + µ (1− p))
µ (ξ + µ+ σ)R0

,
b (ξ + µ (1− p)) (R0 − 1)

(µ+ δ) (ξ + µ)R0
,
pbµ (ξ + µ+ σ)R0 + σb (ξ + µ (1− p))

µ (ξ + µ) (ξ + µ+ σ)R0

)
,

whenR0 > 1.
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2.2 The Stability Analysis Results
In this section, we explore the asymptotic behaviors of the equilibrium points for the model (2.1).

Theorem 2.2. The disease-free equilibrium point DFE is locally asymptotically stable in Θ forR0 < 1.

Proof. For the system (2.1), the Jacobian matrix at DFE = (S0, I0, V0) is

J (DFE) =

 −βI0 − σ − µ −βS0 + η ξ
βI0 βS0 − η − µ− δ 0
σ 0 −ξ − µ

 .
Since I0 = 0, the characteristic equation which is correspond to this Jacobian matrix is

det (J (DFE)− λI3) =

∣∣∣∣∣∣
− (σ + µ)− λ −βS0 + η ξ

0 βS0 − η − µ− δ − λ 0
σ 0 −ξ − µ− λ

∣∣∣∣∣∣
= (βS0 − η − µ− δ − λ) [(σ + µ+ λ) (ξ + µ+ λ)− σξ] (2.10)
= 0.

From hence, for the roots of characteristic equation given by (2.10), we write

λ1 = βS0 − (η + µ+ δ)

= (η + µ+ δ) (R0 − 1) .

The remaining roots are obtained from the equation

λ2 + (ξ + σ + 2µ)λ+ µξ + σµ+ µ2 = 0.

For this quadratic equation,
λ2 + λ3 = − (ξ + σ + 2µ) < 0

and
λ2λ3 = µ (ξ + σ + µ) > 0.

While R0 < 1, all roots of the characteristic equation always have the negative sign. Therefore DFE is locally
asymptotically stable forR0 < 1.

To prove that the EE is locally asymptotically stable whenR0 > 1, we will use the criteria which is well known
in the literature and given by Routh and Hurwitz.

Theorem 2.3. The endemic equilibrium point EE is locally asymptotically stable in Θ forR0 > 1.

Proof. The Jacobian matrix of system (2.1) at EE = (S∗, I∗, V ∗) is

J (EE) =

 −βI∗ − σ − µ −βS∗ + η ξ
βI∗ βS∗ − η − µ− δ 0
σ 0 −ξ − µ

 .
Thus, the characteristic equation which is correspond to J (EE) is

λ3 + C1λ
2 + C2λ+ C3 = 0, (2.11)

where
C1 = βI∗ + ξ + σ + 2µ,

C2 = µβI∗ + δβI∗ + µξ + σξ + βξI∗ + µ2 + µσ + µβI∗

and
C3 = µβξI∗ + δβξI∗ + µ2βI∗ + µδβI∗.
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Since C1, C2, C3 are positive, we can determine stability of the system (2.1) by using Routh-Hurwitz Criteria.
According to this criteria,

H1 = C1 > 0

and
H2 =

C1C2 − C3

C1
.

After required simplifications, the numerator part of the value H2 is obtained as

C1C2 − C3 = µ (βI∗)
2

+ δ (βI∗)
2

+ µξβI∗ + σξβI∗ + ξ (βI∗)
2

+ µ2βI∗ + µσβI∗ + µ (βI∗)
2

+ σµβI∗ + σδβI∗

+σµξ + σ2ξ + σξβI∗ + σµ2 + µσ2 + σµβI∗ + µ2βI∗ + µδβI∗ + 2µ2ξ + 2µσξ + 2µβξI∗

+2µ3 + 2µ2σ + 2µ2βI∗ + µβξI∗ + µξ2 + σξ2 + ξ2βI∗ + µ2ξ + σµξ

> 0.

and so
H2 > 0.

Finally,
H3 = C3 > 0.

Thus, according to Routh-Hurwitz stability criteria, all eigenvalues of the Jacobian matrix of system (2.1) at the
endemic equilibrium point EE, that is, each of the roots of equation (2.11) have negative real parts. Consequently, if
R0 > 1 then the endemic equilibrium EE = (S∗, I∗, V ∗), which is unique equilibria for the system (2.1), is locally
asymptotically stable.

2.3 The Effect of Vaccination on the Spread of Disease
When the model is considered without vaccine (in this case, σ = p = 0 and so ξ = 0)) it transforms to SIS

epidemic model in the following form:

dS

dt
= b− βS (t)

h1∫
0

f (τ) I (t− τ) dτ + η

h3∫
0

k (γ) I (t− γ) dγ − µS (t) ,

dI

dt
= βS (t)

h1∫
0

f (τ) I (t− τ) dτ − η
h3∫
0

k (γ) I (t− γ) dγ − δI (t)− µI (t)

and for this model, the basic reproduction number is

`
R0 =

bβ

µ (η + µ+ δ)
.

It can be easily seen that there exists the relationship

R0 =

(
1− µp+ σ

ξ + µ+ σ

)
`
R0

betweenR0 and
`
R0. HereR0 <

`
R0 and this mathematical result indicates that, obviously, vaccination has a crucial

effect on disease control by decreasing the basic reproduction number. Thus, with the appropriate vaccination
strategy, the disease can be eradicated in the population by keeping the valueR0 below 1.

Several mathematical operations give us:

R0 < 1

⇔

 `
R0 −

(µp+ σ)
`
R0

ξ + µ+ σ

 < 1

⇔ (ξ + µ)

(
`
R0 − 1

)
< σ + µp

`
R0.
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Thus, within the scope of the target ofR0 < 1, the value pmin that comes with the inequality

pmin >

(ξ + µ)

(
`
R0 − 1

)
− σ

µ
`
R0

(2.12)

is the minimum vaccination ratio of new members required for the elimination of the disease in the population. We
note obviously that the parameters which define pmin in (2.12) should be chosen such that 0 < pmin < 1. Also, since
the other parameter determined the number of vaccinated individuals is σ, the choosing of parameters pmin and σ
should be considered together in (2.12). The result obtained about pmin means that, with increasing of σ and with
decreasing of ξ,R0 decreases and so the spread of the disease gradually decreases in the population. Therefore it is
meaningful that the efforts to increasing σ or decreasing ξ. This result will be seen again from the mathematical
explanations in a different perspective in the following part.

2.4 Sensitivity Analysis
One of the main objectives of the epidemic investigations is to suggest strategies such that it will ensure that the

necessary control measures are taken to stop the epidemic and to prevent possible outbreaks in the future. Attempts
intended to reduce the spread of the disease are, of course, in the direction supporting the lowering the valueR0.
Considering that there are many negative conditions brought about by the disease, together with the difficulty of
completely eliminating the epidemic in a population in a short time, attempts to reduce the spread of the disease
are very important. In this sense, with various control measures which will be implemented; lowering the value
R0 is one of the most fundamental issues. Thus, it has a major significance to explore the effect of parameters on
the change ofR0 and to apply control measures in this direction. To this, in the followings, we will evaluate the
influence aspects of the parameters that affectR0 by determining the normalized forward sensitivity index of it.
The normalized forward sensitivity index of the variableR0 with respect to the parameter ϑ is defined as

QR0

ϑ =
∂R0

∂ϑ
× ϑ

R0
,

by using partial derivative. Where ϑ represents the basic parameters constitutingR0. In that case,

QR0

β =
∂R0

∂β
× β

R0
= 1 > 0

and

QR0

ξ =
∂R0

∂ξ
× ξ

R0

=
(σ + µp) ξ

(ξ + µ+ σ) (ξ + µ (1− p))
> 0.

By increasing of these parameters that have additive effect on the spread of disease,R0 increases and so the disease
gets out of control in the population. Therefore, the control measures which will be established should be aimed at
reducing of the parameters β and ξ.

Now let us concentrate to the effect of parameters related to vaccine on R0. If we calculate, the normalized
forward sensitivity index taking account of the derivatives ofR0 with respect to p and σ, we get

QR0
p =

∂R0

∂p
× p

R0

= − µp

ξ + µ (1− p)
< 0

and

QR0
σ =

∂R0

∂σ
× σ

R0

= − σ

ξ + µ+ σ
< 0.
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Thus the disease can be eliminated with some favorable and adequate vaccination strategies. For example, one
of the necessary conditions for disease elimination is given in the result of mathematical calculation in (2.12).
Improvements in these two parameters that depend on the efficacy of vaccines may lead to disease eradication.

On the other hand

QR0
η =

∂R0

∂η
× η

R0

= − η

η + µ+ δ
< 0

and

QR0

δ =
∂R0

∂δ
× δ

R0

= − δ

η + µ+ δ
< 0.

The parameters η and δ that its sensitivity indices are negative will bring about the decrease in R0. Therefore,
strategies and actions developed on these two parameters will be useful in order that the spread of disease enters a
downward course.

3. Concluding Remarks

While expressing dynamic systems mathematically, nonlinear and moreover delayed differential equations
are needed to construct closer models to reality in the expression of complex phenomena. Because of the fact
that nonlinearity and the existence of delay in a system may lead to being much more complex of analysis and
control of the system, in particular, studying with nonlinear differential equations with delays is quite coercive
mathematically.

All these difficulties aside, the dynamic analysis of nonlinear systems is often examined by looking at the
local stability of the system. To reach conclusions related to local stabilities, it is needed to look at the linearized
equivalent of any equilibrium point of the nonlinear system. Thus it can be reached a conclusion about the local
dynamics of the system.

In this paper, a new mathematical epidemic model under the vaccine effect is constructed. Also asymptotic
behaviors of solutions by evaluating the local stabilities of equilibrium points for mentioned model are examined.

Subsequently, in order to evaluate the support provided by the vaccine during the spread of the disease, the
model has been considered as vaccinated and unvaccinated, and it has been seen that the vaccination has a crucial
effect on disease control by decreasing the basic reproduction number with several mathematical operations. Thus,
with the appropriate vaccination strategy, the disease can be eradicated in the population by keeping the value
R0 below 1. Also, within the scope of the target ofR0 < 1, a result about the minimum vaccination ratio of new
members required for the elimination of the disease in the population has been obtained.

Also in this part, the effects onR0 of the parameters σ and p which represents the vaccination rate of susceptible
individuals and of the parameter ξ which the losing rate of protective effect provided by the vaccine have been
determined; and the control measures which will can be applied on these parameters have been interpreted.

One of the main objectives of the epidemic investigations is to suggest strategies such that it will ensure that the
necessary control measures are taken to decrease and if it is possible to stop the epidemic and to prevent possible
outbreaks in the future. Attempts intended to reduce the spread of the disease are, of course, in the direction
supporting the lowering the valueR0. In this context, the reducing and enhancing effects of the parameters used in
the model on the valueR0 have been interpreted mathematically and suggestions were made to implement control
measures in this direction.

Nowadays, with the advancement of science, the desires and efforts of individuals have been increased in
solving and analyzing more complex problems. In this sense, the various nonlinear dynamic systems have been
formed to explain the more complex mechanisms in the struggle against epidemics and it have been examined the
stability behaviors of these new models. As a matter of course, the several details such as adding some different
compartments (exposed, asymptomatic infectious, etc.) or adding some parameters reflecting various control
measures (isolation etc.) may be considered to carry forward this model.
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