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Abstract
In many practical situations, it is often desired to select a population (treatment, prod-
uct, technology, etc.) from a choice of several populations on the basis of a particular
characteristic that associated with each population, and then estimate the characteristic
associated with the selected population. The present paper is focused on estimating a
characteristic of the selected bivariate normal population, using a LINEX loss function.
A natural selection rule is used for achieving the aim of selecting the best bivariate nor-
mal population. Some natural-type estimators and Bayes estimator (using a conjugate
prior) of a parameter of the selected population are presented. An admissible subclass of
equivariant estimators, using the LINEX loss function, is obtained. Further, a sufficient
condition for improving the competing estimators is derived. Using this sufficient con-
dition, several estimators improving upon the proposed natural estimators are obtained.
Further, an application of the derived results is provided by considering the poultry feeds
data. Finally, a comparative study on the competing estimators of a parameter of the
selected population is carried-out using simulation.
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1. Introduction
The estimation of a characteristic after selection has been recognized as an important

practical problem for many years. The problem arises naturally in multiple applications
where one wishes to select a population from the available k (≥ 2) populations and then
estimate some characteristics (or parametric functions) associated with the population
selected by a fixed selection rule. For example, in modeling economic phenomenons, often
the economist is faced with the problem of choosing an economic model from k (≥ 2)
different models that returns a minimum loss to the capital economic. After the selection
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of the desired economic model, using a pre-specified selection procedure, the economist
may like to have an estimate of the return losses from the selected model. In clinical
research, after the selection of the most effective treatment from a choice of k available
treatments, a doctor may wishes to have an estimate of the effectiveness of the selected
treatment. The aforementioned problems are continuation of the general formulation of
the Ranking and Selection problems. Several inferential methods for statistical selection
and estimation related to these problems have been developed by many authors, see [1–8,
10,12,15–21,29–31].

The majority of prior studies on selection and estimation following selection problems
have exclusively focused on a selected univariate population, and very few papers have
appeared for a selected bivariate/multivariate population. Some of the works devoted to
the bivariate/multivariate case are due to [1] and [23]. In particular, Mohammadi and
Towhidi [23] considered the estimation of a characteristic after selection from bivariate
normal population, using a squared error loss function. The authors used this loss func-
tion and derived a Bayes estimator of a characteristic of the bivariate normal population
selected by a natural selection rule. The authors also provided some admissibility and
inadmissibility results. This paper continues the study of [23] by considering the following
loss function

L(δ, θ) = ea(δ−θ) − a(δ − θ) − 1. δ ∈ D, θ ∈ Θ, (1.1)
where δ is an estimator of the unknown parameter θ, a is a location parameter of the
loss function given in Equation (1.1), Θ denotes the parametric space, and D represents
a class of estimators of θ. The loss function in Equation (1.1) is generally called an
asymmetric linear exponential (LINEX) loss and is useful in situations where positive bias
(overestimation) is assumed to be more preferable than negative bias (underestimation)
or vice versa. Many researchers have used the above loss function, see among others
[3, 14,24,32].

The normal distribution is the most important and used probability model in many nat-
ural phenomena. For instance, variables such as psychological, educational, blood pressure,
and heights, etc., follow normal distribution. One generalization of the univariate normal
distribution is the bivariate normal distribution. Consider two independent populations
π1 and π2. Let Zi = (Xi, Yi)ᵀ be a random vector associated with the bivariate normal
population πi ≡ N(θ(i),Σ), where θ(i) =

(
θ

(i)
x , θ

(i)
y

)ᵀ
denotes the 2-dimensional unknown

mean vector (i = 1, 2), and Σ =
[
σxx σxy

σxy σyy

]
denotes the common known positive-definite

variance-covariance matrix. Suppose that a population is selected on the basis of their
X-variate which is a characteristic that is easy to observed or can be measured at the time
of selection, and Y -variate is an associated characteristic that is of main interest but can
not be measured at the time of selection or can be observed later. Then, based on available
information of the X-variate, we wish to draw some inferences about the corresponding
Y -variate. For example, an experiment is conducted to compare the effect of organic and
inorganic feeds in poultry. The aim of the study is to produce eggs with more weights
and less cholesterol levels. Here X represents weights of eggs and Y represents cholesterol
levels. A comprehensive details of this study is provided in Section 5. One more example
is that, X may be the grade of an applicant on a particular test and Y is a grade on a
future test. Then, based on the X-grade we want to see the behavior of the corresponding
Y-grade. Let X(1) and X(2) be the order statistics from X1 and X2. Then, the Y -variates
induced by the order statistic X(i) is called the concomitant of X(i) and is denoted by
Y[i] (i = 1, 2). Assume that the bivariate population associated with max

{
θ

(1)
x , θ

(2)
x

}
is

referred as the better population. For selecting the better population, a natural selection
rule ψ = (ψ1, ψ2) selects the population associated with X(2) = max (X1, X2), so that, the
natural selection rule ψ = (ψ1, ψ2) can be expressed as
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ψ1(x) =
{

1, if X1 > X2
0, if X1 ≤ X2,

(1.2)

and ψ2(x) = 1−ψ1(x). After a bivariate normal population is selected using the selection
ruleψ, given in Equation (1.2), we are interested in the estimation of the second component
of the mean vector associated with the selected population, which can be expressed as

θS
y (x) = θ(1)

y ψ1(x) + θ(2)
y ψ2(x)

=

 θ
(1)
y , if X1 > X2

θ
(2)
y , if X1 ≤ X2.

Note that θS
y depends on the variables X1 and X2, i.e., θS

y is a random parametric function
of θ(1)

y , θ(2)
y , X1 and X2. Our goal is to estimate θS

y using the loss function given in Equation
(1.1).

Putter and Rubinstein [27] have shown that an unbiased estimator of the mean after
selection from univariate normal population does not exist. Dahiya [11] continued the
study of [27] by proposing several different estimators of mean and investigated their cor-
responding bias and mean squared error. Later, Parsian and Farsipour [26] considered
two univariate normal populations having same known variance but unknown means, us-
ing the loss function given in Equation (1.1). They suggested seven different estimators
for the mean and investigated their respective biases and risk functions. Misra and van
der Muelen [22] continued the study of [26] by deriving some admissibility and inadmissi-
bility results for estimators of the mean of the univariate normal population selected by a
natural selection rule. As a consequence, they obtained some estimators better than those
suggested by [26]. Recently, Mohammadi and Towhidi [23] extended the study of [11]
by considering a bivariate normal population. The authors derived Bayes and minimax
estimators and an admissible subclass of natural estimators were also obtained. Further,
they provided some improved estimators of the mean of the selected bivariate normal
population. This article continues the investigation of [23] by deriving various competing
estimators and decision theoretic results under the LINEX loss function.

Note that, using the loss function given in Equation (1.1) for estimating θS
y , the es-

timation problem under consideration is location invariant with regard to a group of
permutation and a location group of transformations. Moreover, its appropriate to use
permutation and location invariant estimators satisfying δ (Z1,Z2) = δ (Z2,Z1) and
δ (Z1 + c,Z2 + c) = δ (Z1,Z2) + c2, ∀ c = (c1, c2)ᵀ ∈ R2, where R2 denotes the 2-
dimensional Euclidean space. Therefore, any location equivariant estimator of θS

y will be
of the form

δφ (Z1,Z2) = Y[2] + φ
(
X(1) −X(2), Y[1] − Y[2]

)
, (1.3)

where φ(·) is a function of X(1) −X(2) and Y[1] −Y[2]. Let Qc represents the class of all equi-
variant estimators of the form (1.3). For notational simplicity, the following notations will
be adapted throughout the paper; Z = (Z1,Z2), θx = max

(
θ

(1)
x , θ

(2)
x

)
− min

(
θ

(1)
x , θ

(2)
x

)
,

θy = max
(
θ

(1)
y , θ

(2)
y

)
−min

(
θ

(1)
y , θ

(2)
y

)
, θ∗ = (θx, θy)ᵀ ∈ R2

+, where R2
+ denotes the positive

part of the two dimensional Euclidean space R2, and ϕ(·) and Φ(·) denote the usual pdf
and cdf of N(0, 1).

We presented some natural estimators and Bayes estimator, under the loss function
given in a location parameter of the loss function given in Equation (1.1), of θS

y in Section
2. In Section 3, an admissible subclass of natural type estimators is obtained. Further,
a result of improved estimators is derived in Section 4. In Section 5, an application of
the derived results is provided by considering the poultry feeds data. Finally, in Section
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6, using the LINEX loss function, risk comparison of the estimators of θS
y is carried-out

using a simulation study.

2. Estimators of θS
y

In this section, we present various estimators of θS
y of the selected population. First,

based on the maximum likelihood estimator (MLE), an estimator of θS
y is given by

δN,1(Z) = Y[2].

Similarly, based on the minimum risk equivariant estimator (MREE), an estimator of θS
y

is given by

δN,2(Z) = Y[2] − 1
2
aσyy.

The third estimator of θS
y that we propose is given by

δN,3 (Z) = Y[2] + 1
a

ln
[
1 +

(
ea(Y[1]−Y[2]) − 1

)
Φ
(
X(1) −X(2)√

2σxx

)]
.

Note that the estimator δN,3 is based on the MLE of 1
a ln

[
E
(
eaθS

y
)]

, where E
(
eaθS

y
)

=

eaθ
(2)
y

[
1 +

(
e

a

(
θ

(1)
y −θ

(2)
y

)
− 1

)
Φ
(

θ
(1)
x −θ

(2)
x√

2σxx

)]
.

Another natural estimator of θS
y , which is similar to the estimator studied by [11], is given

by

δN,4 (Z) =


Y[1]+Y[2]

2 , if X(1) −X(2) > −c
√

2σxx

Y[2], if X(1) −X(2) ≤ −c
√

2σxx,

where c > 0 is a constant. The estimator δN,4 is called hybrid estimator and is same as
the estimator δN,1 for c = 0.

Theorem 2.1. Under the conjugate prior Πm
(
θ(1), θ(2)

)
∼ N2(µ,ϑ) and the loss func-

tion given in Equation (1.1), the Bayes estimator of θS
y is given by

δΠm (Z) =
µ2(|Σ| +mσyy) +mY[2](m+ σxx) +mσxy(µ1 −X(2))

m2 +mσxx +mσyy + |Σ|

− a

2
m2σyy +m|Σ|

(m2 +mσxx +mσyy + |Σ|)
.

Proof. Suppose that θ(i) has a conjugate bivariate normal prior Πm
(
θ(1), θ(2)

)
=∏2

i=1 Πm
(i)

(
θ(i)

)
∼ N2(µ,ϑ), i = 1, 2, where µ = (µ1, µ2)′, ϑ = mI, and I denotes an

identity matrix of order 2 and m is a positive real number. Then, the posterior distribution
of θ(i), given Zi = zi, is

θ(i)∣∣zi ∼ N2
(
K
(
Σ−1zi + ϑ−1µ

)
,K

)
, i = 1, 2, (2.1)

where K =
(
Σ−1 + ϑ−1

)−1
.

The posterior risk of an estimator δi of θ(i)
y under the loss function given in Equation (1.1)

is

EL (δi(Zi) , θ(i)
y ) = eaδi(Zi)E

[
e−aθ

(i)
y

∣∣∣Zi = zi

]
− a

(
δi (Zi) − E

(
θ(i)

y

∣∣Zi = zi

))
− 1, (2.2)
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i = 1, 2. It is not difficult to check that the Bayes estimator δΠm
(i)

(Zi) of θ(i)
y , which

minimizes the posterior risk in Equation (2.2), is given by

δΠm
(i)

(Zi) = −1
a

ln
[
E

[
e−aθ

(i)
y

∣∣∣Zi = zi

]]
= −1

a
ln
[
M

θ
(i)
y

∣∣zi
(−a)

]
, i = 1, 2, (2.3)

where M
θ

(i)
y

∣∣zi
(·) denotes the moment generating function (MGF) of θ(i)

y

∣∣zi. It follows

from Equation (2.1) that θ(i)
y

∣∣zi has univariate normal distribution N(p∗
i , q

∗
i ), where

p∗
i = µ2(|Σ| +mσyy) +mYi(m+ σxx) +mσxy(µ1 −Xi)

m2 +mσxx +mσyy + |Σ|
,

and

q∗
i = m2σyy +m|Σ|

(m2 +mσxx +mσyy + |Σ|)
, i = 1, 2.

Therefore,
M
θ(i)
∣∣zi

(−a) = e−ap∗
i + 1

2 a2q∗
i , i = 1, 2. (2.4)

Combining Equations (2.3) and (2.4), we get

δΠm
(i)

(Zi) =

µ2(|Σ| +mσyy) +mYi(m+ σxx) +mσxy(µ1 −Xi)
m2 +mσxx +mσyy + |Σ|

− a

2
m2σyy +m|Σ|

(m2 +mσxx +mσyy + |Σ|)
, i = 1, 2.

It can be verified that the posterior risk of the Bayes estimator δΠm
(i)

(Zi) of θ(i)
y , is given

by

r(δΠm
(i)

(Zi)) = a2

2

(
m2σyy + |Σ|m

)
(|Σ| +m2 +mσyy +mσxx)

. (2.5)

Since the posterior risk in Equation (2.5) does not depend on Zi, i = 1, 2, it follows form
Theorem 3.1 of Sackrowitz and Samuel-Cahn [28] that the posterior risk r

(
δΠm

(i)
(Zi)

)
,

given in Equation (2.5), is also the Bayes risk of δΠm
(i)

(Zi). Now an application of Lemma
3.2 of [28] leads to the result. �

Remark 2.2. It can be easily checked that the estimator δN,2 is a limit of the Bayes
estimators δΠm (Z) as m → ∞.

Remark 2.3. Following the procedures in the proof of Theorem 2.1, it can be verified
that, the estimator δN,2 is also a generalized Bayes estimator of θS

y , using the loss function
given in Equation (1.1) and the improper prior Π

(
θ(1), θ(2)

)
= 1, ∀ θ(i) ∈ R2, i = 1, 2.

3. Some admissibility results
An admissible subclass of equivariant estimators within the class Qd is obtained, using

the loss function given in Equation (1.1), where

Qd =
{
δd : δd(Z1,Z2) = Y[2] + d, ∀ d ∈ R

}
,

here R denotes the real line. For obtaining the admissibility of the estimators within the
above class we require the following lemma.
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Lemma 3.1. Let W = Y[2] − θS
y and ρ = σxy√

σxxσyy
. Then, W has the pdf

fW (w
∣∣θ∗) = 1

√
σyy

ϕ

(
w

√
σyy

)Φ

 ρw√
σyy

+ θx√
σxx√

2 − ρ2

+ Φ

 ρw√
σyy

− θx√
σxx√

2 − ρ2

 , w ∈ R.

Proof. For fixed θ∗ ∈ R2
+, the cdf of W is given by

FW (w) =P
(
Y[2] − θS

y ≤ w
)

=P
(
Y2 − θ(2)

y ≤ w,X1 ≤ X2
)

+ P
(
Y1 − θ(1)

y ≤ w,X1 > X2
)

=P
(
V2

√
σyy ≤ w,U1 ≤ U2 + θx√

σxx

)
+ P

(
V1

√
σyy ≤ w,U1 > U2 + θx√

σxx

)
,

where U1 = X1−θ
(1)
x√

σxx
, U2 = X2−θ

(2)
x√

σxx
, V1 = Y1−θ

(1)
y√

σyy
, and V2 = Y2−θ

(2)
y√

σyy
. Clearly, (U1, V1) and

(U2, V2) have bivariate normal distribution N2

(
(0, 0),

[
1 ρ
ρ 1

])
. It follows that

FW (w) =
∫ ∞

−∞

[∫ ∞

u1− θx√
σxx

∫ w√
σyy

−∞
ϕ2 (u2, v2) dv2du2

]
ϕ(u1)du1

+
∫ ∞

−∞

[∫ ∞

u2+ θx√
σxx

∫ w√
σyy

−∞
ϕ2 (u1, v1) dv1du1

]
ϕ(u2)du2,

where ϕ2(·, ·) is the pdf of bivariate normal distribution N2

(
(0, 0),

[
1 ρ
ρ 1

])
, and ϕ(·) is

the pdf of univariate standard normal distribution. Now, differentiating with respect to
w, we get

fW (w) =
∫ ∞

−∞

[∫ ∞

u1− θx√
σxx

ϕ2

(
u2,

w
√
σyy

)
du2

]
ϕ(u1)du1

+
∫ ∞

−∞

[∫ ∞

u2+ θx√
σxx

ϕ2

(
u1,

w
√
σyy

)
du1

]
ϕ(u2)du2

= 1
√
σyy

√
2π
e

− w2
2σyy

∫ ∞

−∞

∫ ∞

u1− θx√
σxx

1√
2π
√

1 − ρ2 e
− 1

2(1−ρ2)

(
u2− ρw√

σyy

)2

du2

ϕ(u1)du1

+ 1
√
σyy

√
2π
e

− w2
2σyy

∫ ∞

−∞

∫ ∞

u2+ θx√
σxx

1√
2π
√

1 − ρ2 e
− 1

2(1−ρ2)

(
u1− ρw√

σyy

)2

du1

ϕ(u2)du2

= 1
√
σyy

√
2π
e

− w2
2σyy

∫ ∞

−∞

1 − Φ

u1 −
(

θx√
σxx

+ ρw√
σyy

)
√

1 − ρ2

ϕ(u1)du1

+
∫ ∞

−∞

1 − Φ

u2 +
(

θx√
σxx

− ρw√
σyy

)
√

1 − ρ2

ϕ(u2)du2


= 1

√
σyy

√
2π
e

− w2
2σyy

1 −
∫ ∞

−∞
ϕ(u1)Φ

u1 −
(

θx√
σxx

+ ρw√
σyy

)
√

1 − ρ2

 du1


+

1 −
∫ ∞

−∞
ϕ(u2)Φ

u2 +
(

θx√
σxx

− ρw√
σyy

)
√

1 − ρ2

 du2

 .
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Using the identity (see [11])
∫∞

−∞ Φ
(

u+a√
b

)
ϕ(u)du = Φ

(
a√
1+b

)
, we have

fW (w) = 1
√
σyy

√
2π
e

− w2
2σyy

Φ

 ρw√
σyy

+ θx√
σxx√

2 − ρ2

+ Φ

 ρw√
σyy

− θx√
σxx√

2 − ρ2

 .
Hence the result follows. �

The following theorem establishes the admissibility of the estimators δd within the class
Qd.

Theorem 3.2. Let

d0 =

 −aσyy

2 − 1
a

[
ln 2 + ln

{
Φ
(

aσxy√
2σxx

)}]
, if σxy > 0

−aσyy

2 , if σxy ≤ 0,

and

d1 =

 −aσyy

2 , if σxy ≥ 0

−aσyy

2 − 1
a

[
ln 2 + ln

{
Φ
(

aσxy√
2σxx

)}]
, if σxy < 0.

Let δd ∈ Qd be given estimators of θS
y . Then,

(i) Within the class Qd, the equivariant estimators δd are admissible for d0 ≤ d ≤ d1,
under the loss function given in Equation (1.1),
(ii) The equivariant estimators δd for d ∈ (−∞, d0) ∪ (d1,∞) are inadmissible even within
the class Qd.

Proof. For a fixed θ∗ = (θx, θy)ᵀ ∈ R2
+, define Ψ(θ∗) = − 1

a ln
[
Eθ∗

(
eaW

)]
, where W =

Y[2] − θS
y . Then, for fixed θ∗ ∈ R2

+, the risk function of the estimators δd is given by

R(δd,θ
∗) = Eθ∗

[
ea(Y[2]+d−θS

y ) − a
(
Y[2] + d− θS

y

)
− 1

]
It is easy to verify that R(δd,θ

∗) is minimized at d = Ψ(θ∗) = − 1
a ln

[
Eθ∗

(
eaW

)]
. Using

Lemma 3.1, we have

Ψ(θ∗) = −aσyy

2
− 1
a

ln [Ha(θx)] ,

where for a ̸= 0, Ha (θx) = Φ
(

aσxy+θx√
2σxx

)
+ Φ

(
aσxy−θx√

2σxx

)
. Clearly, the behavior of Ha(θx)

depends on θx ∈ (0,∞). To see the behavior of Ha (θx), we will differentiate Ha (θx) w.r.t
θx. We have

H ′
a (θx) = 1√

2σxx
ϕ

(
aσxy + θx√

2σxx

)
− 1√

2σxx
ϕ

(
aσxy − θx√

2σxx

)
> 0

⇔ ϕ

(
aσxy + θx√

2σxx

)
> ϕ

(
aσxy − θx√

2σxx

)

⇔ e
− 1

2

(
aσxy+θx√

2σxx

)2

> e
− 1

2

(
aσxy−θx√

2σxx

)2

⇔ e
− 1

2

(
a2σ2

xy+θ2
x+2aσxyθx

2σxx

)
> e

− 1
2

(
a2σ2

xy+θ2
x−2aσxyθx

2σxx

)

⇔ e− aσxyθx
2σxx > e

aσxyθx
2σxx

⇔ aσxy < 0.

Therefore, for aσxy > 0 (aσxy < 0) , Ha(θx) is a decreasing (an increasing) function of
θx ∈ (0,∞). Using the monotonicity of Ha (θx), we conclude that for σxy > 0 (σxy < 0),
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Ψ (θ∗) is an increasing (a decreasing) function of θx. Therefore, for σxy > 0

inf
θ∗∈R2

+

Ψ(θ∗) = d0 and sup
θ∗∈R2

+

Ψ(θ∗) = lim
θx→∞

Ψ(θ∗) = d1, (3.1)

and for σxy < 0

inf
θ∗∈R2

+

Ψ(θ∗) = lim
θx→∞

Ψ(θ∗) = d0 and sup
θ∗∈R2

+

Ψ(θ∗) = d1. (3.2)

(i) Since Ψ(θ∗) is a continuous function of θ∗, it follows from Equations (3.1) and (3.2)
that any value of d in the interval (d0, d1) minimizes the risk function R(δd,θ

∗) for some
θ∗ ∈ R2

+. Consequently, the estimators δd, for any value of d ∈ (d0, d1) are admissible
within the subclass Qd. The admissibility of the estimators δd0 and δd1 , within the class
Qd, follows form continuity of R(δd,θ

∗).
(ii) For a fixed θ∗ ∈ R2

+, the risk function R(δd,θ
∗) is a decreasing (an increasing) function

of d for d < Ψ(θ∗) (d > Ψ(θ∗)). Since d0 ≤ Ψ(θ∗) ≤ d1,∀ θ∗ ∈ R2
+, it follows that the

equivariant estimators δd are dominated by δd0 for d < d0 and δd1 for d > d1. �

Remark 3.3. The estimator δN,2 is a member of the class Qd for d = −1
2aσyy. Then,

using Theorem 3.2, the estimator δN,2 is admissible within the class Qd.

4. Some Results of Improved Estimators
In this section, using the loss function given in Equation (1.1), a sufficient condition for

improving equivariant estimators of θS
y in the general class Qc is derived. The following

lemmas are needed for establishing the result.

Lemma 4.1. Let T1 = X(1) − X(2), T2 = Y[1] − Y[2], T3 = Y[2] − θS
y , ρ = σxy√

σxxσyy
, and

θ∗ = (θx, θy)ᵀ ∈ R2
+ For t1 ≤ 0, t2 ∈ R, the conditional pdf of T3 given T1 = t1, T2 = t2 is

given by
fT3|T1,T2 (T3|T1, T2)

=
√

2
σyy

ϕ
(√

2
σyy

(
t3 + t2−θy

2

))
D1 (t1, t2,θ∗) + ϕ

(√
2

σyy

(
t3 + t2+θy

2

))
D2 (t1, t2,θ∗)

D1 (t1, t2,θ∗) +D2 (t1, t2,θ∗)

 ,
where

D1 (t1, t2, θ∗) = ϕ

(
t2 − θy√

2σyy

)
ϕ

ρ
(

t2−θy√
σyy

)
−
(

t1−θx√
σxx

)
√

2(1 − ρ2)

 ,
and

D2 (t1, t2, θ∗) = ϕ

(
t2 + θy√

2σyy

)
ϕ

ρ
(

t2+θy√
σyy

)
−
(

t1+θx√
2σxx

)
√

2(1 − ρ2)

 .
(ii) For t1 ≤ 0 and t2 ∈ R,

E
(
eaT3

∣∣T1 = t1, T2 = t2
)

= e
a2σyy

4 − at2
2 [∆ (t1, t2,θ∗)] ,

where for t1 ≤ 0 and t2 ∈ R,

∆ (t1, t2,θ∗) = D1 (t1, t2,θ∗) e
aθy

2 +D2 (t1, t2,θ∗) e
−aθy

2

D1 (t1, t2,θ∗) +D2 (t1, t2,θ∗)
, (4.1)

∀ θ∗ ∈ R2
+
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Lemma 4.2. For t1 ≤ 0 and t2 ∈ R, define

φ (t1, t2,θ∗) = −1
a

ln
[
E
(
eaT3

∣∣T1 = t1, T2 = t2
)]

= t2
2

− aσyy

4
− 1
a

ln [∆ (t1, t2,θ∗)] (Using Lemma 4.1 (ii)),

where ∆(·) is given by (4.1). Then, for t1 ≤ 0 and t2 ∈ R,

φI (t1, t2) ≤ φ (t1, t2,θ∗) ≤ φS (t1, t2) , ∀θ∗ ∈ R2
+,

where

φI (t1, t2) =


t2
2 − aσyy

4 , if t1ξ − ρt2 < 0 and t2 − ξρt1 < −aσyy

2 (1 − ρ2)

−∞, otherwise,

and

φS (t1, t2) =


t2
2 − aσyy

4 , if t1ξ − ρt2 > 0 and t2 − ξρt1 > −aσyy

2 (1 − ρ2)

∞, otherwise,

where ξ =
√

σyy

σxx
.

Now, we exploit the approach of [9] to obtain a sufficient condition for improving the
equivariant estimators of the form δφ (Z) = Y[2] + φ (T1, T2), where T1 = X(1) −X(2) and
T2 = Y[1] − Y[2].

Theorem 4.3. Consider an equivariant estimator δφ (Z) = Y[2] + φ (T1, T2) of θS
y , where

φ(·) denotes a function of T1 and T2. Suppose that

P ({φ(T1, T2) ≤ φI(T1, T2)} ∪ {φ(T1, T2) ≥ φS(T1, T2)}) > 0,

where φI(·) and φS(·) are as given in Lemma 4.2. Then, using the loss function given in
Equation (1.1), the estimator δφ(·) is improved by δ∗

φ(Z) = Y[2] + φ∗(T1, T2), where

φ∗(T1, T2) =


φI(T1, T2), if φ(T1, T2) ≤ φI(T1, T2)

φ(T1, T2), if φI(T1, T2) < φ(T1, T2) < φS(T1, T2)

φS(T1, T2), if φ(T1, T2) ≥ φS(T1, T2).

Proof. (i) Consider the risk difference of the estimators δφ and δ∗
φ and

R(θ∗, δφ) −R(θ∗, δ∗
φ) = E [Kθ∗(T1, T2)] ,

Kθ∗(t1, t2) = E
[
ea(δφ(Z)−θS

y ) − a(δφ(Z) − θS
y ) − 1

∣∣∣T1 = t1, T2 = t2
]

− E
[
ea(δ∗

φ(Z)−θS
y ) − a

(
δ∗

φ(Z) − θS
y

)
− 1

∣∣∣T1 = t1, T2 = t2
]

= E
[
ea(δφ(Z)−θS

y ) − ea(δ∗
φ(Z)−θS

y )
∣∣∣T1 = t1, T2 = t2

]
− aE

[
δφ(Z) − δ∗

φ(Z)
∣∣∣T1 = t1, T2 = t2

]
= E

[
ea(Y[2]+φ(t1,t2)−θS

y ) − ea(Y[2]+φ∗(t1,t2)−θS
y )∣∣T1 = t1, T2 = t2

]
− a

[
φ(t1, t2) − φ∗(t1, t2)

]
=
[
eaφ(t1,t2) − eaφ∗(t1,t2)

]
E
(
ea(Y[2]−θS

y )∣∣T1 = t1, T2 = t2
)

− a [φ(t1, t2) − φ∗(t1, t2)]

=
[
eaφ(t1,t2) − eaφ∗(t1,t2)

]
e−aφ(t1,t2,θ∗) − a [φ (t1, t2) − φ∗ (t1, t2)] .
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The last line of the above expression follows from Lemma 4.1 and Lemma 4.2. Now
suppose that φ(t1, t2) ≤ φI(t1, t2) (so that φ∗(t1, t2) = φI(t1, t2)), then

Kθ∗(t1, t2) =
[
eaφ(t1,t2) − eaφI(t1,t2)

]
e−aφ(t1,t2,θ∗) − a (φ(t1, t2) − φI(t1, t2))

≥
[
eaφ(t1,t2) − eaφI(t1,t2)

]
e−aφI(t1,t2) − a (φ(t1, t2) − φI(t1, t2))

=
[
ea{φ(t1,t2)−φI(t1,t2)} − 1

]
− a [φ(t1, t2) − φI(t1, t2)] .

Using the property ex > 1 + x, ∀x ̸= 0, we have Kθ∗ (t1, t2) ≥ 0, ∀ a ̸= 0. If
φI(t1, t2) < φ(t1, t2) < φS(t1, t2) (so that φ∗(t1, t2) = φ(t1, t2)), then, Kθ∗(t1, t2) = 0.
If φ(t1, t2) ≥ φS(t1, t2) (so that φ∗(t1, t2) = φS(t1, t2)), then,

Kθ∗(t1, t2) =
[
eaφ(t1,t2) − eaφS(t1,t2)

]
e−aφ(t1,t2,θ∗) − a (φ(t1, t2) − φS(t1, t2))

≥
[
eaφ(t1,t2) − eaφS(t1,t2)

]
e−aφS(t1,t2) − a (φ(t1, t2) − φS(t1, t2))

=
[
ea{φ(t1,t2)−φS(t1,t2)} − 1

]
− a [φ(t1, t2) − φS(t1, t2)] .

Again using the property ex > 1 + x, ∀x ̸= 0, we have Kθ∗ (t1, t2) ≥ 0, ∀ a ̸= 0. Now,
since P ({φ(T1, T2) ≤ φI(T1, T2)} ∪ {φ(T1, T2) ≥ φS(T1, T2)}) > 0, we conclude that

R(θ∗, δφ) −R(θ∗, δ∗
φ) ≥ 0, ∀θ∗ ∈ R2

+,

and the strict inequality holds for some θ∗ ∈ R2
+. Hence the result follows. �

Improved estimators
Here, we provide some improved estimators of θS

y by using the result of Theorem 4.3.

Improved estimator 1: The estimator δN,1 = Y[2] is a member of the class Qc (δφ with φ = 0).
It follows from Theorem 4.1 that, the estimator δN,1 is improved by
δI1

N,1 (Z1,Z2) = Y[2] + φN,1(T1, T2), where

φN,1(T1, T2) =


φI(T1, T2), if 0 ≤ φI(T1, T2)

0, if φI(T1, T2) < 0 < φS(T1, T2)

φS(T1, T2), if 0 ≥ φS(T1, T2),
and φI(T1, T2) and φS(T1, T2) are given in Lemma 4.2. For a > 0 and 0 < ρ ≤ 1, the
estimator δN,1 is improved by

δI1
N,1 (Z1,Z2) =


Y[1]+Y[2]

2 − aσyy

4 , if T1 >
ρT2

ξ and ξρT1 − a
σyy

2 (1 − ρ2) < T2 <
aσyy

2

δN,1, otherwise.
Improved estimator 2: For a < 0 and −1 ≤ ρ < 0, the estimator δN,1 is improved by

δI2
N,1 (Z1,Z2) =


Y[1]+Y[2]

2 − aσyy

4 , if T1 <
ρT2

ξ and aσyy

2 ≤ T2 < ξρT1 − a
σyy

2 (1 − ρ2)

δN,1, otherwise.
Improved estimator 3: For a > 0 (a < 0) and −1 ≤ ρ < 0 (0 < ρ ≤ 1), the estimator
δN,1 is improved by

δI3
N,1 (Z1,Z2) =



Y[1]+Y[2]
2 − aσyy

4 , if T1 <
ρT2

ξ and aσyy

2 ≤ T2 < ξρT1 − a
σyy

2 (1 − ρ2)

or T1 >
ρT2

ξ and aσyy

2 ≥ T2 > ξρT1 − a
σyy

2 (1 − ρ2)

δN,1, otherwise.
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Improved estimator 4: For a < 0 and ρ = 0, the estimator δN,1 is improved by

δI4
N,1 (Z1,Z2) =


Y[1]+Y[2]

2 − aσyy

4 , if aσyy

2 ≤ T2 < −aσyy

2

δN,1, otherwise.
For a > 0 and ρ = 0, Theorem 4.3 fails to provide an improved estimator upon the

estimator δN,1.
Improved estimator 5: The estimator δN,2 = Y[2] − aσyy

2 is a member of the class Qc(
δφ with φ = −aσyy

2
)
. It follows from Theorem 4.1 that, the estimator δN,2 is improved by

δI1
N,2 (Z1,Z2) = Y[2] + φN,2(T1, T2), where

φN,2(T1, T2) =


φI(T1, T2), if − aσyy

2 ≤ φI(T1, T2)

−aσyy

2 , if φI(T1, T2) < −aσyy

2 < φS(T1, T2)

φS(T1, T2), if − aσyy

2 ≥ φS(T1, T2).

For a > 0 (a < 0) and 0 < ρ ≤ 1 (−1 ≤ ρ < 0), the estimator δN,2 is improved by

δI1
N,2 (Z1,Z2) =



Y[1]+Y[2]
2 − aσyy

4 , if T1 <
ρT2

ξ and − aσyy

2 ≤ T2 < ξρT1 − aσyy

2 (1 − ρ2)

or T1 >
ρT2

ξ and − aσyy

2 ≥ T2 > ξρT1 − a
σyy

2 (1 − ρ2)

δN,2, otherwise.

Improved estimator 6: For a > 0 and −1 ≤ ρ < 0, the estimator δN,2 is improved by

δI2
N,2 (Z1,Z2) =


Y[1]+Y[2]

2 − aσyy

4 , if T1 <
ρT2

ξ and − aσyy

2 ≤ T2 < ξρT1 − a
σyy

2 (1 − ρ2)

δN,2, otherwise.

For a < 0 (a ̸= 0) and 0 < ρ ≤ 1 (ρ = 0), Theorem 4.3 fails to provide an improved
estimator upon the estimator δN,2.
Improved estimator 7: For a > 0, 0 < ρ ≤ 1, and φ3 ≤ φI or φ3 ≥ φS , where
φ3 = 1

a ln
[
1 +

(
eaT2 − 1

)
Φ
(

T1√
2σxx

)]
, and φI and φS are as given in Lemma 4.2, the

estimator δN,3 is improved by

δI1
N,3 (Z1,Z2) =



Y[1]+Y[2]
2 − aσyy

4 , if T1 <
ρT2

ξ and T2 < ξρT1 − a
σyy

2 (1 − ρ2)

or T1 >
ρT2

ξ and T2 > ξρT1 − a
σyy

2 (1 − ρ2)

δN,3, otherwise.

Improved estimator 8: For a < 0 and 0 < ρ ≤ 1 and φ3 ≤ φI , the estimator δN,3 is
improved by

δI2
N,3 (Z1,Z2) =


Y[1]+Y[2]

2 − aσyy

4 , if T1 <
ρT2

ξ and T2 < ξρT1 − a
σyy

2 (1 − ρ2)

δN,3, otherwise.

Improved estimator 9: For a ̸= 0, −1 ≤ ρ < 0 and φ3 ≤ φI or φ3 ≥ φI , the estimator
δN,3 is improved by

δI3
N,3 (Z1,Z2) =



Y[1]+Y[2]
2 − aσyy

4 , if T2 < min
{

ξT1
ρ , ξρT1 − a

σyy

2 (1 − ρ2)
}

or max
{

ξT1
ρ , ξρT1 − a

σyy

2 (1 − ρ2)
}
< T2

δN,3, otherwise.
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Improved estimator 10: For a ̸= 0, ρ = 0 and φ3 ≤ φI , the estimator δN,3 is improved
by

δI4
N,3 (Z1,Z2) =


Y[1]+Y[2]

2 − aσyy

4 if T1 < 0 and T2 < −aσyy

2

δN,3, otherwise.
Improved estimator 11: For a > 0 and 0 < ρ ≤ 1, the estimator δN,4 is improved by

δI1
N,4 (Z1,Z2) =



Y[1]+Y[2]
2 − aσyy

4 , if T1 > max
{

−c
√

2σxx,
ρT2

ξ

}
and T2 > ξρT1 − aσyy

2 (1 − ρ2)

Y[1]+Y[2]
2 − aσyy

4 , if ρT2
ξ < T1 ≤ −c

√
2σxx and aσyy

2 ≥ T2 > ξρT1 − aσyy

2 (1 − ρ2)

δN,4, otherwise.
Improved estimator 12: For a > 0 and −1 ≤ ρ < 0, the estimator δN,4 is improved by

δI2
N,4 (Z1,Z2) =



Y[1]+Y[2]
2 − aσyy

4 , if T1 > max
{

−c
√

2σxx,
ρT2

ξ

}
and T2 > ξρT1 − aσyy

2 (1 − ρ2)

Y[1]+Y[2]
2 − aσyy

4 , if T1 < min
{

−c
√

2σxx,
ρT2

ξ

}
and aσyy

2 ≤ T2 < ξρT1 − aσyy

2 (1 − ρ2)

or ρT2
ξ < T1 ≤ −c

√
2σxx and aσyy

2 ≥ T2 > ξρT1 − aσyy

2 (1 − ρ2)

δN,4, otherwise.

Improved estimator 13: For a < 0 and 0 < ρ ≤ 1, the estimator δN,4 is improved
by

δI3
N,4 (Z1,Z2) =



Y[1]+Y[2]
2 − aσyy

4 , if − c
√

2σxx < T1 <
ρT2

ξ and T2 < ξρT1 − aσyy

2 (1 − ρ2)

Y[1]+Y[2]
2 − aσyy

4 , if T1 < min
{

−c
√

2σxx,
ρT2

ξ

}
and aσyy

2 ≤ T2 < ξρT1 − aσyy

2 (1 − ρ2)

or ρT2
ξ < T1 ≤ −c

√
2σxx and aσyy

2 ≥ T2 > ξρT1 − aσyy

2 (1 − ρ2)

δN,4, otherwise.

Improved estimator 14: For a < 0 and −1 ≤ ρ < 0, the estimator δN,4 is improved by

δI4
N,4 (Z1,Z2) =



Y[1]+Y[2]
2 − aσyy

4 , if − c
√

2σxx < T1 <
ρT2

ξ and T2 < ξρT1 − aσyy

2 (1 − ρ2)

Y[1]+Y[2]
2 − aσyy

4 , if T1 < min
{

−c
√

2σxx,
ρT2

ξ

}
and aσyy

2 ≤ T2 < ξρT1 − a
σyy

2 (1 − ρ2)

δN,4, otherwise.
Improved estimator 15: For a < 0 and ρ = 0, the estimator δN,4 is improved by

δI5
N,4 (Z1,Z2) =


Y[1]+Y[2]

2 − aσyy

4 , if T1 > −c
√

2σxx and T2 < −aσyy

2

Y[1]+Y[2]
2 − aσyy

4 , if T1 ≤ −c
√

2σxx and aσyy

2 ≤ T2 < −aσyy

2

δN,4, otherwise.
For a > 0 and ρ = 0, Theorem 4.3 fails to provide an improved estimator upon the
estimator δN,4.

5. An application to Poultry feeds data
In this section, a data analysis is presented using a real data set (reported in [25])

to demonstrate the computation of various estimates of θS
y . Olosunde [25] conducted a

study to compare the effect of two different copper-salt combinations on eggs produced
by chicken in poultry feeds. An equal number of chickens were randomly assigned to be
fed with each of the two combinations. A sample of 96 chickens were randomly selected
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from the poultry and were divided into two groups, of 48 chickens each. One group was
given an organic copper-salt combination and an inorganic copper-salt combination was
given to the another group. After a period of time, the weight and the cholesterol level of
the eggs produced by the two groups were measured. The observed data from the organic
and the inorganic Copper-Salt combinations are reported in [25] and presented in Table
1. The eggs with more weights and less cholesterol is preferable.

Table 1. Organic and Inorganic copper-salt combinations observed data.

Organic Copper-Salt Inorganic Copper-Salt
Weight Cholesterol Weight Cholesterol

56.08 56.34 60.73 66.03 52.67 53.17 164.23 167.42
56.61 56.87 71.33 76.63 53.67 54.17 170.60 173.78
57.13 57.39 81.86 81.93 54.67 55.17 176.96 180.14
57.65 57.92 81.93 87.16 55.67 56.17 183.32 186.51
58.18 58.44 92.46 92.52 56.67 57.17 189.69 192.87
58.70 58.96 97.76 97.82 57.67 58.17 196.05 199.24
59.23 59.45 103.06 103.11 58.67 59.17 202.42 205.60
59.75 60.01 108.36 108.41 59.67 60.17 208.78 211.96
60.27 60.54 113.66 113.70 60.67 61.17 215.14 218.33
60.80 61.06 118.96 119.00 61.67 62.17 221.52 224.69
61.32 61.58 124.26 124.30 62.67 63.17 224.85 227.88
61.85 62.34 129.56 129.60 63.43 65.15 228.03 231.06
62.11 61.85 134.86 134.89 65.67 63.43 228.01 224.83
61.58 61.32 140.16 140.19 62.93 62.43 221.65 218.46
61.06 60.80 1745.46 145.48 61.93 61.43 215.28 212.10
60.54 60.27 150.76 150.78 60.93 60.43 208.92 205.74
60.01 59.75 156.06 156.08 59.93 59.43 202.56 199.37
59.49 59.23 161.36 161.37 58.93 58.43 196.19 193.01
59.00 58.70 166.66 166.67 57.93 57.43 189.83 186.65
58.44 58.18 171.96 171.97 56.93 56.43 183.46 180.28
57.92 57.65 177.26 177.26 55.93 55.43 177.10 173.72
57.39 57.13 182.56 182.56 54.93 54.43 170.74 167.55
56.87 56.61 182.56 187.86 53.93 53.43 164.37 161.19
56.34 56.08 187.86 193.16 52.93 52.43 158.01 154.83

Let π1 and π2 represent the populations given an organic copper-salt combination and
an inorganic copper-salt combination, respectively. Let (Xi, Yi) be a pair of observations
from the population πi, i = 1, 2, where the X-variate denotes the average weights of eggs
and the Y -variate denotes the corresponding average cholesterol levels. A number of 48
observations corresponding to each measurement is available from the data obtained by
[25]. Since the sample sizes of the two populations are same, the pooled variance-covariance
matrix is used. The obtained data are assumed to have a bivariate normal distribution
with different means and common known variance-covariance matrix. To check the validity
of the bivariate normality assumption for the available data set, we apply the Royston’s
normality test, given in the R-software package “MVN" that provided by [13]. Royston’s
test combines the Shapiro-Wilk (S-W) test statistics for univariate normality and obtain
one test statistic for bivariate/multivariate normality. The Royston’s and Shapiro-Wilk
tests statistic with corresponding p-values are presented in Table 2.

From Table 2, we may conclude that the data set satisfy the bivariate normality as-
sumption at 0.05 level of significance. The estimated parameters of the bivariate normal
model (based on ML) are presented in Table 3.
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Table 2. Normality test, p-values, kurtosis and skewness.

Test Measure Statistic p-value kurtosis Skewness Normality
Royston π1 5.878109 0.0529 Yes

S-W π1-weight 0.9569 0.0758 -1.256476 0.01487668 Yes
S-W π1-cholesterol 0.9598 0.0988 -1.213823 -0.09288089 Yes

Royston π2 2.867 0.1051 Yes
S-W π2-weight 0.9679 0.2089 -1.110509 0.1015675 Yes
S-W π2-cholesterol 0.9543 0.0592 -1.263555 -0.0816612 Yes

Table 3. Estimated parameters of the bivariate normal distribution.

Population Measure Mean Variance Covariance
π1 weight 59.0997 8.1645 40.0655

cholesterol 131.4569 952.9425
π2 weight 58.3516 8.1645 40.0655

cholesterol 195.7275 952.9425

Recall that, the quality of a population is determined with regard to their X-variate,
while the corresponding Y-variate is of main interest. We say that the population π1 ≡
N
(
θ(1),Σ

)
is better than the population π2 ≡ N

(
θ(2),Σ

)
if θ(1)

x > θ
(2)
x and the popula-

tion π2 is considered better than the population π1 if θ(1)
x ≤ θ

(2)
x , where θ(1) =

(
θ

(1)
x , θ

(1)
y

)ᵀ
and θ(2) =

(
θ

(2)
x , θ

(2)
y

)ᵀ
are the mean vectors of the populations π1 and π2 respectively.

From the data we have θ̂(1) = (59.0998, 131.4569)ᵀ, θ̂(2) = (58.3517, 195.7275)ᵀ, and

Σ =
[

8.1645 40.0655
40.0655 952.9425

]
. It can be observed that the average weight of eggs from

chicken fed with an organic copper-salt combination is larger than the one with an in-
organic copper-salt combination. Therefore, using the natural selection rule ψ given in
Equation (1.2), we may conclude that the population π1 is preferable over the population
π2. Also, the average cholesterol level for the population π1 is less than that for the pop-
ulation π2. Hence, based on the above observations, the organic copper-salt combination
is recommended. This result was also obtained by [25]. The various estimates of θS

y of the
selected bivariate normal population are presented in Table 4.

Table 4. The various estimates of θS
y for different values of a.

Estimators a=0.1 a=-0.1 a=0.01 a=-0.01 0.001 -0.001
δN,1 131.4569 131.4569 131.4569 131.4569 131.4569 131.4569
δN,2 83.80977 179.104 126.6922 136.2216 130.9804 131.9334
δN,3 188.1252 137.7294 166.5778 137.7294 161.9665 160.9386

δN,4 (c) 131.4569 (0.1) 131.4569 (0.15) 163.5922 (0.5) 163.5922 (1) 163.59 (
√

2) 163.59 (2)
δI1

N,1 131.4569 - 131.4569 - 131.4569 -
δI3

N,1 - 131.4569 - 131.4569 - 131.4569
δI2

N,2 83.80977 179.104 126.6922 136.2216 130.9804 131.9334
δI1

N,3 188.1252 137.7294 166.5778 137.7294 161.9665 160.9386
δI2

N,3 - 137.7294 - 137.7294 - 160.9386
δI1

N,4 (c) 131.4569 (0.1) 131.4569 (0.15) 163.5922 (0.5) 163.5922 (1) 163.59 (
√

2) 163.59 (2)
δI3

N,4 (c) 131.4569 (0.1) 131.4569 (0.15) 163.5922 (0.5) 163.5922 (1) 163.59 (
√

2) 163.59 (2)
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6. Risk comparisons of estimators
In this section, we compare the risk performance of the proposed estimators of θS

y , using
the loss function given in Equation (1.1). For this purpose, a simulation study is performed
using MATLAB software to compute the values of risk of the various estimators. 20,000
simulation runs with different configurations of parameters are used to obtain the risk
values. Note that the estimator with the least average risk values is preferable. Further,
the natural selection rule ψ presented in Equation (1.2) is used for achieving the aim
of selecting the best bivariate normal population. It is easy to see that, the risk of the
proposed estimators of θS

y depend on the parameters σxx, σyy, ρ, a and θ(1) =
(
θ

(1)
x , θ

(1)
y

)
,

θ(2) =
(
θ

(2)
x , θ

(2)
y

)
(only through θx and θy). So that, the risk functions are vary for

different combinations of these parameters. The computed values of risks of the various
estimators of θS

y are presented in Tables 5-10, for different combinations of θ(1), θ(2), and
for σxx = σyy = 2, ρ ∈ {−1, 0, 1}, and a ∈ {−1, 1} . Note that the computation of risk
values was carried-out for other values of a and ρ but these values were omitted from the
tables because the same results were obtained. The risk values of the hybrid estimator
δN,4 were calculated for c = 1. In view of the risk values in Tables 5-10, we present the
following assessment of the estimators of θS

y .

(1) For a > 0 and 0 < ρ ≤ 1, the improved estimators δI1
N,1 and δI2

N,2 provide a
considerable improvement upon the estimators δN,1 and δN,2, respectively. The
improved estimators δI1

N,3 and δI1
N,4 have the same performance with the estimators

δN,3 and δN,4, respectively, hence their risk values were omitted form Table 5. The
improved estimator δI2

N,2 dominate all other estimators and has the least values of
risk among other estimators.

(2) For a > 0 and −1 ≤ ρ < 0, the improved estimators δI3
N,1, δI1

N,2, δI3
N,3 and δI2

N,4
perform better than their respective natural estimators. However, among all these
estimators the improved estimator δI3

N,1 has the best performance.
(3) For a > 0 and ρ = 0, the improved estimator δI4

N,3 provides a significant improve-
ment upon the estimator δN,3. Also, the estimator δI4

N,3 has better performance
than the estimators δN,2 and δN,4 when θy ≤ 0.2. But, when θy > 0.2 the estimator
δN,2 performs better than δI4

N,3. Further, the estimator δN,2 dominates the three
estimators δN,1, δN,3 and δN,4.

(4) For a < 0 and 0 < ρ ≤ 1, the estimator δN,4 dominates the estimators δN,2
and δN,3, but, when θx and θy are very close to zero, δN,3 dominates δN,4. The
estimator δN,1 dominates all the estimators of θS

y . The improved estimators δI3
N,1,

δI2
N,3 and δI3

N,4 have the same values of risk with the estimators δN,1 δN,3 and δN,4,
respectively, hence their risk values were omitted form Table 8.

(5) For a < 0 and −1 ≤ ρ < 0, the improved estimators δI2
N,1, δI2

N,2, δI3
N,3 and δI4

N,4 pro-
vide considerable improvement upon their respective natural estimators. However,
the improved estimator δI2

N,2 has the least risk values among all these estimators.
(6) For a < 0 and ρ = 0, the improved estimators δI4

N,1, δI4
N,3 and δI5

N,4 provide only
marginal improvement upon the estimators δN,1, δN,3 and δN,4, respectively. The
estimator δI5

N,4 dominates the other estimators when θx and θy are very close to
zero, but when θx and θy are not close to zero the estimator δN,2 dominates δI5

N,4.

Based on the above observations, we conclude that, for a > 0 and 0 ≤ ρ ≤ 1 the perfor-
mance of the estimator δI2

N,2 is satisfactory, hence is recommended for practical purposes.
For a > 0 and −1 ≤ ρ < 0, the estimator δI3

N,1 is recommended. For a > 0 and ρ = 0, the
estimator δI4

N,3 is recommended when θy ≤ 0.2 and the estimator δN,2 is recommended for
other values of θx and θy. For a < 0, the use of the natural estimator δN,1 is recommended
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for 0 < ρ ≤ 1 and the estimator δI2
N,2 is recommended for −1 ≤ ρ < 0. Also, for a < 0 and

ρ = 0, the estimator δI5
N,4 is recommended when θx and θy are very close to zero, and the

estimator δN,2 is recommended when θx and θy are not close to zero.

Table 5. Risk values of the various estimators of θS
y for a = 1, σxx = σyy = 2, ρ = 1.

θ(1) θ(2) δN,1 δI1
N,1 δN,2 δI2

N,2 δN,3 δN,4

(0.2,2) (2,0.2) 2.6462 1.7312 0.9743 0.8315 3.7656 2.5723
(0.4,1.8) (1.8,0.4) 2.6458 1.6916 1.0069 0.8184 3.4462 2.7156
(0.6,1.6) (1.6,0.6) 2.6915 1.6833 1.0001 0.7655 2.9903 2.3291
(0.8,1.4) (1.4,0.8) 2.9213 1.7103 1.0110 0.7371 2.4982 2.2103
(1,1.2) (1.2,1) 2.7271 1.5697 1.0090 0.7050 2.5228 2.2934
(0,0) (0,0) 2.6445 2.6445 1.0463 1.0463 2.4251 2.3460

(1.2,1) (1,1.2) 2.8050 1.5987 0.9524 0.7978 2.6302 2.3102
(1.4,0.8) (0.8,1.4) 3.0249 1.7512 0.9608 0.8304 2.5218 2.3739
(1.6,0.6) (0.6,1.6) 2.7631 1.6928 0.9847 0.8421 2.5866 2.4471
(1.8,0.4) (0.4,1.8) 2.5929 1.6722 0.9783 0.8634 2.8642 2.5125
(2,0.2) (0.2,2) 2.5158 1.7084 0.9673 0.8592 3.4061 2.6093

Table 6. Risk values of the various estimators of θS
y for a = 1, σxx = σyy = 2, ρ = 0.

θ(1) θ(2) δN,1 δN,2 δN,3 δI4
N,3 δN,4

(0.2,2) (2,0.2) 1.8102 1.0294 2.8037 0.2382 1.7059
(0.4,1.8) (1.8,0.4) 1.7510 1.0135 2.2707 0.2913 1.4270
(0.6,1.6) (1.6,0.6) 1.7064 0.9899 1.7890 0.3291 1.2453
(0.8,1.4) (1.4,0.8) 1.7238 1.0044 1.5421 0.5055 1.0612
(1,1.2) (1.2,1) 1.6948 0.9882 1.4484 0.6394 1.0201
(0,0) (0,0) 1.7815 0.9668 1.4718 0.7055 1.0048

(1.2,1) (1,1.2) 1.7621 0.9876 1.4629 0.8513 1.0175
(1.4,0.8) (0.8,1.4) 1.7868 1.0149 1.6371 1.1382 1.1297
(1.6,0.6) (0.6,1.6) 1.8065 1.0233 1.8261 1.4093 1.2745
(1.8,0.4) (0.4,1.8) 1.7162 1.0005 2.1955 1.8950 1.3780
(2,0.2) (0.2,2) 1.7324 1.00108 2.7087 2.5046 1.6951

Table 7. Risk values of the various estimators of θS
y for a = −1, σxx = σyy = 4, ρ = 1.

θ(1) θ(2) δN,1 δN,2 δN,3 δN,4

(0.2,2) (2,0.2) 0.8470 1.0127 5.7682 0.8711
(0.4,1.8) (1.8,0.4) 0.7248 1.0865 2.5465 0.8804
(0.6,1.6) (1.6,0.6) 0.7089 1.0710 1.3354 0.8717
(0.8,1.4) (1.4,0.8) 0.7276 1.0884 0.8350 0.7409
(1,1.2) (1.2,1) 0.6622 1.0792 0.6940 0.7321
(0,0) (0,0) 0.7230 1.0702 0.8046 0.8953

(1.2,1) (1,1.2) 0.6552 1.0754 0.6857 0.7314
(1.4,0.8) (0.8,1.4) 0.7326 1.0777 0.8444 0.7707
(1.6,0.6) (0.6,1.6) 0.7397 1.0828 1.2542 0.7920
(1.8,0.4) (0.4,1.8) 0.7428 1.0912 2.5213 0.9157
(2,0.2) (0.2,2) 0.7429 1.0854 5.7609 0.9237
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Table 8. Risk values of the various estimators of θS
y for a = −1, σxx = σyy = 4, ρ = −1.

θ(1) θ(2) δN,1 δI2
N,1 δN,2 δI2

N,2 δN,3 δI3
N,3 δN,4 δI4

N,4

(0.2,2) (2,0.2) 2.5510 1.5050 0.9719 0.8279 5.4113 2.6828 2.2766 1.4729
(0.4,1.8) (1.8,0.4) 2.7091 1.5983 0.9564 0.7988 5.8670 2.7114 2.3859 1.4868
(0.6,1.6) (1.6,0.6) 2.6500 1.3048 0.8987 0.6791 5.9427 2.1990 2.3006 1.1539
(0.8,1.4) (1.4,0.8) 2.9947 1.5611 0.9747 0.6968 6.7696 3.0248 2.5833 1.4237
(1,1.2) (1.2,1) 2.6574 1.3893 0.8401 0.6219 6.1065 2.6089 2.2276 1.2886
(0,0) (0,0) 2.5950 0.9487 0.8343 0.5545 6.0156 1.3589 2.1910 0.8812

(1.2,1) (1,1.2) 2.7163 1.3609 0.8578 0.6191 6.2608 2.5868 2.2753 1.2710
(1.4,0.8) (0.8,1.4) 2.7172 1.4031 0.8875 0.6452 6.2037 2.7325 2.3345 1.2680
(1.6,0.6) (0.6,1.6) 2.6410 1.2674 0.8919 0.6566 5.8921 2.1696 2.2734 1.1366
(1.8,0.4) (0.4,1.8) 2.6376 1.5342 0.9428 0.7901 5.7970 2.6678 2.3202 1.4445
(2,0.2) (0.2,2) 2.5747 1.4634 0.9800 0.8183 5.5067 2.5940 2.2982 1.4377

Table 9. Risk values of the various estimators of θS
y for a = 1, σxx = σyy = 2, ρ = −1.

θ(1) θ(2) δN,1 δI3
N,1 δN,2 δI1

N,2 δN,3 δI3
N,3 δN,4 δI2

N,4

(0.2,2) (2,0.2) 0.8444 0.8311 1.0076 0.9003 1.1567 1.0309 1.1740 1.0267
(0.4,1.8) (1.8,0.4) 0.8144 0.7603 1.0551 0.8648 1.0014 0.8922 1.0819 0.9385
(0.6,1.6) (1.6,0.6) 0.7200 0.6401 1.0794 0.7991 0.7685 0.7001 0.8720 0.7522
(0.8,1.4) (1.4,0.8) 0.6935 0.6061 1.1007 0.8165 0.6789 0.6317 0.8052 0.7123
(1,1.2) (1.2,1) 0.6668 0.5711 1.1303 0.7972 0.6010 0.5749 0.7359 0.6551
(0,0) (0,0) 0.6636 0.5244 1.1273 0.6705 0.5974 0.5728 0.7312 0.6167

(1.2,1) (1,1.2) 0.6759 0.5883 1.1219 0.8072 0.6331 0.6077 0.7545 0.6796
(1.4,0.8) (0.8,1.4) 0.6741 0.5921 1.0815 0.8039 0.6631 0.6163 0.7860 0.6968
(1.6,0.6) (0.6,1.6) 0.7262 0.6411 1.0883 0.7959 0.7793 0.7183 0.8866 0.7703
(1.8,0.4) (0.4,1.8) 0.8091 0.7601 1.0564 0.8658 0.9857 0.8826 1.0557 0.9217
(2,0.2) (0.2,2) 0.8739 0.8523 1.0286 0.9121 1.1834 1.0477 1.2171 1.0514

Table 10. Risk values of the various estimators of θS
y for a = −1, σxx = σyy = 4, ρ = 0.

θ(1) θ(2) δN,1 δI4
N,1 δN,2 δN,3 δN,4 δI5

N,4

(0.2,2) (2,0.2) 1.6912 1.6477 0.9909 80.5726 1.3579 1.2440
(0.4,1.8) (1.8,0.4) 1.7057 1.6595 0.9975 63.5385 1.2313 1.1164
(0.6,1.6) (1.6,0.6) 1.7053 1.6616 0.9974 92.9430 1.1331 1.0304
(0.8,1.4) (1.4,0.8) 1.7269 1.6796 1.0031 39.0709 1.0501 0.9585
(1,1.2) (1.2,1) 1.6670 1.6183 0.9756 24.7978 1.0183 0.9209
(0,0) (0,0) 1.6932 1.6436 0.9835 24.7124 0.9684 0.8822

(1.2,1) (1,1.2) 1.7682 1.7364 1.0191 47.2484 0.9901 0.8853
(1.4,0.8) (0.8,1.4) 1.7416 1.7215 0.9995 34.1616 1.0370 0.9302
(1.6,0.6) (0.6,1.6) 1.6809 1.6567 1.0217 53.2835 1.1860 1.0729
(1.8,0.4) (0.4,1.8) 1.6833 1.6786 0.9869 136.5534 1.2239 1.0576
(2,0.2) (0.2,2) 1.6913 1.6913 1.0117 76.2712 1.4199 1.2616
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