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Abstract: In this paper, we extend the work done on G-codes over formal power series rings and finite chain
rings Fq[t]/(t"), to composite G-codes over the same alphabets. We define composite G-codes over
the infinite ring R as ideals in the group ring R..G. We show that the dual of a composite G-code
is again a composite G-code in this setting. We extend the known results on projections and lifts
of G-codes over the finite chain rings and over the formal power series rings to composite G-codes.
Additionally, we extend some known results on vy-adic G-codes over R to composite G-codes and
study these codes over principal ideal rings.
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1. Introduction

In [11], T. Hurley introduced a map o which sends the group ring element v € RG to a matrix o(v)
over the ring R. The author also used this map to construct and study codes over fields. The feature of
this map is that for different finite groups in the group ring element v, the map o(v) will produce different
matrices over the ring R. For example in [10], the authors show that if v € RDa, then the generator
matrix of the form [I,, | o(v)] produces the well-known four circulant construction used in coding theory.

In [7], the authors apply the above map and study codes generated by (o(v)) over the Frobenius
rings. They define G-codes which are ideals in the group ring RG, where R is a finite commutative
Frobenius ring and G is a finite group. In [4], the authors study G-codes over formal power series rings
and finite chain rings. They extend many well known results on codes over R; and R, to G-codes over
the same alphabets. The authors also study vy-adic G-codes over R., and G-codes over principal ideal
rings.
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Recently in [3], the authors extended the map o introduced by T. Hurley in [11], so that the group
ring element v gets sent to more complex matrices over the ring R. The authors denote this map Q2 and
call the matrices {2(v) the composite matrices- see [3] for details. In [6], the authors introduce and study
composite G-codes which are defined by taking the row space of the composite matrix Q(v), i.e., (Q(v)).
They also extend many results from [4] on G-codes to composite G-codes.

In this work, we generalize the results on G-codes over formal power series rings and finite chain
rings F,[t]/(#') from [4] and some results from [8] to composite G-codes over the same alphabets. We
study the projections and lifts of composite G-codes over the finite chain rings and over the formal power
series rings respectively. We also extend the results on v-adic G-codes over R, to composite G-codes
and some results on G-codes over principal ideal rings to composite G-codes. In many parts of this work,
the results we present are a simple generalization or a consequence of the results proven in [4] and [8].

The rest of the work is organized as follows. In Section 2, we give preliminary definitions and results
on codes, finite chain rings, formal power series and composite G-codes. In Section 3, we show that the
composite G-codes are ideals in the group ring R..G. In Section 4, we study the projections and lifts
of the composite G-codes with a given type. In Sections 5 and 6, we extend the results from [4]; we
study self-dual y-adic composite G-codes and composite G-codes over principal ideal rings. We finish
with concluding remarks and directions for possible future research.

2. Preliminaries

2.1. Codes

We shall give the definitions for codes over rings. For a complete description of algebraic coding
theory in this setting, see [2]. Let R be a commutative ring. A code of length n over R is a subset of
R™ and a code is linear if it is a submodule of the ambient space R™. We assume that all finite rings we

use as alphabets are Frobenius, where a Frobenius ring is characterized by the following. Let R be the
character module of the ring R. For a finite ring R the following are equivalent:

e R is a Frobenius ring.
e As a left module, R~ rR.

e As a right module, R Rpg.
The Hamming weight of a vector is the number of non-zero coordinates in that vector and the
minimum weight of a code is the smallest weight of all non-zero vectors in the code.

We define the standard inner-product on the ambient space, namely

[V, W] = Z V;W; .
We define the orthogonal with respect to this inner-product as:
Ct ={veR"|[v,w]=0,Vw € C}.

The code C* is linear, whether or not C is. If R is a finite Frobenius ring, then we have that (C+)+ =C
for all linear codes C over R. However, if R is infinite this is not always true.

Definition 2.1. A linear code C over an infinite ring R is called basic if C = (C1)*.
2.2. Finite chain rings and formal power series rings

We recall the definitions and properties of a finite chain ring R and the formal power series ring R.
We refer the reader to [8] and [9] for details and further explanations. In this paper, we assume that all
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rings have a multiplicative identity and that all rings are commutative. We also stress that the results
we present in this work are given only for finite chain rings F,[t]/(¢").

2.2.1. Finite chain rings

A ring is called a chain ring if its ideals are linearly ordered by inclusion. In particular, this means
that any finite chain ring has a unique maximal ideal. Let R be a finite chain ring. Denote the unique
maximal ideal of R by m, and let 4 be the generator of the unique maximal ideal m. This gives that
m = () = RY, where Ry = () = {7 | B € R}. We have the following chain of ideals:

R=(F)2() 226G 2. (1)

The chain in (1) can not be infinite, since R is finite. Therefore, there exists i such that (7°) = {0}. Let
e be the minimal number such that (3¢) = {0}. The number e is called the nilpotency index of 4. This
gives that for a finite chain ring we have the following:

R=GF)2G) 2269 (2)
If the ring R is infinite then the chain in Equation 1 is also infinite.

Let R* denote the multiplicative group of all units in the ring R. Let F = R/m = R/(¥) be the
residue field with characteristic p, where p is a prime number, then |F| = ¢ = p" for some integers ¢ and

r. We know that [F*| = p” — 1. We now state two well-known lemmas for which the proofs can be found
in [12].

Lemma 2.2. For any 0 # r € R there is a unique integer i, 0 <i < e such that r = A, with v a unit.
The unit p is unique modulo ¥°~°.

Lemma 2.3. Let R be a finite chain ring with maximal ideal m = (%), where ¥ is a generator of m
with nilpotency index e. Let V- C R be a set of representatives for the equivalence classes of R under
congruence modulo 4. Then

(i) for all v € R there are unique ro,--- ,7e—1 € V such that r = Zf;ol iyt
(i) |V| = |F|;
(i) |(¥)] = |F["~7 for 0 < j <e—1.

From Lemma 2.3, we know that any element a of R can be written uniquely as

a=ao+amF+--+ac17,

where the a; can be viewed as elements in the field F.

It is well-known that the generator matrix for a code C over a finite chain ring R;, where i < oo is
permutation equivalent to a matrix of the following form:

I, Aoq Ao Aogs Ap.e
v, YA VA3 VA1

72Ik2 72142,3 72A2,e

’Ye_llkefl 76_114@71,6

where e is the nilpotency index of «. This matrix G is called the standard generator matrix form for the
code C. In this case, the code C' is said to have type

LRoyf (y?)fe L (TR (4)

93
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2.2.2. Formal power series rings

In the next definitions, which can be found in [8], v will indicate the generator of the ideal of a chain
ring, not necessarily the maximal ideal.

Definition 2.4. The ring Ry is defined as a formal power series ring:
(o]
Roo =Fh]] = {D_ @'l € F}.
1=0
Let i be an arbitrary positive integer. The rings R; are defined as follows:
R ={ag+ a1y + -+ a1 'a; € F},

where 41 £ 0, but v* = 0 in R;. If i is finite or infinite then the operations over R; are defined as
follows:

i-1 i—1 i—1

Yoar +Y byt =) (a+b)y ()
1=0 1=0 1=0

i—1 i—1 i—1

Zal'yl . Z bl/’yl/ = Z( Z albl/)’ys. (6)
1=0 =0 5=0 |+1'=s

The following results can be found in [§].

1. The ring R; is a chain ring with the maximal ideal (v) for all i < co.
2. The multiplicative group R, = {3>°72, ajy|ag # 0}.
3. The ring R, is a principal ideal domain.
Let C be a finitely generated linear code over Ro,. Then the generator matrix of code C is permutation

equivalent to the following standard form generator matrix.

Let C be a finitely generated, nonzero linear code over R, of length n, then any generator matrix
of C is permutation equivalent to a matrix of the following form:

YOIy Y™ Agr Y0 Age Y0 Ag s Ym0 Aoy
Yy, Y™ AL Y™ AL YA,
™2, YA Y2 Ay,

,77TL7-71 Ik.,., L ,y’rnrfl A'r‘fl,r

where 0 < mg < mp < --- < m,_1 for some integer r. The column blocks have sizes kg, k1, ..., k. and k;
are nonnegative integers adding to n.

Definition 2.5. A code C with generator matriz of the form given in Equation 7 is said to be of type
) G L O

where k = ko + k1 + -+ + k,._1 is called its rank and k, = n — k.

A code C of length n with rank k over R is called a y-adic [n, k] code. We call k the dimension of
C and we write by dim C = k.
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Let 4,7 be two integers with i < j, we define a map

). R; — R, (8)
j—1 1—1
doant =Y an. 9)
=0 =0

If we replace R; with R, then we obtain a map ¥$°. For convenience, we denote it by ¥;. It is easy

to get that \Ilf and ¥; are ring homomorphisms. Let a,b be two arbitrary elements in I2;. It is easy to
get that

W (a+b) = W (a) + W] (b), W] (ab) = ¥(a)¥] (D). (10)

If a,b € Ry, we have that
Ui(a+b) =V;(a) + ¥;(b), ¥i(ab) = V;(a)¥;(b). (11)

Note that the map \I/Z and U; can be extended naturally from R? to R}' and RZ, to R}

The construction method above gives a chain of rings where R; is a finite ring for all finite ¢ and R
is an infinite principal ideal domain.

This gives the following diagram:

Row -+ 2 Re— Recq — -+ = Ry

2.3. Composite GG-codes

In this section, we define a circulant matrix, give the definitions for group rings and introduce
composite G- codes.

A circulant matrix is one where each row is shifted one element to the right relative to the preceding
row. We label the circulant matrix as A = circ(aq, as, ..., a,), where q; are ring elements.

We shall now give the necessary definitions for group rings. Let G be a finite group of order n and
let R be a ring, then the group ring RG consists of > -, «ig;, & € R, g; € G.

Addition in the group ring is done by coordinate addition, namely

n

Z a;g; + Z Bigi = Z(ai + Bi)gi- (12)
=1 =1

i=1

The product of two elements in a group ring is given by
n n
O gD Bigi) = aiB;gigs. (13)
i=1 j=1 i,j

It follows that the coefficient of g; in the product is Zgigj:gk a;f3;.

The following matrix construction was first introduced in [3]. In [6], the authors have shown that
the same construction produces codes in R™ from elements in the group ring RG.

Let {g1,92,...,9n} be a fixed listing of the elements of G. Let {hy, ha,...,h,} be a fixed listing of
the elements of H, where H is a group of order r. Here, let r be a factor of n with n > r and n,r # 1.
Also, let G, be a subset of G containing r distinct elements of G. Define the map:
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¢: H— G,
hy 2 g1
hgg g2

h. i) Jr-

Next, let v = ag, g1 + g, 92 + - - + g, gn € RG. Define the matrix Q(v) € M, (R) to be

Ay As A3
An gy Az o Azgs
Q) = . ) .
A(r—l)n +1 A(T*l)n+2 14(7*71)n_"_3 e

where at least one block has the following form:

33

ol

ﬁ..

iw‘ 3

Yy g Yy g Yy gt (o)
Qo ((h)3 " (h)1) Yor((h)z (h)2) = Fen((ha)3 (ha)r)
Al = | You((h)3 () Y3 (h)2) Y3 () |
Qo ()7 (h)1) Pn((h)r (h)2) X))t (ha)r)
and the other blocks are of the form:
agjlgk ag;19k+1 95 Gt (r—1)
ag;rllgk ag;rllgkﬂ T Oégjjrllgkﬁ»(r—l)
A= Yihor Yihoen o Yooy |
Q

-1 o —1
9jir—19k 9j{r—19k+1

where [ = {1,2,3,..., ’;—;} and where:

(]31 :H, — G,
1 _
(hi)r = g5 gn

¢ =
(hi)s = g5 grn

o
(hi)r =% 9; YOt (1)

Here we notice that when when [ = 1 then j = 1,k = 1, when [ = 2 then j = 1,
Tthen j=1,k=n—-r+1 Whenl =

when | = 3 then j = 1,k =2r+1, ... when [l =
j=r+1k=1 whenl=="+2then j =r+1k

r+1, when [ = =
. Whenl=27”thenj:r+1,k:n—r—|—1,...,

and so on.
In [6], it is shown that the matrix Q(v) can be written as:

(%

g o Yoo Yorles Yo lgn
o _—1 o _—1 o —1 o —1

9o, 91 9o, 92 9>, 93 9o 9Gn
Q(U) — 1 2 3 n
o —1 o —1 o —1 N O e |

9nq 91 9ngy 92 9ng 93 Inp 9In

96

o —1
9j4r—19k+(r—1)

+ 3 then j =r+1,

If:
T+
k:

r+1,
1 then
2r + 1,
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where 9;1 are simply the elements of the group G. These elements are determined by how the matrix has
been partitioned, what groups H; of order r have been employed and how the maps ¢; have been defined
to form the composite matrix. This representation of the composite matrix 2(v) will make it easier to
prove the upcoming results.

For a given element v € RG and some groups H; of order r, we define the following code over the
ring R :

C(v) = (Q2(v))- (15)

The code is formed by taking the row space of Q(v) over the ring R. The code C(v) is a linear code
over the ring R, since it is the row space of a generator matrix. It is not possible to determine the size
of the code immediately from the matrix. In [6], it is shown that such codes are ideals in the group ring
RG, and are held invariant by the action of the elements of G. Such codes are referred to as composite
G-codes.

We note that the matrix Q(v) is an extension of the matrix o(v) defined in [11]. Also, in [6], the
authors show when the matrices Q2(v) are inequivalent to the matrices obtained from o(v). This is one
reason to study codes constructed from (v)- this technique can produce codes which can not be obtained
from codes constructed from o(v) or other classical techniques. For example, please see [5] where many
new binary self-dual codes are constructed via the composite matrices.

3. Composite G-codes and ideals in the group ring R G

In this section, we show that the composite G- codes are ideals in the group ring R,.G and that the
dual of the composite G- code is also a composite G- code in this setting. These two results are a simple
generalization of Theorem 3.1 and Theorem 3.2 from [4]. We use the same arguments as in [4] to prove
our results.

For simplicity, we write each non-zero element in R, in the form y*a where a = ag +a;y+---+---
with ag # 0 and ¢ > 0, which means that a is a unit in R,.

We note that if v = yl91ag, g1 +7'%2ag, g2+ - -+ ag, gn € ReoG, then each row of (v) corresponds
to an element in R G of the following form:

n
lg. g.
1}; - 27 #3488 Qg;.9:95: 91 (16)
i=1

where 'ylgfi” ag;.g; € Rooy i, 95, € G and j is the jth row of the matrix Q(v). In other words, we can
define the composite matrix Q(v) as:

lgl g1 lgl g2 lglr g3 l‘] an
T Ggng Y Agige Y T giggs e It ag,, g,
l
92,91 9245 92 924 93
VN gy gr Y T2 Ogayge Y T3 gaygy e e Y 2n I g, gn
Qv) = . . . . . ; (17)
lgnl 91 q lgnQ 92 q lgng I3 q lgnn an q,
Y gni91 Y gnog2 Y Gnzgs -+ ) Gnn In

where the elements g;, are simply the group elements G. Which elements of G these are, depends how
the composite matrix is defined, i.e., what groups we employ and how we define the ¢; map in individual
blocks. Then we take the row space of the matrix (v) over R, to get the corresponding composite
G-code, namely C(v).
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Theorem 3.1. Let Ry, be the formal power series ring and G a finite group of order n. Let H; be
finite groups of order r such that v is a factor of n with n > r and n,r # 1. Also, let v € RooG and
let C(v) = (Qv)) be the corresponding code in RZ. Let I(v) be the set of elements of RsoG such that
S Yliaig: € I(v) if and only if (Y a1,9"2aq,...,v'"a,) € C(v). Then I(v) is a left ideal in Ry G.

Proof. We saw above that the rows of Q(v) consist precisely of the vectors that correspond to the

elements of the form v = S 'yl"’ji"“ ag;.9:95:9: In RooG, where fyl-"fi “ag;. 9, € Ry i, 95, € G and j
is the jth row of the matrix Q(v). Let a = Y ~'a;g; and b = 3" ~4%b,g; be two elements in I(v), then
a+b=>(y"a; ++%b;)g;, which corresponds to the sum of the corresponding elements in C(v). This

implies that I(v) is closed under addition.
Let wy = Y- 7"bigi € RooG. Then if wy corresponds to a vector in C(v), it is of the form Y (v"a;)vj.
Then wiws = > Alibig Y (Yia;)vi = Y Alibiyli a;giv; which corresponds to an element in C(v) and

gives that the element is in I(v). Therefore I (v) is a left ideal of RoG. O

Next we show that the dual of a composite G-code is also a composite G-code.

Let I be an ideal in a group ring R.G. Define R(C) = {w | vw = 0, Yv € I}. It follows that R(I)
is an ideal of R G.

Let v = Ao ag,91 + Aoz ag,g2 + -+ + ~lan ag,9n € RooG and C(v) be the corresponding code.
Let Q : RooG — R be the canonical map that sends Y'o1a, 91 + Yl92a4,92 + -+ + Yloma,, gn to
(Y'orag,, 792 ag,, - ,ylmag, ). Let I be the ideal Q71(C). Let w = (wq,w2,...,w,) € Ct. Then the
operator of product between any row of Q(v) and w is zero:

ly, ly, _ .
[(’Y da1 9 QAg; 9157 93291 Agingrs- - 7'7/ng"§1 agjn91)7 (wh W2, .-y wn)] =0, VJ' (18)
Which gives
n
Z'ylghg’i ag;. g;wi =0, Vj. (19)
i=1

Let w = Q7 Y(w) = Y 7*sw,, g; and define W € RoG to be W = ~v*aby, g1 + yFa2b,,90 + -+ +
yFon by, gn, Where

kE _
ke by, =y 9 1wg;1. (20)
Then
n n k
YAy, gwi =0 = Y Aag, gy b, =0, (21)
i=1 i=1

*

7 is any row of

Here, gjigigi_l = gj;, thus this is the coefficient of g;, in the product of w and v}, where v
the matrix Q(v). This gives that W € R([) if and only if w € C*.

Let ¢ : R% — Ro.G by ¢(w) = W, then this map is a bijection between C* and R(Q~1(C)) = R(I).

Theorem 3.2. Let C = C(v) be a code in RoG formed from the vector v € RooG. Then Q~H(CL) is an
ideal of Ry G.

Proof. The composite mapping Q(¢(Ct)) is permutation equivalent to C* and ¢(C*) is an ideal of
R+G. We know that ¢ is a bijection between Ct and R(Q7*(C)), and we also know that Q~1(C) is an
ideal of R G as well. This proves that the dual of a composite G-code is also a composite G-code over
the formal power series ring. O
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4. Projections and lifts of composite G-codes

In this section, we extend more results from [4]. In fact, many of the results presented in this section
are a consequence of the results proven in [8] and a simple generalization of the results proven in [4].

We first show that if v € RyG then Q(v) is permutation equivalent to the matrix defined in Equa-
tion 7. For simplicity, we write each non-zero element in R, in the form v*a where a = ag+a1y+---+---
with ag # 0 and ¢ > 0, which means that a is a unit in R,.

Theorem 4.1. Let v = o ag, g1 + oz Qg,g2 + -+ + ylon ag, gn € Roo G, where agy, are units in Ro. Let
C be a finitely generated code over Ry,. Then

lgl g1 lgl g2 lgl g3 l.‘l 91
’7[ Qg gr Y T2 gr,g90 Y T3 Agrags -ee Y In g1, 9n
l
924, 91 925 92 92493 g g
VT Ggy gy VT2 gy, gy VB Agyags <o Y PRI Agy g,
Q('U) = 9
lg g lg g lg 19 9. l
VI ag, g1 V2R g, g, VI Ag, gy -0 Y I Ag, g,

is permutation equivalent to the standard generator matriz given in Equation 7.

Proof. Take one non-zero element of the form y™°agy,, where mg is the minimal non-negative integer.
By applying column and row permutations and by dividing a row by a unit, the element that corresponds
to the first row and column of Q(v) can be replaced by 4. The elements in the first column of matrix
Q(v) have the form vl-qi ag, with l,, > mo and ay, a unit, thus, these can be replaced by zero when
they are added to the first row multiplied by —’ylgf —mo (ag, )~L. Continuing the process using elementary
operations, we obtain the standard generator matrix of the code C given in Equation 7. O

Example 4.2. Let G = (x,y | 2* = 1,y? = 2%, yoy~ ' = 271) 2 Qg. Let v = E?:o (12" + aiqs7'y) €
ReoQs, where a; = ay, € Roo. Let Hy = {a,b | a® = b* = 1,ab = ba) = Cy x Ca. We now define the

composite matriz as:
O S 1,1 A\ _
(U) (‘ 13 < 121)

Yyt Ayl Qyrtgs Y ga QXglgs Yy s Qylgr Qyrlgs
Qor((h1)3 (h)1) Y1 ((h1)3 (ha)2) Do1((h1)3 (h1)s) Yon((h1)3 " (ha)a) Qg5 tgs Qs lg6 Yy lgr Yy 'gs
Q1 (h)3 (h)1) Yor((h)3 (h)2) Yor((h)5 ! (h1)s) Vér((hn)z ! (ha)a) Qi tgs Y596 Yy tgr @95 9s
Qo1 ()7 (h)1) Yo ((h)i " (ha)2) Qo1 ((ha)7 (ha)s) Yo ((h1)i " (ha)a) Yorlgs Yol Yo lgr Y g

Qylg Qgigy Qglgy QXglg, Qglgs Qgtgs Qgig, Qglge

Yg5tar @95 g2 g9 g5t ga Qu((h)3 (1) Xa((h1); (h1)2) Xoa((hn)3 " (ha)s) Dal(ha)y ' (ha)a)

Yo Yo Y gs Qgrlgs Qo4((h1)3 1 (h1)1) Yal(h1)z " (h1)2) Qoa((h1)5 (h1)s) Fa((h1)z" (h1)a)

R Yos'os Yos'gs Qgtgs Qpa((h)7 (h1)1) Poa((h)7 ' (h1)2) Ya((h)7 (h1)s) Pa((ha)7  (ha)s)

where:
5 (h)s 2 g7 gs b (h1)i 2% g5'g;

Cfor i ={1,2,3,4} " for when {i =1,...,4 and j =i + 4},

in A} and Al respectively. This results in a composite matriz over Ry, of the following form:
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Q1 Qg (3 Oy |5 Qg Q7 Qg
Qg 1 (g Q3|8 5 Qg Q7

X1 X, a3 a4 a1 Qa|lar Qg Q5 Qg

Q(v) = Y1 X,y _ | o4 a3 ap a1jas a7 ag as
X, Xy Yy Qa7 Qg Qs Qg|al 0y a3 Qo

Yy Xy ag Q7 Qg Q5|Qq Qi Qi (i3

Q5 g Q7 Qg |3 Qi (p Qg

Qg Q5 g 7 |Qg (i3 Oy (1
If we let v ="2% + (1 + )y + v (1 + v +v°)2*y + 7*2%y € RocQs, where (,y) = Qg, then
C(v) = (Qv)) =

0 0 0 7 0 YA+ PA+r+97) e
0 0 7 0 gl 0 P+ P+r+97)
0 " 0 0 PA+y+9%) 7 0 Y1 +7)
7 0 0 0 YA+ PA+y+97) 7 0
PA+y+9%) P+ 0 7 0 7 0 0
7 PA+r+77)  P+9) 0 7 0 0 0
0 7 PA+y+9Y) P(1+9) 0 0 0 7
(1 +7) 0 7 PA+7r+9%) 0 0 ¥ 0

and C(v) is equivalent to

¥ 0 0 0 0 Y147 FA+v+9?) 72

0. 7* 0 0 7’ 0 YA+y) YA+ yr+9?)
0 0 4% 0 Y¥*(1+~v+92) 2 0 Y21 +7)
00 0+ ~*1A+v) ~F*A+v+9?) 72 0

Clearly C(v) = (Q(v)) 1is the [8,4,4] extended Hamming code.

We now generalize the results from [4] on the projection of codes with a given type.

Proposition 4.3. Let C be a composite G-code over Ry, of type

{(,Ymo)ko’ (,ym1)k1’ . (,ym,.,1>lc,.,1}

with generator matrix Q(v). The code generated by V;(Qv)) is a code over R; of type
{(ymo)ko (ymiyka . (yme=1)ks=1} where my is the largest m; that is less than e. Also, the code generated
by U,;(Q(v)) is equal to

{(\Ili(cl), \Pi(CQ)v ceey \Ill(cn)) ‘ (Cla C2y .-y Cn) € C} (22)
Proof. If m; > e — 1 then ¥; sends v M’ , where M’ is a matrix, to a zero matrix which gives the

first part.

The code C is formed by taking the row space of Q(v) over the ring R, i.e. y'*aiv; +7v2agvs + -+ -+
Y anv, where vlia; € Ry, and v; are the rows of Q(v). If w = b a;vj, then ¥;(w) = U, (vhia;)W,(v;) by
the equation given in (11) where ¥;(v;) applies the map coordinate-wise. This gives the second part. O

Since a composite G- code over R, is a linear code, the following results are a direct consequence
of some results proven in [8]. We omit the proofs.

Lemma 4.4. Let C be a composite G-code of length n over R, then,
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(1) C* has type 1™ for some m,
(2) C = (CH)* if and only if C has type 1% for some k,
(8) If C has a standard generator matriz G as in equation (7), then we have

(i) the dual code C*+ of C has a generator matriz
H = (Bo,r Boy—1 ... Bog2 Boa Ik,‘)v (23)

whereBO,j:—Z BOlAT Gl — AT _jp forall1 <j <r;
(ii) rank(C)+rank(C*)=n.

Example 4.5. If we take the generator matriz G of a code C from Example 1, we can see that

1000 0 1+  1+v+42 1

= |- 0100 2 1 0 1+ 1444792 ’
0010 1+ 472 1 0 1+~
0001 1+y 147472 1 0

which is the standard generator matriz- here,

0 1+y  1+vy++2 1
e = 1 0 1+y  1+y+72
0,1 = 9
1+vy+~ 1 0 1+~
I+y 1+v+92 1 0

In this case the generator matriz of the dual code C*+ of C has the form:

H = (30,1 Ikl)'
Now,
BO,l = 7A,(1)“717
thus
0 —(1+7v) —(1+v+9? -1 1000
_ -1 0 —(1+7) —-(1+~9++4*») 0100
—(1+v+9?) -1 0 —(14+v) 0010
(147 —(1+v+9?) -1 0 0001

We also have
rank(C) + rank(Ct) =44+ 4 =8 = n.
Proposition 4.6. Let C be a self-orthogonal composite G-code over Ry,. Then the code V;(C) is a self-

orthogonal composite G-code over R; for all i < co.

Proof. We first show that ¥,;(C) is self-orthogonal. Let v € RoG and (Q(v)) = C(v) be the corre-
sponding self-orthogonal composite G-code. This implies that [v,w] = 0 for all v,w € (Q(v)) = C(v).
This gives that

Zvlwg Z\I/ v) ¥ (wp)(mod 7*) = ¥;([v, w])(mod 7*) = 0 (mod ~*).
Hence ¥;(C) is a self-orthogonal code over R;. To show that ¥;(C) is also a G-code, we notice that when
taking ¥;(C) = ¥;((Q(v))), it corresponds to W;(v) = Wi(y'71ag,)g1+¥i(v'2ag,) g2+ -+ V(Yo ag, )gn,
then ¥,(C) € R;G. Thus ¥;(C) is also a composite G-code. O
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i

Definition 4.7. Let i,j be two integers such that 1 < i < j < oco. We say that an [n, k] code Cy over
R; lifts to an [n,k] code Cy over R;, denoted by Cy = Cs, if Cy has a generator matriz Go such that

U/ (Gy) is a generator matriz of Cy. We also denote Cy by \I/j(Cg) If C is a [n, k] y-adic code, then for
any i < oo, we call U;(C) a projection of C. We denote ¥;(C) by C*.

Lemma 4.8. Let C be a composite G-code over Ro, with type 1¥. If Q(v) is a standard form of C, then
for any positive integer, i, U;(Q(v)) is a standard form of ¥;(C).

Proof. We know from Theorem 4.1 that Q(v) is permutation equivalent to a standard form matrix
defined in Equation 7. We also have that C has type 1*, hence ¥;(C) has type 1*. The rest of the proof
is the same as in [§]. O

In the following, to avoid confusion, we let v, and v be elements of the group rings R..G and
R;G respectively. Let veo = Y'ag, g1 +72ag,92 + -+ + ¥'"ag, gn € RG, and C(vs) = (Q(vso)) be the
corresponding composite G-code. Define the following map:

Ql : ROOG — C(’Uoo),

(Vorag,91 +7'2ag,90 + -+ ag, gn) = M(ReG, va0).

We define a projection of composite G-codes over R,G to R;G.
Let

U, : RooG — RiG (24)

via — U(vla). (25)

The projection is a homomorphism which means that if I is an ideal of R, G, then ¥;(/) is an ideal of
R;G. We have the following commutative diagram:

R%,G @ C(vs)

;) ;-
RIG Q) C(v)

This gives that ¥;Q; = Q,¥;, which gives the following theorem.

Theorem 4.9. If C is a composite G-code over R, then U;(C) is a composite G-code over R; for all
1 < 00.

Proof. Let vy € RooG and C(vs) be the corresponding composite G-code over Rs. Then Q4 (vs) =
C(vso) is an ideal of Ry G. By the homomorphism in Equation 24 and the commutative diagram above,
we know that U; (21 (ve)) = Q1(¥;(ve)) is an ideal of the group ring R;G. This implies that ¥;(C) is a
composite G-code over R; for all i < co. O

Theorem 4.10. Let C' be a composite G-code over R;, then the lift of C, C over R;, where j > i, is also
a composite G-code.

Proof. Let vy = ag,91 +agg2 + -+ g, 9, € R;G and C = ((v1)) be the corresponding composite
G-code. Let vy = Bg,91 + Bg.92 + -+ + Bg, 9n € R;G and C = (Q(vy)) be the corresponding composite
G-code. We can say that v; and vy act as generators of C and C respectively. We can clearly see that
we can have U (e2) = ! (8, )g1 + U (B, )02 + -+ + UL(By. )gn = gy 01 + o+ + g, g € RiG,
thus U7 (vy) is a generator matrix of C. This implies that the composite G-code C(v;) over R; lifts to a
composite G-code over Rj;, for all j > 4. O
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The following results consider composite G-codes over chain rings that are projections of v-adic
codes. The results are just a simple consequence of the results proven in [8]. For details on notation and
proofs, please refer to [8] and [4].

Lemma 4.11. Let C be a [n, k] composite G-code of type 1%, and G, H be a generator and parity-check
matrices of C. Let G; = W;(G) and H; = W;(H). Then G; and H; are generator and parity check matrices
of C* respectively. Let i < j < 0o be two positive integers, then
(i) ¥7'Gi = 977G (mod +7);
(i) v~ H; = +7~"H; (mod ~7).
(iii) A9=1C C C9;
(iv) v =~ivg € C7 if and only if vo € C77%;
(v) Ker(W))=ici—i,

Theorem 4.12. Let C be a composite G-code over Rs. Then the following two results hold.

(i) the minimum Hamming distance dg (C*) of C* is equal to d = dg (CY) for all i < oo;
(ii) the minimum Hamming distance doo = dg(C) of C is at least d = dg(Ch).
The final two results we present in this section are a simple extension of the two results from [8] on

MDS and MDR codes over R,,. We omit the proofs since a composite G- code over R is a linear code
and for that fact, the proofs are the same as in [8].

Theorem 4.13. Let C be a composite G-code over Rs. If C is an MDR or MDS code then Ct+ is an
MDS code.

Theorem 4.14. Let C be a composite G-code over R;, and C be a lift of C over R;, where j > . If C is
an MDS code over R; then the code C is an MDS code over R;.

5. Self-dual y-adic composite G-codes

In this section, we extend some results for self-dual v-adic codes to composite G-codes over R,. As

in previous sections, the results presented here are just a simple generalization of the results proven in
[8] and [4].

Fix the ring R, with
Ro—-+—=Ri—=--—=Ry— Ry

and R; = [Fy where ¢ = p" for some prime p and nonnegative integer r. The field F, is said to be the
underlying field of the rings.

We now generalize four theorems from [8]. The first two consider self-dual codes over R; with a
specific type and projections of self-dual codes over R, respectively. The third one considers a method for
constructing self-dual codes over F from a self-dual code over R;. We extend these to self-dual composite
G-codes over R; and R, respectively.

Theorem 5.1. Let i be odd and C be a composite G-code over R; with type 150 (y)F (y2)kz . (yi=1)ki-1,
Then C is a self-dual code if and only if C is self-orthogonal and k; = k;_; for all j.

Proof. 1t is enough to show that Q(v) where v € R;G and G is a finite group, is permutation equivalent
to the matrix (3). The rest of the proof is the same as in [8]. O



A. Korban / J. Algebra Comb. Discrete Appl. 8(2) (2021) 91-105

Theorem 5.2. IfC is a self-dual composite G-code of length n over R, then W;(C) is a self-dual composite
G-code of length n over R; for all i < co.

Proof. This is a direct consequence of Theorem 3.4 in [8] and Proposition 4.4 of this work. O

Theorem 5.3. Let i be odd. A self-dual composite G-code of length n over R; induces a self-dual
composite G-code of length n over F,.

Proof. The first part of the proof is identical to the one of Theorem 5.5 from [4]. Secondly, when
the map W (G) is used in [8], we notice that in our case the map will correspond to ¥ (G) = Wi (v) =
Vi (ylorag, g1 + Wi (vlo2ag,)ge + - - - + \Iﬁ (v'smag, )gn, assuming that G is the generator matrix of a com-
posite G-code and v € R;G. Then U}(G) is the generator matrix of a composite G-code over F,. O

Theorem 5.4. Let R = R, be a finite chain ring, F = R/(v), where |F| = q = p",2 # p is a prime.
Then any self-dual composite G-code C over F can be lifted to a self-dual composite G-code over Ry.

Proof. From Theorem 4.10 we know that a composite G-code over R; can be lifted to a composite G-
code over R;, where j > ¢. To show that a self-dual composite G-code over F lifts to a self-dual composite
G-code over R, it is enough to follow the proof in [§]. O

6. Composite GG-codes over principal ideal rings

In this section, we study composite G-codes over principal ideal rings. We study codes over this class
of rings by the generalized Chinese Remainder Theorem. Please see [2] for more details on the notation
and definitions of the principal ideal rings.

Let R! 1,Rz2, ..., Rg_be chain rings, where jo has unique maximal ideal (7y;) and the nilpotency

index of ; is ;. Let F/ = jo/<7j>. Let

A = CRT(R}

€17 "

J s
LRI, R:).

We know that A is a principal ideal ring. For any 1 <1 < oo, let

Al =CRT(R!,....,Rl,...,R:).
This gives that all the rings Ag are principal ideal rings. In particular, Agj = A. We denote
CRT(R, ...,Ri,,...,R:) by AL,.
For 1 <i < 00, let C! be a code over R}. Let
¢! =CRT(C,,....Cl.....C)
be the associated code over Ag . Let
cl, =CRT(C,,,...,CL,...,C:)

be associated code over AZ_. We can now prove the following.

Theorem 6.1. Let ng be a composite G-code over the chain ring Réj that is ng is an ideal in R, G.
Then CI, =CRT(C! ,..., Cl,, ... ,CS.) is a composite G-code over Al

Proof. Let v, c ng. We know that v’ also belongs to ng where v} has the form defined in (16). Let
v € CL,. Now if v = CRT(v1,Va,...,V,), then v* = CRT(v},v3,...,v%) and so v* € CJ, giving that
CJ, is an ideal in A7_G, and thus giving that CJ_ is a composite G-code over A7 . O
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7. Conclusion

In this work, we generalized the known results on G-codes over the formal power series rings and
finite chain rings F,[t]/(t') to composite G-codes over the same alphabets. We showed that the dual of
a composite G-code is also a composite G-code and we studied the projections and lifts of the composite
G-codes with a given type in this setting. We extended many theoretical results on v-adic G-codes and
G-codes over principal ideal rings to composite y-adic G-codes and composite G-codes over principal ideal
rings. Since the results presented in this paper and in [4] only consider the finite chain rings F,[t]/(t?),
it is suggested that for future research, these families of codes; G - Codes and composite G - Codes, are
studied over a more general finite chain rings as it was done using a unified treatment in [1].
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