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Abstract  

 

Generation expansion planning (GEP) problems are solved to find the optimum investment decisions to satisfy the increasing 

electricity demand. Integration of electric vehicles (EVs) with the capability of charging from the grid will also increase the 

electricity demand of the grid. Depending on the charging/driving characteristics of users, demand curves for EVs will be shaped 

and it will be different on each day. Therefore, it is very crucial to represent this stochastic nature of EVs demand in the associated 

GEP problems. This paper is proposing a methodology to represent EVs demand realistically on GEP models. The proposed 

methodology starts with generating random demand patterns to demonstrate possibilities for the EVs demand patterns via Monte 

Carlo Simulation, then using an optimization-based model to select a representative set. Two stage stochastic programming 

model is proposed for GEP problems and solved to minimize the expected cost over the entire set, the representative set and the 

average EVs demand.  The results show that GEP models with selected demand curves produce more realistic decisions (closer 

to the solutions obtained by using the entire demand patterns) than the decisions obtained by the models with average EVs 

demand.  In most cases, the models using average EVs demand fail to capture the new peaks generated by EVs, therefore, they 

suggest less capacity expansion then the required amount.  This results in more unmet demand in the system.  

   

Keywords: Generation Expansion Planning, Electric Vehicles, Demand Stochasticity, Monte-Carlo Simulation 

4

 

INTRODUCTION  

 

Generation Expansion Planning (GEP) problems are solved 

for optimally determining when, where and what type of 

generation technologies to construct in the grid to satisfy the 

growing electricity demand.  The growth of the global 

electricity demand is estimated as 2.1% per year in [1].  

Moreover, there is an increasing awareness for the 

environment and for the risk of depletion of fuels for the 

conventional vehicles. This leads a tendency towards 

increasing the proportion of the electric vehicles in the 

transportation sector. Introducing electric vehicles (EV) with 

capability of charging from the grid will contribute the 

electricity demand.  To keep the grid reliable and sustainable, 

it is very crucial to incorporate the demand changes 

realistically in solving GEP problems to satisfy the new 

demand. The paper aims to provide a methodology to 

incorporate EVs demand in GEP and keep the GEP problem 

tractable.   

 

The pattern for EVs demand is shaped based on many factors 

grouped as charging characteristics, driving characteristics 

and penetration levels.  Charging characteristics includes 

types of chargers, battery sizes used in the vehicles and state-

of-charge (capacity left in the battery) at the charging time.  

 

Driving characteristics involve the behavior of the vehicle 

owners such as daily driven distances, arrival and departure 

times to possible charging points (home, work, charge 

station, mall), preferences for charging places.  Penetration 

level determine the number of the EVs.  Since vehicle 

owners do not behave the same in each day, total demand of 

EV will differ from day to day as well as the distribution of 

the demand of EVs in each hour. Therefore, demand of EVs 

has a stochastic nature. Since GEP problems are long-term 

problems, it is very important to reflect this uncertainties in 

GEP problems explicitly. Another important objective of this 

study is to provide an approach to make it possible to 

realistically represent the stochastic nature of EVs demand 

in GEP problems. 

 

There is vast amount of study on GEP problems. Koltsaklis 

and Dagoumas [2] present a review on the articles 

considering different perspectives of the GEP problems. 

They also provide a detailed survey on the GEP including the 

renewable energy sources in [3]. There are some studies 

focusing on how EVs will affect the demand curve [4-9].  

There are also few studies considering the EVs together with 

GEP problems [10-17].   Ramirez et al. [18] solved the GEP 

problem where the average additional load due to the EVs is 

calculated for each hours and the current demand is updated 

to incorporate the EVs with GEP.  Hajimiragha et al. [19] 

solves least cost GEP problem with EVs by incorporating the 
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EVs via the estimated additional yearly demand.   Ahmadi et 

al. [20] uses the EVs effects on the peal and base load when 

solving GEP problems. Moon et al. [21] estimates a 

probability density function for the EVs demand and incudes 

the estimated EVs demand into GEP problem.   Ramirez et 

al. [22] also proposes a model for GEP where constraints to 

schedule the demand of EVs are included. de Quevedo [23] 

uses the total demand due to the EVs in s GEP together with 

renewable energy sources. Manríquez  et al. [24] solves long 

term generation and transmission expansion planning 

problem under different charging schemes for EVs. 

Mehrjerdi [25] solves capacity expansion planning problems 

where EVs at charging stations thought as flexible 

generation units. Heuberger et al. [26] investigates the effect 

of EVs deployment on the capacity requirements. 

 

The studies for GEP with EVs lack from reflecting the 

stochastic nature of the demand caused by EVs. The 

common approach is to include the estimated average EV 

demand for each hour. This leads to unrealistic plans since it 

does not consider the days with different level of EVs 

demands and different distribution of demand over the days.   

This paper provides a methodology to represent days with 

different demand profiles and their corresponding 

distribution among the year in GEP model while keeping 

GEP problem tractable.  GEP problems are modeled as two 

stage stochastic programming models. By means of the 

methodology presented in this study, it would be possible to 

consider the days with new peaks (even if the probability is 

very low) in GEP model so that the solution suggested by the 

model will be more applicable to satisfy the reliability of the 

system.  

 

This paper propose an approach which start with generating 

many numbers of random demand patterns by means of 

Monte Carlo simulation and then selecting a representative 

sets from the generated patterns to use in GEP problems. 

GEP problems are solved for different cases to show the 

effectiveness of the approach.   

 

This paper is organized as follows: the simulation model to 

generate different EVs demand patterns, the mathematical 

model to select an appropriate subset of these patterns, and 

the two stage stochastic programming model for GEP to 

represent the demand patterns are given in Section 2.  The 

numerical analysis and the corresponding results are given in 

Section 3. In Section 4, final remarks are given. 
 

1. METHODOLOGY TO INCLUDE EVS DEMAND 

IN GEP 
 

An algorithm is proposed to generate and select the 

representative load curves/demand patterns and use them in 

the mathematical model for GEP explicitly.  The proposed 

algorithm is given in Algorithm 1. 

 

Algorithm 1 

Step 1: Generate N demand patterns which reflect any 

random days by using Monte Carlo Simulation. 

Step 2: Use proposed optimization-based model to select the 

representative demand patterns (R) and to determine their 

corresponding probabilities.  

Step 3: Minimize the expected cost by solving proposed GEP 

problem   

 

1.1. Generation of EVs Demand Patterns 

 

One could use any methods presented in the literature to 

generate random demand patterns. In this paper, the Monte 

Carlo simulation presented in [27] is used to generate the 

EVs demand patterns. In this simulation, all the impact 

factors are considered. At each iteration of the simulation, k 

vehicle owners for the given penetration level of EVs are 

generated where each owner has different driving and 

charging characteristics at the point of charging.   The battery 

size, daily driving distance, departure and arrival times to the 

charging points, charging place decisions are assigned based 

on the distribution of the corresponding parameters and the 

policy applied.  Based on these characteristics, a random 

demand pattern showing the amount of electricity drawn 

from the grid at each hour is obtained for each EV owner.  

By summing the demands from all the vehicle owners, the 

total demand for each hour is obtained. The result of one 

iteration is called a random demand pattern, which represents 

a possible day of the year. 

 

1.2. Optimization-Based Approach for Selecting a 

Representative EVs Demand Patterns 

 

In the previous step, we generated N patterns. Including all 

these demand patterns in GEP problems is preferable to be 

more realistic, but it is not computationally efficient. 

Therefore, a mathematical model is proposed to select a 

subset of the generated load curves while minimizing the 

deviation from the average demand for each hour.   

 

The objective function of the models is to minimize sum of 

positive and negative deviations from the average demand 

for each hour i.   

min ∑(𝑝𝑑ℎ + 𝑛𝑑ℎ)

24

ℎ=1

 (1) 

 

The positive and negative deviations are calculated in the 

constraint (2).  

∑ 𝜑𝑗𝑑ℎ𝑗

𝑁

𝑗=1

− 𝑝𝑑ℎ + 𝑛𝑑ℎ = 𝜇ℎ   ∀ℎ = 1 … 24    (2) 

 

Here, dhj represents the EVs demand for hour h in iteration j.  

𝜇ℎis the average EVs demand for hour h considering all the 

demand patterns in N. 𝜑𝑗 is the decision variable for 

probability assigned to the demand patterns j. In this 

constraint, a positive probability is assigned to the demand 

pattern j such that the average demand is calculated by using 

only the patterns with positive probabilities plus the 

deviations are equal to the average EVs demand of hour h.  

The third constraint guarantees that the sum of probabilities 

are equal to 1 and represented as follows. 
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∑ 𝜑𝑗

𝑁

𝑗=1

= 1 (3) 

 

The non-negativity constraints are given in (4) and (5). 

𝜑𝑗 ≥ 0, ∀𝑗 ∈ 𝑁 (4) 

𝑝𝑑ℎ , 𝑛𝑑ℎ ≥ 0, ∀ℎ =, . . .24 (5) 

 

1.3. Mathematical Model for GEP problems 
 

The objective of this paper is to provide a methodology to 

explicitly represent the stochasticity associated with the EVs 

demand in GEP problems. The proposed model 

accomplishes it by representing the EVs demand not only by 

the average for each hour, but a set of EVs demand patterns 

for each hour with the associated probabilities. Then, the 

model becomes a two-stage stochastic model where the first 

stage variables, investment decisions, are decided with 

respect to the distribution of the uncertainty; and the second 

stage decision variables, dispatching decisions, are decided 

with respect to the observation of the uncertainty.  The 

demand of the current system also differs for each day. The 

common approach is to select set of days to represent the 

different electricity demand curves in the year.   We will 

assume that G is the set of such days and mg is the number of 

days represented by the day g. 
 

In our approach, we assume that EVs demand could be any 

one of the patterns in R for each day in G. Therefore, by 

multiplying the probabilities of EVs demand patterns by the 

number of days represented by g, we can obtain the number 

of days where the current electricity demand is as in day g 

and EVs demand is as in pattern j of R. The obtained 

parameter is called the weight, 𝑤𝑔𝑗 , and it is calculated as in 

Equation (9). 
 

𝑤𝑔𝑗 = 𝜑𝑗 × 𝑚𝑔 (9) 
 

The objective function of the model is to minimize the 

expected cost. The cost has two part, investment cost and 

expected dispatching cost. 

∑ ∑ 𝑐𝑦𝑘

𝑘∈𝑄

𝑠𝑦𝑘

𝑦

+ ∑ (∑ ∑ ∑ ∑ 𝑤𝑔𝑗𝛼𝑦𝑘𝑥𝑦𝑘𝑔𝑗ℎ

24

ℎ=1𝑗∈𝑅𝑔∈𝐺𝑘∈𝑄𝑦

+ ∑ ∑ ∑ ∑ 𝑤𝑔𝑗𝛽𝑦𝑙𝑧𝑦𝑙𝑔𝑗ℎ

24

ℎ=1𝑗∈𝑅𝑔∈𝐺𝑙∈𝐿

+  ∑ ∑ ∑ 𝑤𝑔𝑗𝛾𝑦𝑢𝑦𝑔𝑗ℎ

24

ℎ=1𝑗∈𝑅𝑔∈𝐺

) 

(10) 

𝑐𝑦𝑘 is the cost of investing generation unit type k from the 

possible investment options Q in year y and 𝑠𝑦𝑘 is the 

investment decision taking the value of 1 if the investment is 

done and zero if not.  𝑥𝑦𝑘𝑔𝑗ℎ is the amount of electricity 

produced (MWh) from the new generation unit k in year y, 

day g, in hour h and EVs demand follows the pattern j. 𝛼𝑦𝑘 is 

the cost of producing 1MWh of energy from the unit k of Q 

in year y. Similarly, 𝑧𝑦𝑙𝑔𝑗ℎ  is the amount of electricity 

produced (MWh) from the existing generation unit l of the 

set L in year y, day g, in hour h and EVs demand follows the 

pattern j. 𝛽𝑦𝑙 is the cost of producing 1 MWh of energy from 

the unit l of L in year y.  𝛾𝑦 is the cost of unmet demand and 

𝑢𝑦𝑔𝑗 is the amount of energy not satisfied in year y, in day g, 

in hour h, and EVs demand follows the pattern j. 

 

The first set of constraints are the demand constraints.  

Demand in the model represents the demand including the 

electricity request of EVs and it is calculated by summing the 

regular electricity demand plus the EVs demand as in Eq. 

(11). 

 

𝐷𝑦𝑔𝑗ℎ = 𝐷𝑦𝑔ℎ +  𝑑ℎ𝑗 (11) 

𝐷𝑦𝑔ℎ is the electricity demand without the EVs contribution 

in year y, in day g, in hour h. 𝑑ℎ𝑗 is the demand in hour h in 

EVs demand pattern j. 

 

The demand constraints (12) are to guarantee that the total 

electricity generated from the existing and new units plus the 

unsatisfied demand is equal to the demand for each year, day, 

hour and EVs pattern.  

∑ 𝑥𝑦𝑘𝑔𝑗ℎ

𝑘∈𝑄

+ ∑ 𝑧𝑦𝑙𝑔𝑗ℎ

𝑙∈𝐿

+ 𝑢𝑦𝑔𝑗𝑔

= 𝐷𝑦𝑔𝑗ℎ      ∀𝑦, 𝑔, ℎ, 𝑗 

(12) 

 

𝐷𝑦𝑔𝑗ℎ is the demand including EVs demand in year y, in day 

g, in EVs demand pattern j and in hour h.  

 

The second set of constraints (13) is the capacity constraint 

for the existing units. Total generation from each unit cannot 

be more than the available capacity.  

 

𝑧𝑦𝑙𝑔𝑗ℎ ≤ 𝜃𝑙      ∀𝑦, 𝑘, 𝑔, ℎ, 𝑗 (13) 

𝜃𝑘 is the available capacity of unit l. It is calculated by 

multiplying the existing capacity with the availability factor. 

Availability factor could simply defined as the percentage of 

the time the unit available for the production. 

 

The third set of constraints (14) is the capacity constraint for 

the new units. Total generation from each unit should be less 

than the available capacity if the investment is done before 

or in year y and less than zero if the investment is not done. 

𝑥𝑦𝑘𝑔𝑗ℎ ≤ 𝜃𝑘 ∑ 𝑠𝑦𝑘

𝑦

𝑡=1

     ∀𝑦, 𝑘, 𝑔, ℎ, 𝑗 (14) 

With the constraints in (15), we guarantee that each unit type 

investment occurs only once. 

∑ 𝑠𝑦𝑘 = 1

𝑦

     ∀𝑦, 𝑘 
(15) 

The rest of the constraints (16-17) are binary variable 

constraints and non- negativity constraints for the generation 

amount and unmet demands. 
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𝑠𝑦𝑘 ∈ {0,1}   ∀𝑦, 𝑘 (16) 

𝑥𝑦𝑘𝑔𝑗ℎ ≥ 0   ∀𝑦, 𝑘, 𝑔, 𝑗, ℎ (17) 

𝑧𝑦𝑙𝑔𝑗ℎ ≥ 0   ∀𝑦, 𝑙, 𝑔, 𝑗, ℎ (18) 

𝑢𝑦𝑔𝑗ℎ ≥ 0   ∀𝑦, 𝑔, 𝑗, ℎ (19) 

 

2. NUMERICAL STUDY 

 

We consider the electricity grid of IstanbuI as a case study.  

The GEP problem to satisfy the increasing demand of 

Istanbul is solved. We assumed that wind farms are the 

choices for new generation units. For the current demand of 

the network, we pick two days from 2019 (08.01.2019 for 

Winter/Fall and 31.07.2019 for Spring/Summer) [28]. The 

selected days are the ones with the highest hourly peak 

demand. Selected current network demands are given in 

Table 1.  Since the consumption of İstanbul is 16% of 

Turkey, we adjust the total demand to find the demand for 

Istanbul. We also assumed that 16% of the current installed 

capacity for Turkey could be used for Istanbul. The data for 

installed capacity and new generation units are given in 

Table 2.   

 

Table 1. Selected Current Demand 
 Hours 

Days 1 2 3 4 5 6 

1 5208 4937 4748 4630 4578 4663 

2 6127 5838 5598 5466 5366 5272 

 Hours 

Days 7 8 9 10 11 12 

1 4857 5318 6055 6616 6784 6934 

2 5146 5435 6237 6692 6790 6960 

 Hours 

Days 13 14 15 16 17 18 

1 6753 6772 6832 6781 6760 6755 

2 6793 6973 7188 7205 7182 7105 

 Hours 

Days 19 20 21 22 23 24 

1 6682 6452 6203 6036 5867 5550 

2 6887 6820 6977 6922 6736 6486 

 

Table 2: Available Capacity for Istanbul 

Energy 

Source 

Installed 

Capacity 

(MW) 

Variable 

Cost 

($/MWh) 

Avail. 

Factor 

Energy 

Loss 

Available 

Capacity 

(MW) 

Hydro 3,270 0.002 50% 8% 1504 

Geothermal 172 0.011 75% 8% 119 

Natural 

Gas 4,299 3.602 85% 8% 3362 

Coal 3,187 4.474 85% 8% 2492 

Stream 1,243 0.001 50% 8% 572 

2.1. EVs Patterns Generation for the Case Study  

 

To generate the extra demand from the electric vehicles, we 

used the impact factors presented in [27] and generate 10000 

patterns.  We assumed uncontrolled charging at home and 

public station.  In this policy, people who prefer to charge at 

home can charge their cars at any time after arriving to home. 

We also assume that people using public stations can charge 

their cars at any time during the day.  We used the 

distribution representing the preference of people for 

charging locations as presented in Table 3. 

 

2.2. Selecting Patterns for Case Study 

 

We used the LP model presented above to select the subset 

of EVs demand patterns and associated probabilities. For 

Case 2, 16 demand patterns are selected with the associated 

probabilities.  19 demand patterns are selected for Case 13.  

For the rest of the cases, 25 demand patterns are selected.  

 

Table 3: Charging Location Preference Distribution 

Cases Home Work Public Station 

1 0% 0% 100% 

2 0% 100% 0% 

3 10% 10% 80% 

4 10% 80% 10% 

5 20% 30% 50% 

6 30% 20% 50% 

7 30% 40% 30% 

8 30% 50% 20% 

9 40% 30% 30% 

10 40% 40% 20% 

11 50% 30% 20% 

12 80% 10% 10% 

13 100% 0% 0% 
 

2.3. Results of GEP model for Case Study 
 

The objective of this paper is to demonstrate the impact of 

the explicit representation of the different demand curves in 

the GEP model.  To be able to solve the GEP problem by 

using the entire demand patterns, we construct a GEP model 

to satisfy the demand of one year in the future where 10% of 

vehicles in Istanbul are electrical. The daily demands 

selected (Table 1) are increased by 15% to reflect the future 

demand where 10% of vehicles in Istanbul are electric 

vehicles.  As the investment option, we consider the wind 

farm. Each farm consist of 25 wind turbines each has the 

capacity of 2MW. The availability factor for the wind 

turbines are assumed to be 30% and the electricity loss is also 

assumed to be 8%.  After applying the losses and availability 

factor, we computed the available wind power generation 

capacity from each farm as 13.8MW. We assumed 20 years 

for lifetime for the wind turbines to find the installation cost 

per year.  Average cost of one wind turbine with 2MW 

capacity is around $3,500,000. By dividing this value to its 

lifetime and multiplying with 25, we found the installation 
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cost for each farm per year $4,375,000. The unmet demand 

cost is assumed to be $10000 per MWh.  
 

The GEP problem is first solved by using all the patterns (N) 

generated by Monte Carlo Simulation. Then the same 

problem is solved by only using the selected patterns (R) 

obtained by the optimization based model proposed before. 

Finally, the problem is solved by defining only one EVs 

pattern consists of the average demand (𝜇ℎ) of 10000 

patterns for each hour and updated 𝐷𝑦𝑔𝑗ℎ by using the 

average demand produced by EVs.   
 

For different cases, all three problems are solved and 

solutions are presented in Table 4 and 5. Table 4 represents 

optimum objective function value if all the demand patterns 

are integrated to GEP and the deviations of the objective 

function value obtained by considering the selected demand 

patterns and average demand from the objective function 

value obtained by considering all 10000 demand patterns. 
 

For all of the instances, using the average extra demand 

generated by EVs to represent the demand of EVs in GEP 

problem underestimate the effect of the EVs on demand. As 

seen in Table 4, using the selected demand patterns to 

integrate EVs to GEP problems produces better results for all 

the cases.   
 

Table 4. Objective function value of GEPs solved 

  Cost ($)  Deviation  

Cases All Selected Average 

1  2.77E+08 0.67% -1.73% 

2  3.6E+08 -2.57% -4.20% 

3  2.77E+08 0.09% -2.03% 

4  3.19E+08 -0.69% -3.89% 

5  2.82E+08 0.04% -2.07% 

6  2.78E+08 0.36% -1.74% 

7  2.85E+08 0.15% -1.85% 

8  2.91E+08 0.21% -2.50% 

9  2.8E+08 1.01% -1.65% 

10  2.85E+08 0.42% -1.85% 

11  2.8E+08 -0.02% -1.45% 

12  2.71E+08 0.43% -2.41% 

13  2.73E+08 -0.29% -1.86% 

 

To represent the results more clearly, we present the 

optimum investment level and total unmet demand per year. 

Investment represents the optimum number of wind farms 

invested to satisfy the demand.  “All” in Table 5 represents 

the solution obtained by considering all of the 10000 patterns 

generated. “Avg” in Table 5 represents the solution obtained 

by considering the average of the 10000 demand patterns to 

reflect the extra demand of EVs. “Slc” in Table 5 represents 

the solution obtained by considering the selected demand 

patterns to integrate the EVs in GEP problems. Total unmet 

demand in Table 5 represents what would be the unmet 

demand for a year if the investment level is the one suggested 

by each problem and the demand might follow any one of 

the 10000 demand patterns generated.  

 

The results show that the number of investments suggested 

by using the selected demand patterns are the same as using 

all the generated demand patterns in most of the instances. 

Using the average of the 10000 demand patterns in GEP 

problems causes not capturing the days where EVs increases 

the demand of some hours in a day drastically. Therefore, the 

solutions suggested by these problems suggest investing less 

investments, therefore, more unmet demand.  Using the 

average is worse in the instances where new peaks might be 

generated as in Case 2 and 8. In those cases, more of the 

people charge their cars at work where the current demand 

of the grid is high. The highest investments are also 

suggested for these cases. In only two cases, using selected 

demand patterns suggest more investments than the problem 

with all demand patterns. In those cases, the unmet demand 

is very high for the second problem. It shows that there is a 

slight overestimation for the GEP with selected demand 

patterns.  

 

Table 5. Optimum Investment Decisions and Total Unmet 

Demand for GEPs solved 

Cases 

Investment 

Total Unmet Demand 

(MWh) 

All Slc Avg All Slc Avg 

1  27 27 26 93.99 93.99 811.28 

2  48 46 45 355.60 1626.12 2624.95 

3  27 27 26 177.32 177.32 1056.24 

4  38 37 35 85.38 474.39 2583.31 

5  28 28 27 197.96 197.96 1014.64 

6  27 27 26 267.29 267.29 1220.10 

7  29 29 28 141.07 141.07 822.97 

8  30 31 29 342.99 4.31 1493.39 

9  28 28 27 79.03 79.03 722.49 

10  29 29 28 140.96 140.96 962.21 

11  28 28 27 19.86 19.86 521.00 

12  25 26 24 267.90 0.00 1066.02 

13  26 26 25 122.38 122.38 752.38 

 

The largest number of patterns selected (R) is 25 for the cases 

we considered.  It means that the number of demand 

constraints and the capacity constraints are reduced by at 

least (25/1000=0.0025).  In addition to the reduction in the 

number of constraints, the number of decision variables for 

electricity generated by the existing units and new units, and 

the variables for unmet demand is also reduced by the same 

ratio.  The solution times for the GEP model using the 

selected demand patterns is around one-third of the ones for 

the GEP model using all patterns.  The same results are 

obtained in much shorter times with the representative sets. 
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It shows that we obtain GEP models which are realistic and 

tractable. 

 

3. CONCLUSION 

 

The integration of EVs into the system will increase the total 

demand of the grid where new investments need to be done.  

In order to decide the investments, GEP problems are solved. 

It is very important to represent the real impact of EVs in 

GEP problems to find solutions that are more realistic. In this 

paper, we propose a methodology to represent the impact of 

EVs on demand more realistically in the GEP problems 

while keeping the problems more tractable.  

 

In this paper, we propose two stage stochastic programming 

models for GEP to integrate different demand patterns due to 

the EVs. The methodology starts with generating random 

days by simulation which consider the all the impact factors 

affecting the EVs demand. Each random days represents a 

possibility for a day. GEP problems with all these random 

days would be more realistic however; they will not be 

computationally efficient. Therefore, we suggested an 

optimization based method to select the representative set. In 

this optimization-based model, the deviation from the 

average of the generated random days is minimized. The 

optimization-based model suggest a subset of randomly 

generated demand patterns with associated probabilities. 

 

We define cases and solve the GEP problem by using all the 

demand patterns generated, by the selected patterns and by 

the average of these demand patterns. The results show that 

using selected patterns suggest solution very close to the one 

with all the demand patterns. It is shown that our 

methodology provide an efficient way of integrating EVs to 

GEP problems while keeping the stochastic nature of the 

demand very close to the reality. 

 

The electricity networks involves many stochastic 

parameters. The deployment of EVs into the system will 

increase the demand uncertainty. We provide a tool for the 

decision makers to help them to make proper decisions. The 

results shows that the methodology proposed in this study 

make it possible to take the days with new peaks into the 

account. Therefore, the capacity expansion decisions 

suggested are more realistic. The system operators could 

benefit from our study to determine best plans to design 

reliable power grid. 

 

In this study, we assumed uncontrolled charging at homes 

and public stations. It means that drivers can charge their cars 

at any time depending on the arrival/departure times to these 

locations.  However, there are incentives to influence the 

charging time selection of the drivers. Since with the 

methodology proposed here reduces the problem size, as a 

future study, GEP models could be developed where these 

incentives defined as decision variables and EVs demand 

patterns generated under such incentives are represented 

explicitly.  Another improvement on the GEP models could 

be introducing the penetration levels for EVs as decision 

variables and solve GEP models to find the most suitable 

penetration level for the grid considered.   
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