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ABSTRACT In the last few decades, the dynamics of one-dimensional chaotic maps have gained the
tremendous attention of scientists and scholars due to their remarkable properties such as period-doubling,
chaotic evolution, Lyapunov exponent, etc. The term hyperbolicity, another important property of chaotic
maps is used to examine the regular and irregular behavior of the dynamical systems. In this article, we deal
with the hyperbolicity and stabilization of fixed states using a superior two-step feedback system. Due to the
superiority in the chaotic evolution of one-dimensional maps in the superior system we are encouraged to
examine the hyperbolicity and stabilization in chaotic maps. The hyperbolic notion, hyperbolicity in periodic
states of prime order, stabilization, and the hyperbolic set of the chaotic maps are studied. The numerical, as
well as experimental simulations, are carried out, followed by theorems, examples, remarks, functional plots,
and bifurcation diagrams.
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INTRODUCTION
Hyperbolicity, in short, is an effective and efficient tool that
examines the regular and irregular behavior in nonlinear dy-
namical systems. In fact, it induces an invariant set for differ-
ent parameter values which are responsible for the chaotic
phenomena of a dynamical system. It was Poincare (1899)
who first introduced the hypothesis of chaotic phenomena
which is considered as an essential factor in the study of
hyperbolicity and stabilization. Surprisingly, the standard
chaotic map νp(1− p), a model of population growth has a
significant role in the simulation of hyperbolicity, invariant
sets, and stability in chaos theory.

P. F. Verhlust (1845 and 1847) first established the chaotic
map νp(1− p) as a model of population growth, where the
parameter ν varies in a certain range. But the dynamical
appearance in any chaotic system leads to 2n periodic cycles
through a bifurcation plot. Finally, the bifurcation plot leads
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to a chaotic domain which gives a set of invariant measures
and is known as a hyperbolic set. Further, for a detailed
study on hyperbolicity and on its stability one may refer
to, Robinson (1995), Holmgren (1994), Devaney (1948), De-
vaney (1992), Alligood et al. (1996), Martelli (1999), Chugh
et al. (2012), etc..

In the last few decades, the hyperbolicity and the sta-
bilization in fixed and periodic states have been studied
by various academicians using standard chaotic systems.
In 2001, Glendinning (2001) examined the hyperbolicity in
the standard chaotic system νp(1− p), for the parameter
range 4 < ν ≤ 2 +

√
5 and also established a good estima-

tion of the expansion rate on invariant sets. In 2003, Kraft
(1999) studied some analytical results on the hyperbolicity
of chaotic maps for ν > 4 using Schwarzian derivative and
shown that it is negative except for its critical states.

Robinson (1995) and Newhouse (1981) proved the re-
pelling hyperbolicity on invariant sets using Schwarz
Lemma for complex functions. Further, Guckenheimer
(1979), Melo (1993) and Misiurewicz (1976) also de-
scribed some analytical results using kneading theory and
Schwarzian derivative. In 2003, Aulbach et al. (2004) using
elementary calculus established that the invariant set Λν is
hyperbolic for ν > 4 and also proved that for ν > 4, the
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system is chaotic with the capacity of Bernoulli shift defined
on [0, 1].

In the twenty first century, the chaotic maps have played
a crucial role in every branch of science such as in traffic
control system (Ashish et al. 2018, 2019b), cryptography,
(Wang 2017; Akgul 2013), secure communication (Baptista
et al. 1998), etc. Further, for a detailed study one may refer
to Adiyaman (2020), Andrecut (1998), Ausloos et al. (2006),
Jonassen (2002), Saha (2009), Saha (2010), Sharkovsky et al.
(1993), Kumar (2020), Volos (2018), etc.

Recently, in 2021, Ashish et al. (2021) introduced a modu-
lated logistic system and reported superior chaos through
period-doubling, period-three orbit, and Lyapunov expo-
nent. Also, they examined the elementary properties for
chaotic maps in Ashish et al. (2019a), controlling chaos with
applications in the traffic control system in Ashish et al.
(2019b) and irregularity in Ashish et al. (2018) using two-
step feedback approach.

The article is arranged into five major sections. Section
1 accommodates essential literature review and Section 2
consists of elementary results. The results on hyperbolicity
and stability of periodic states of prime order are described
in Section 3. An experimental simulation for hyperbolic sets
in the two-step superior system is described in Section 4.
Finally, all the results are summarized in Section 5.

PRELIMINARIES

This section deals with some basic entities in chaos theory
that are used in further sections to determine the hyperbol-
icity of the chaotic maps in a superior two-step feedback
system.

Definition 1. (Hyperbolicity). Let p̃ be a periodic point of
order n ∈ N, then p̃ is said to be hyperbolic for the map f if
it satisfy | ( f (n))′( p̃) |6= 1 (Devaney 1948).

Definition 2. (Periodic state). Let p̃ ∈ X be a point and f be
a map defined on X. Then, p̃ is periodic of prime order n if
f (n)( p̃) = p̃ but f (m)( p̃) 6= p̃ for 1 ≤ m < n (Devaney 1992).

Definition 3. (Sink and stretch states). A point p̃ ∈ X for
a map f is said to be sink if | f ′(p)| < 1 and is said to be
stretch if | f ′(p)| > 1 (Devaney 1992).

Definition 4. (Superior two-step feedback system). For
an initiator p ∈ X, the iterative sequence {pn} defined by
pn+1 = pn − αn(pn − f (pn)), where 0 ≤ αn ≤ 1 is said to be
superior iterative orbit and the complete process is known
as superior two-step feedback system (Mann 1953).

Definition 5. (Hyperbolic set). Let Λ be an invariant set
for the map f defined on X, that is, f (Λ) = Λ. Then,
the invariant set Λ is said to be hyperbolic, if it satisfy
| ( f (n))′(p) |≥ Kθn, for p ∈ Λ, n ≥ 1, θ > 1 and constant
K > 0 (Devaney 1948).

HYPERBOLICITY AND STABILIZATION ANALY-
SIS
Throughout this section, we deal with the analytical as well
as numerical simulations for hyperbolicity and stabilization
of fixed and periodic states of chaotic maps in a superior
two-step feedback system. The hyperbolicity and stabiliza-
tion in fixed and periodic states is described, followed by
some theorems, examples and remarks. Therefore, let us
consider fµ be a chaotic map defined on X. Then, from Defi-
nition 4, for the superior two-step feedback system, we can
write

pn+1 = pn − α(pn − fν(pn)) = Sα,ν(p). (say) (1)

Then, for an initiator p0 ∈ X and using (1) we obtain the
following iterative sequence,

SO+(p0) = {p0, p1, p2, ...} (2)

and is said to be forward iterative sequence for an initiator
p0. Similarly, we get the relation

SO−(p0) = {p0, p−1, p−2, ...} (3)

and is said to be backward iterative sequence for an initiator
p0. Then, from (2) and (3), we obtain the following complete
iterative sequence

SO(p0) = {p0, p−1, p−2, ...}
⋃
{p0, p1, p2, ...},

= {..., p−2, p−1, p0, p1, p2, ...},
= {pn : n ∈ Z}.

Also, for the nth iterate of the chaotic map fν using (1) we
obtain

pn+1 = (1− α)pn + α f ( f n−1
ν (p0))n∈N = S(n)

α,ν (p). (4)

Thus, it is noticed that in a casual dynamical system the
forward iterative sequence (2) is named as the superior orbit
for an initiator p0 ∈ X. Therefore, using the relation (4), first
we introduce the definition of hyperbolicity followed by a
few examples and then prove the stability results using a
superior two-step feedback system.

Hyperbolicity
Hyperbolicity, another eminent property of chaotic maps
is illustrated to examine the regular and irregular move-
ments in nonlinear systems. Therefore, this subsection deals
with the hyperbolicity in fixed and periodic states using a
superior two-step feedback system.

Definition 6. Let Sα,ν(p) be the superior two-step system
and fν be a chaotic map defined on X. Then, the point p̃ ∈ X
of prime order n is said to be superior hyperbolic of order-n
if it satisfy | (S(n)

α,ν )
′( p̃) |6= 1, where α ∈ (0, 1), n ∈ N and

ν > 0.
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Example 1. Let us consider Sα,ν(p) = p− α(p− fν(p)) be the
superior two-step system and fν(p) = νp(1− p) be the chaotic
map, where ν ∈ [0, 4.22]. Then, determine the domain of parame-
ter ν for which the fixed-point p̃ ∈ [0, 1] admits hyperbolicity.

Solution. Since Sα,ν(p) = p− α(p− fν(p)) and fν(p) =
νp(1− p), where ν ∈ [0, 4.22]. Then, from Definition 1 for
superior hyperbolicity, we can say

| (Sα,ν)
′(p) | =| 1− α + α f ′ν(p) |,

=| 1− α + α(ν− 2νp) | . (5)

Also, the point p̃ = 0 and p̃ = 1− 1
ν are the two fixed

points of prime order one of the system Sα,ν(p). Therefore,
substituting p̃ one by one in (5), we obtain

| (Sα,ν)
′(0) |=| 1− α + αν | (6)

and | (Sα,ν)
′(1− 1

ν

)
| =| 1− α + α(ν− 2ν

(
1− 1

ν

)
|,

=| 1− α + α(2 + ν− 2ν) |,
=| 1 + α− αν) | . (7)

Since the growth-rate parameter ν ∈ [0, 4.22] and α ∈
(0, 1), therefore, it is clear from (6) and (7) that both the
fixed states are hyperbolic when ν 6= 1, that is, ν ∈
(0, 1)

⋃
(1, 4.22]. Figure 1, shows the hyperbolic behavior

of the fixed states at ν = 1. To understand more about the
hyperbolicity of fixed and periodic states, the graphical plot
of the trajectories for the functions Sα,ν(p) and S2

α,ν(p) is
drawn in Figures 1-4. It is interesting to see that all the fixed
and periodic states shown in Figures 1-4 are satisfied by
Definition 1 of hyperbolicity. Figure 1 shows the functional
plot using the superior system Sα,ν(p) for ν = 1, ν > 1 and
ν < 1. For ν = 1, the diagram shows that the fixed point 0
is completely hyperbolic, that is, | (Sα,1)

′(0) |6= 1. While the
bifurcation plot in Figure 2 shows that at ν = 1 the trajectory
approaches to the fixed point 1− 1

ν and then again at ν = 3.2
the fixed point 1− 1

ν bifurcates into the hyperbolic periodic
point of order 2. Further, Figure 3 shows the hyperbolicity of
periodic points of order 2 for the system S2

α,ν(p). For ν = 3.2,
ν < 3.2 and ν > 3.2 it admits completely hyperbolic state,
hyperbolic repelling state and hyperbolic attracting state,
respectively. Moreover, the magnified Figure 4 represents
the hyperbolicity in higher order periodic points.

Example 2. Let us consider Sα,ν(p) = p − α(p − fν(p)) be
the superior two-step system and fν(p) = νp(1− p)m, where
m > 1 and ν > 0 be a chaotic map. Then, determine the do-
main of parameter ν for which the fixed point p̃ ∈ [0, 1] admits
hyperbolicity.

Solution. Since Sα,ν(p) = p− α(p− fν(p)) and fν(p) =
νp(1− p)m. Then, from the above definition of hyperbolicity,
we have

| (Sα,ν)
′(p) | =| 1− α + α f ′ν(p) |,

=| 1− α + α(ν(1− p)m − νpm(1− p)m−1) | .

(8)
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Figure 2 Bifurcation plot for νp(1− p) in Sα,ν(p)
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Also, the point p̃ = 0 and p̃ = 1− 1
m√ν

are the two fixed
point of prime order one for the system Sα,ν(p). Therefore,
substituting p̃ one by one in (8), we obtain

| (Sα,ν)
′(0) | =| 1− α + αν | (9)

| (Sα,ν)
′(1− 1

m
√

ν

)
| =| 1− α + α− ναm

(
1− 1

m
√

ν

)( 1
m
√

ν

)m−1
) |,

=| 1− ναm
(
1− 1

m
√

ν

)( 1
m
√

ν
)m−1) |,

=| 1− αm(ν1/m − 1) | .
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Since the growth-rate parameter ν ∈ (0, νmax] and
α ∈ (0, 1), thus, it is clear from (8) and (9) that both
the fixed point are hyperbolic when ν 6= 1, that is,
ν ∈ (0, 1)

⋃
(1, νmax]. In particular, for m = 2 and ν ∈

(0, 1)
⋃
(1, 7.2], Figure 5 and 6, shows the hyperbolic fixed

and periodic states. Figure 5 represents the functional
plot for the quadratic map νp(1− p)2 using superior sys-
tem Sα,ν(p) for ν = 1, ν > 1 and ν < 1. For ν = 1 it
shows that the fixed state 0 is completely hyperbolic, that
is, | (Sα,1)

′(0) |6= 1 for each α ∈ (0, 1). While the Figure 6
shows that the at the hyperbolic state ν = 1 the trajectory ap-
proaches to the fixed state 1− 1

2√ν
and then again at ν = 4.4

the fixed state 1− 1
2√ν

bifurcates into the hyperbolic periodic
fixed states of order 2. Further, as ν approaches through 4.4
the hyperbolic states for higher order periodic states also
exists as shown in Figure 6.
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Stabilization
In this subsection, we deal with the stabilization of hyper-
bolic fixed and periodic states for chaotic maps using a
superior two-step feedback system. The main results are
followed by corollaries and remarks:

Theorem 1. Let Sα,ν(p) be a superior recursive system and fν

be a chaotic map defined on X. Also, let p̃ be a hyperbolic fixed
state for fν such that | (Sα,ν)′( p̃) |< 1. Then, for p̃ ∈ X, there
exists a neighbourhood Y such that for each p ∈ Y, we obtain

Sn
α,ν(p)→ p̃ as n→ ∞,

or lim
n→∞

Sn
α,ν(p) = p̃.

Proof. Let fν be a chaotic map defined on X with a hyper-
bolic fixed state p̃ ∈ X. Then, there exists a number κ > 0,
however small, such that

| (Sα,ν)
′(p) |< 1, for p ∈ [ p̃− κ, p̃ + κ], that is,

| (Sα,ν)
′(p) |< P < 1, for p ∈ [ p̃− κ, p̃ + κ]. (10)

Then, from the statement of Mean Value Theorem and
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using Definition 2 of periodic state, we can write

| Sα,ν(p)− p̃ | =| Sα,ν(p)− Sα,ν( p̃) |,
=| (Sα,µ)

′(s) || p− p̃ |, s ∈ [p, p̃]

< P | p− p̃ |,
≤| p− p̃ |, (∵ P < 1)
≤ κ, (∵| p− p̃ |< κ)

that is, | Sα,ν(p)− p̃ | ≤ κ. (11)

Thus, Sα,ν(p) ∈ [ p̃− κ, p̃ + κ], for each p ∈ [ p̃− κ, p̃ + κ].
Inductively, it is also clear that for each p ∈ [ p̃− κ, p̃ + κ],
we can say

Sn
α,ν(p) ∈ [ p̃− κ, p̃ + κ], for each n ∈ N. (12)

Then, again using the statement of Mean Value Theorem
for the nth iterate of the system Sα,ν(p), we obtain

| Sn
α,ν(p)− p̃ | =| Sn

α,ν(p)− Sn
α,ν( p̃) |,

=| (S(n)
α,ν )
′(s) || p− p̃ |, for s ∈ [p, p̃].

(13)

Now, from Devaney’s (Devaney 1992) Definition for
Chain rule of product along a cycle, we can write

| (S(n)
α,ν )
′(p) |=

n−1

∏
i=0

S′α,ν(S
i
α,ν(p)), (14)

for p ∈ [ p̃− κ, p̃ + κ] and n ∈ N. Then, from (10) and (14),
we get

| (S(n)
α,ν )
′(p) | =

n−1

∏
i=0

S′α,ν(S
i
α,ν(p)) < 1,

that is, | (S(n)
α,ν )
′(p) | < Pn < 1. (15)

Then, from the relation (13) and (15), we find

| Sn
α,ν(p)− p̃ | < Pn | p− p̃ |< κ. (16)

Thus, Sn
α,ν(p) ∈ [ p̃− κ, p̃ + κ], for each p ∈ [ p̃− κ, p̃ + κ].

Hence taking n→ ∞ in (16), we get the required result

| Sn
α,ν(p)− p̃ |< Pn | p− p̃ |→ 0,

that is, lim
n→∞

Sn
α,ν(p) = p̃.

Hence proved.

Theorem 2. Let Sα,ν(p) be a superior recursive system and fν

be a chaotic map defined on X. Let p̃ be a hyperbolic state of order
n satisfying | (S(n)

α,ν )
′( p̃) |< 1. Then, for p̃ ∈ X, there exists a

neighbourhood Y such that for each p ∈ Y, we have

S(nk)
α,ν (p)→ p̃ as k→ ∞.

or lim
k→∞

S(nk)
α,ν (p) = p̃.

Proof. Since Sα,ν(p) is a superior system and p̃ is a periodic
state of fν, then, there exists a number κ > 0, however small,
such that

| (S(n)
α,ν )
′(p) | < 1, for p ∈ [ p̃− κ, p̃ + κ], that is,

| (S(n)
α,ν )
′(p) | < Pn < 1, for p ∈ [ p̃− κ, p̃ + κ]. (17)

Similarly for an arbitrary k ∈ N, we can say

| (S(nk)
α,ν )′(p) | < P(nk) < 1. (18)

Then, using Mean Value Theorem, for the system
(S(nk)

α,ν )′(p), we obtain

| S(nk)
α,ν (p)− p̃ | =| S(nk)

α,ν (p)− S(nk)
α,ν ( p̃) |,

=| (S(nk)
α,ν )′(s) || p− p̃ |, for s ∈ [p, p̃],

< Pnk | p− p̃ |,

that is, | S(nk)
α,ν (p)− p̃ | < κ. (19)

Thus, S(nk)
α,ν (p) ∈ [ p̃− κ, p̃ + κ], for each p ∈ [ p̃− κ, p̃ + κ].

Hence taking as k→ ∞ in (19), we obtain

| S(nk)
α,ν (p)− p̃ |< Pnk | p− p̃ |→ 0,

that is, lim
k→∞

S(nk)
α,ν (p) = p̃.

Hence proved.

Corollary 1. Let Sα,ν(p) be a superior recursive system and fν

be a chaotic map defined on X. Also, let p̃ be a hyperbolic state for
the map fν such that | (Sα,ν)′( p̃) |< 1. Then, for p̃ ∈ X, there
exists a neighbourhood Y such that for each p ∈ Y, we have

S(−nk)
α,ν (p)→ p̃ as k→ ∞

or lim
k→∞

S(−nk)
α,ν (p) = p̃.

Proof. The proof may be illustrated by using Theorem 1 and
2.

Remark 1. Let Sα,ν(p) be the superior recursive system and
p̃ be a hyperbolic periodic state for the map fν satisfying
| (S(n)

α,ν )
′(p) |< 1. Then, p̃ ∈ X is said to be hyperbolic stable

of order-n. For 0 < ν < 1, the fixed point p̃ = 0 is hyperbolic
stable and for 0 < ν < 3.2, the periodic state p̃ is hyperbolic
stable as shown in Fig. 1 and 3.

Remark 2. Let Sα,ν(p) be the superior recursive system and p̃
be a hyperbolic periodic fixed point for the map fν satisfying
| (S(n)

α,ν )
′(p) |> 1. Then, p̃ is said to be hyperbolic unstable

of order-n.
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HYPERBOLIC SET
In the earlier sections, the hyperbolicity of fixed states and
their stability is described in chaotic maps using the superior
two-step system. But this section deals with the hyperbolic
sets in chaotic maps using the superior two-step system.
Therefore, let us start with the chaotic map νp(1− p) and
the system Sα,ν(p). Figure 7 shows the functional plot of
the system Sα,ν(p) which gives a parabola and intercept at
(0, 0) and (1, 0). For p = 1

2 the system Sα,ν(p) approaches a
maximum ν

4.22 > 1 if and only if ν > 4.22. In 1992, Devaney
(1992) introduced that quadratic map νp(1− p) for ν > 4
admits the following Cantor set representation

Λν =
∞⋂

n=1

Ii0i1....in , (20)

where Ii0 ⊃ Ii0i1 ⊃ .... ⊃ Ii0i1....in is a nested sequence of
closed intervals. Afterward, Kraft (1999) and Aulbach et al.
(2004) also examined that for ν > 4, the set Λν is hyperbolic,
since it satisfies | f ′ν(p) |> 1 for ν > 4. Therefore, looking
into the potential of superior system in dynamical systems,
the future work of hyperbolic set is studied in this section.
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Figure 7 Functional plot for the system Sα,ν(p)
for 0 < ν ≤ 4.22 and ν > 4.22

Now, to examine hyperbolicity in Sα,ν(p), let us take the
quadratic map νp(1− p), where ν > 4.22. Figure 7 shows
the functional plot for the system Sα,ν(p) for ν = 1, 2, 3, 4.22
and 4.5 in different color radiations. It is observed that as
the value of the growth-rate parameter ν lies in the closed
interval (0, 4.22] the parameter p ∈ [0, 1]. But as the value
of ν approaches through 4.22, the functional plot also ap-
proaches beyond the closed interval [0, 1]. That means, a
Cantor set representation Λα,ν admits a nested sequence of
closed intervals which is hyperbolic for ν > 4.22. Moreover,
it is examined that at ν = 4.22 all the higher order iterations
of the system Sα,ν(p) lies in [0, 1] as shown in Figure 8 for
Sα,ν(p), S2

α,ν(p) and S3
α,ν(p). But as ν approaches beyond

4.22, all the higher order iterations goes to ±∞ as shown
in Figure 9. Also, from the Figure 10 it is analyzed that
the bifurcation characteristic stops when ν = 4.22 and the
hyperbolic set Λα,ν exists for ν > 4.22.
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Figure 9 Functional plot Sα,ν(p), S2
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α,ν(p) for ν > 4.22

Remark 3. From the above analysis it is noticed that as ν ∈
[0, 4.22], Sn

α,ν(p) ⊂ [0, 1] and for ν > 4.22, Sn
α,ν(p) ⊃ [0, 1].

For a particular value ν = 4.5, Sn
α,ν(p)→ ∞ as n→ ∞.

Remark 4. For ν > 4.22 the quadratic map νp(1 − p) in
Sα,ν(p) admits a compact invariant set Λα,ν for ν > 4.22,
which is hyperbolic for the system Sα,ν(p).
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Figure 11 Functional plot for the system Sα,ν(p)
for ν ≤ 7.2 and ν > 7.2

Similarly, we consider an another cubic map fν(p) =
νp(1− p)2, where ν ∈ [0, 7.2] and p ∈ [0, 1]. Figure 11 shows
the functional plot for the different parameter values of ν.
Taking ν = 1, 3, 5 and 7.2 the orbit of iteration pn ∈ [0, 1].
But as the value of parameter ν is approached through 7.2
the functional plot of the map approaches outside the closed
interval [0, 1] as shown in Figure 11. Further, the Figure 12
shows that the functional plot of the higher order iterations
such as S3(p), S2(p) and S(p) also lies in [0, 1] for each
ν ∈ [0, 7.2]. But as ν approaches beyond 7.2 the functional
plot of higher order tends to ±∞ as n → ∞ as shown in
Figure 13. Moreover, from the bifurcation plot, Figure 14 it
is clear that for ν > 7.2 we obtain a compact invariant set
Λα,ν in which the function iteration approaches beyond the
closed interval [0, 1], that is, Sn

α,ν([0, 1]) ⊃ [0, 1]. Hence Λα,ν
is hyperbolic set for ν > 7.2.

Remark 5. It is observed that for ν ∈ [0, 7.2] the functional
iteration Sn

α,ν([0, 1]) ⊂ [0, 1] and for ν > 7.2, Sn
α,ν([0, 1]) ⊃

[0, 1]. Further, for ν > 7.2, it is also determined that the
interval of recursive sequence Sn

α,ν(p) is not same as the
interval of an initiator p ∈ [0, 1] as shown in Figures 11-14.
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CONCLUSION
In this article, a two-step superior feedback approach is es-
tablished to examine the hyperbolicity and the stabilization
for one-dimensional chaotic maps. Throughout the study, a
few mathematical results are derived and experimental sim-
ulations are carried out. Thus, we conclude the following
results:

• In Section 3 the superior hyperbolic notions for the
chaotic maps are derived using superior system. Def-
inition 1, for the hyperbolic fixed and periodic states
is introduced followed by the Example 1 and 2 for the
chaotic maps. Further, the numerical simulations are
also presented in each case.

• The hyperbolic control results for fixed and periodic
state are described. Theorem 1, presents the stability in
hyperbolic fixed states and Theorem 2 determines the
stability in periodic states.

• In Section 4, the property of hyperbolic set is described
using experimental analysis of the quadratic and cubic
type maps in superior system. Moreover, it is studied
that for the chaotic map νp(1− p) the invariant sets
Λα,ν is hyperbolic for ν > 4.22 and for the cubic map
νp(1− p)2 is hyperbolic for ν > 7.2.

Further, it is emphasized that the hyperbolic property in
superior system may lead to a strong interest in nonlinear
systems. In the next article, we will present some applica-
tions on hyperbolicity.
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