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Abstract 
 

This study aimed to compare unmanned aerial vehicle (UAV) based real-time kinematic (RTK) and post-processing 

kinematic (PPK) methods via five approaches: an RTK-CORS method (M1), a short-baseline PPK method obtaining 

corrections from a GNSS base station (M2), and three long-baseline PPK methods that obtained corrections from the 

three Turkish RTK-CORS network TUSAGA-Aktif reference stations (M3: IZMI, M4: CESM, and M5: KIKA). The 

comparison was based on the accuracy of the corrected camera positions, the average error of the camera locations 

computed in the photo-alignment and optimization process, georeferencing errors of the models via nine GCPs based 

on four scenarios, and Root Mean Square (RMS) errors in the Z-direction for different surface types (i.e. roads, 

shadows, shrubs, boulders, trees, and ground). For the surface types of “ground”, “roads”, and “shrubs”, RMS error 

rates were obtained 10 cm lower than that of other surface types in all methods except M4. The greatest differences 

were obtained over trees and shadowed areas. The conclusion of these comparisons was that the lowest RMS error 

rate was determined on a solid textured surface. The consideration of mean RMS error regardless of surface type in 

such model comparisons is misleading. 
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1. Introduction 

In last decades, unmanned aerial vehicle (UAV) 

systems have been extensively applied in scientific and 

practical areas as an alternative remote sensing platform 

(Nebiker et al., 2008; Wallace et al., 2012) and/or a new 

photogrammetric measurement tool (Eisenbeiss, 2009). 

Today, UAVs can be seen in a large variety of different 

disciplines and specific applications including 

agriculture (Honkavaara et al., 2013; Tokekar et al., 

2016; Radoglou-Grammatikis et al., 2020), forestry 

(Lisein et al., 2013; Yuan et al., 2015; Wallace et al, 

2016; Thiel and Schmullius, 2017; Akgul et al., 2018; 

Gülci, 2019; Jurjevic et al., 2020), natural hazard 

monitoring and management (Giordan et al., 2017; 

Gomez and Purdie, 2016), landslide evaluation 

(Niethammer et al., 2009; Carvajal et al., 2011; Lucieer 

et al., 2014; Turner et al., 2015; Lindner et al., 2016; 

Mateos et al., 2017; Eker et al., 2018; 2021), snow and 

avalanche studies (Vander Jagt et al., 2015; Bühler et al., 

2016; De Michele et al., 2016; Adams et al., 2018; Eker 

et al., 2019), flood monitoring and mapping (Abdelkader 

et al., 2013; Langhammer et al., 2017; Annis et al., 

2020), rockfall modeling and mapping (Saroglu et al., 

2018), and archaeology (Fernández-Hernandez et al., 

2015; Campana, 2017). The frequent use of this 

technology is mostly due to the advantages of UAV 

systems (Torresan et al., 2017) such as: (1) low material 

and operational costs and high-intensive data collection, 

(2) flexibility in hosting different kinds of sensors that 

can be selected depending on the parameter under 

investigation, (3) control over timing of flights enabling 

the user to optimize the exact time, and (4) data 

acquisition with very high spatial resolution. Along with 

their benefits given above, low-altitude small-UAV 

systems have some limitations such as flight endurance 

and data acquisition over large areas. They have limited 

payload capacities and require the development of 

massive data processing capabilities in photogrammetric 

modeling depending on the size of the surveying area 

(Matese et al., 2015).  

Remote sensing requires a UAV system that consists 

of an aircraft component, sensor payload, and ground 

control station (Watts et al., 2012). The aircraft 

component, which can be divided into different 

categories depending on the technical structure and 

flying properties (Watts et al., 2012), is equipped with 

global navigation satellite system (GNSS) receivers, 

inertial measuring units (IMU), and other sensors, 

allowing autonomous navigation via autopilot along 

flight paths to guarantee sufficient image coverage and 

overlap, and enabling the user to estimate the expected 

product accuracy prior to the flight (Eisenbeiss, 2009; 

Remondino et al., 2011; Colomina and Molina, 2014). 

These low-altitude small-UAV systems generally carry 

lightweight sensor payloads such as consumer digital 

cameras, or combinations of imaging systems. These 
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imaging systems can include the visible spectrum, 

infrared and the thermal spectrum (i.e., multi- or 

hyperspectral sampling), miniature radar, passive 

microwave radiometers, and light-detection and ranging 

(LIDAR) sensors (Colomina and Molina, 2014; Sugiura 

et al., 2007; Evaerts, 2015).  

Photogrammetry using UAVs is based on high-

resolution overlapped images used to create digital 

elevation models (DEMs) and orthophotos by applying 

structure-from-motion (SfM) techniques and Multiview 

Stereopsis (MVS). The SfM is a photogrammetric 

method for creating 3D (three-dimensional) models of a 

feature or topography from overlapping 2D photos taken 

from many locations and orientations in order to 

reconstruct the photographed scene (Shervais, 2015). 

The SfM process starts by acquiring photographs with 

sufficient overlap (e.g., 80-90%) from multiple positions 

and/or angles (Lucieer et al., 2014). The MVS is a 

technique that is used for densification of the resulting 

point cloud from SfM. In fact, SfM does not require 

information on the position of cameras or multiple 

control points prior to image acquisition because the 

position, orientation, and geometry are reconstructed 

using automatic matching of features in multiple images 

(Westoby et al., 2012). However, the resulting model has 

no proper scale unless spatial reference information is 

used. The absolute orientation needed for the solution of 

such scaling problems of the model can be achieved in 

two ways: using ground control points (GCPs) or GNSS-

tagged imagery (Tomaštík et al., 2019).  

Georeferencing of UAV-based models is mostly 

carried out using GCPs surveyed with terrestrially based 

methods (GPS/GNSS or tachymetry). The use of GCPs 

for georeferencing of models provides reliable 

positioning; however, the number and spatial distribution 

of the GCPs have an important effect on model accuracy 

(Sanz-Ablanedo et al., 2018; Zhang et al., 2019). In 

addition, the use of GCPs allows improved camera self-

calibration, and reduces the magnitude of dome errors 

(James and Robson, 2014; Harwin et al., 2015; James et 

al., 2017). Agüera-Vega et al. (2017) assessed UAV-

based model accuracy using a varying number of GCPs 

(4 ‒ 20), and they concluded that both horizontal and 

vertical accuracy increased in parallel with the number 

of GCPs used. Moreover, Eker et al. (2019) generated 

190 artificial GCPs from the first 3D model belonging to 

a time series of UAV flights in order to increase model 

accuracy (i.e., avoiding bending or doming effects) and 

to obtain well-registered models. Even though an 

increased number of GCPs and their regular spatial 

distribution have a positive effect, surveying them is 

labor-intensive and sometimes risky amid steep slopes 

(Zhang et al., 2019). When the study area is situated in 

mountainous areas with dangerous, hard-to-access steep 

slopes, GCP surveys can sometimes be risky because of 

potential hazards such as landslides, rockfalls, etc. In 

addition, dense forests do not facilitate the surveying of 

regularly distributed GCPs over the flight area because 

the tree canopies cover the GCPs in the successive 

images, even though the GCPs are marked in small gaps 

within the forest. 

As previously studies indicated, tagging images with 

position information from GNSS receivers (i.e., direct 

georeferencing based on GNSS) integrated into UAV 

systems is an alternative method for surveying GCPs. 

The utilization of the direct georeferencing approach has 

the potential of avoiding or mitigating the need for GCPs. 

Most of the common UAV platforms preferred in 

mapping applications have a GNSS receiver that can be 

used to add positional information to the exchangeable 

image file (EXIF) metadata of the images acquired 

during flight (Tomaštík et al., 2019). However, the 

accuracy of the typical single-frequency GNSS receivers 

on the UAV platforms is in the range of meters. 

Consequently, when high-accuracy models are 

demanded, the positional information obtained from 

such GNSS receivers is insufficient. At present, 

differential GNSS solutions (e.g., multi-frequency and 

multi-constellation GNSS receivers) have been used that 

enable the accurate measurement of the UAV–camera 

position and orientation by allowing measurement of the 

position parameters at the centimeter level (Rehak et al., 

2013). This high-precision direct georeferencing 

involves the same strategies as those for traditional 

geodetic GNSS receivers, i.e., real-time kinematic 

(RTK) and post-processing kinematic (PPK) 

technologies (Taddia et al., 2020). For the application of 

differential GNSS solutions, two receivers are required: 

a base station and a rover moving between points of 

interest (Hofmann-Wellenhof et al., 2007). The base 

station broadcasts its well-known location together with 

the code and carrier measurements, and thus, the rover is 

able to fix the phase ambiguities and determine its 

location relative to the base with high precision. In RTK 

mode, the position information of the camera is 

determined with accuracy in the range of centimeters in 

real time as the drone flies. In PPK mode, as an 

alternative to RTK, all calculations required for position 

correction are made post flight. The GNSS observations 

are stored in a log file in Receiver Independent Exchange 

(RINEX) format (Taddia et al., 2020).  

For differential GNSS solutions, however, it is not 

necessary to have a second receiver as a local base all the 

time. Alternatively, local services sharing base 

corrections over the Internet via NTRIP (Networked 

Transport of RTCM via Internet Protocol) technology 

can be a good option. In Turkey, an RTK-CORS network 

of continuously operating reference stations known as 

the “TUSAGA-Aktif” project (completed between 2006 

and 2009) was established by Istanbul Kultur University 

in association with the General Directorate of Land 

Registration and Cadastre of Turkey, and the General 

Command of Mapping of Turkey. It also became under 

the sponsorship of the Turkish Scientific and Technical 

Research Agency (TUBITAK) (Mekik et al., 2011). The 

Turkish RTK-CORS network was established with a 
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total of 146 reference stations having baselines ranging 

from 70 to 100 km that, along with the control centers, 

provide RTK GPS positioning for 24 h/day extending 

over Turkey and Northern Cyprus (Yıldırım et al., 2011). 

Positioning corrections are calculated by the reference 

stations and sent to users from control centers via the 

Internet. In addition, for PPK positioning, RINEX data is 

collected by the reference stations at 1-s or 30-s time 

intervals, along with precise ephemeris data collected 

automatically by the system (Mekik et al., 2011).  

The present study evaluated the accuracy of UAV 

RTK/PPK methods in the mapping of different surface 

types including roads, shadows, shrubs, boulders, trees, 

and ground. For this purpose, UAV data was acquired 

from two flights (one in RTK mode and the other in PPK 

mode) conducted using the same flight plan. In the RTK 

mode, base corrections were acquired via NTRIP 

technology. In the PPK mode, base corrections were 

acquired as RINEX data collected using both a local base 

reference station and the three TUSAGA-Aktif reference 

stations closest to the study area (IZMI, CESM, and 

KIKA). In addition, the georeferencing error rates of 

models were compared based on different scenarios in 

order to evaluate the accuracy of the RTK/PPK methods 

without GCPs, and to determine whether using some 

GCPs is still a requirement for improving accuracy. 

 

2. Material and Methods 

2.1 Study area 

The study was carried out over a forest area located 

in Bornova Forest Enterprise (İzmir Regional 

Directorate of Forestry in western Turkey) (Figure 1) 

covering 31 ha land. In WGS 1984 World Mercator 

coordinate system, the left and upper coordinates in 

decimal degrees of the area are 27.116 Lon and 38.554 

Lat, and the right and lower coordinates are 27.124 Lon 

and 38.547 Lat, respectively. The mean altitude of the 

study area is 553 m AMSL (above mean sea level). 
 

 
Figure 1. Study area: Location (Top), “TUSAGA-Aktif” reference stations (CESM, IZMI, and KIKA) and their proximity to 

the study area (Middle), and Surveyed GCPs (Bottom)
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2.2. UAV flights and data acquisition 

The DJI Phantom 4 RTK, a small four-propeller 

drone with an RTK module, was used for UAV data 

acquisition in the study (Figure 2). The aircraft is 

equipped with a 20-megapixel camera with a 1-inch 

CMOS sensor. The lens has a viewing angle of 84° with 

f/2.8 – f/1.1 focal length and a focus range of 1 m ‒ ∞. 

Because of the high-resolution sensor, the UAV system 

can achieve a ground sample distance (GSD) of 2.74 cm 

at 100-m flight altitude. The system applies a rigorous 

calibration process to every single camera lens, with 

parameters saved in the metadata of each image. Thus, it 

allows each user to adjust the post-processing software 

individually. The aircraft is equipped with a GNSS 

module that enables reception of GPS (L1/L2), 

GLONASS (L1/L2), and Galileo (E1/E5a) satellites. 

This UAV system is capable of directing georeferencing 

of the images in real time with centimeter-level 

positioning accuracy. In addition, the UAV system stores 

satellite observation data to be used for PPK. For RTK 

mode, the DJI Phantom 4 RTK can be used together with 

the D-RTK 2 High Precision GNSS Mobile Station for 

direct georeferencing, or it can connect to the Internet to 

receive corrections using NTRIP technology via a 4G 

dongle or WiFi hotspot. 

The present study aimed to evaluate the accuracy of 

the UAV-RTK and PPK methods in the mapping of 

different surface types. To this purpose, two UAV flights 

were carried out on 20 August 2020: one flight in RTK 

mode, and the other in PPK mode. The UAV system 

provides users with a DJI GS RTK app and a remote 

controller with a built-in screen, which presents an ultra-

bright, 5.5-inch HD display. Users also have a 

streamlined control scheme for surveying missions and 

other data acquisition scenarios. In addition, they can 

also import KML/KMZ files to optimize the workflow 

for their missions. In this study, the flight plan was 

carried out in photogrammetry (3D) mode, allowing 

topography-adaptive flights. The SRTM 30-m digital 

elevation data was downloaded and then imported in 

“geotiff” format. The size of the flight area was small for 

a one-battery flight (31 ha); therefore, the mission image 

acquisition was planned from 120 m above ground level 

(a.g.l). Both forward and side image overlapping rates 

were set at 90%. Before the UAV flights were carried 

out, nine GCPs were surveyed at centimeter accuracy 

using the CHCN X91 GNSS receiver to ensure that the 

images to be acquired would be clearly visible (Figure 

1). They were distributed randomly over area. For image 

acquisition in RTK mode, a 4G USB dongle was used to 

receive position corrections from the TUSAGA-Aktif 

reference stations using NTRIP technology via the 

Internet connection. Because a D-RTK 2 High-Precision 

GNSS Mobile Station was not available, this method will 

be referred to hereafter as RTK-CORS. 

For image acquisition in PPK mode, first the “RTK 

function” was turned off. The UAV flight was then 

carried out with the same flight plan. When the UAV was 

in the air, the rover observation file ending with 

“Rinex.obs” was saved directly onto the SD memory 

card. In addition, a base station file (RINEX observation 

data) was needed. Therefore, the CHCN X91 GNSS 

receiver was used as the solution for the short-baseline 

PPK positioning. The GNSS receiver was fixed with a 

tripod at a location with known coordinates where the 

GNSS satellite signals were not blocked by any large 

obstacles such as mountains or trees, and surveying was 

initiated in static mode at an antenna height of 193 cm. 

Since the RINEX observation data needed to cover the 

full period of the flight, the static survey was carried out 

for a time period lasting more than one hour, covering at 

least 15 min both before and after the UAV flight. The 

static survey was saved in the internal memory of the 

receiver as a log file with an extension of “.HCN”, which 

is a specific file format of used GNSS receiver, which 

was converted to RINEX observation data. CHCData 

software was used to accomplish the conversion of the 

base log file to RINEX (version 3.02). In addition, for 

the long-baseline PPK positioning solution, RINEX data 

(1-second interval) for the same date of the flight were 

obtained from the three TUSAGA-Aktif reference 

stations closest to the study area. These reference stations 

are officially listed as IZMI, CESM, and KIKA in the 

TUSAGA-Aktif network, and their proximity to the 

study area is 17.7 km, 70.7 km, and 78.1 km, 

respectively. The coordinates of these reference stations 

were obtained from the official TUSAGA-Aktif website. 

The correction of camera positions for the images 

acquired in PPK mode was made using CHC Geomatics 

Office 2 software (Figure 3). The rover and base 

observation files, i.e., the RINEX files ending with 

“PPKRAW” for the rover, “HCN” for the GNSS base 

station, and “*.20o” for the TUSAGA-Aktif reference 

stations (IZMI, CESM, KIKA), were first imported, and 

following the process, the corrected camera locations 

were saved as a CSV file. 
 

 

  

Figure 2. UAV System: DJI Phantom 4 RTK (Top), CHCN 

X91 GNSS receiver (Bottom) used in the study 
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Figure 3. Interface of CHC Geomatics Office 2 software  

 

2.3. Photogrammetric data processing 

The UAV-based images were processed in the 

Agisoft Metashape Professional using a standard 

workflow. The images acquired in RTK-CORS mode 

provided camera location information (latitude, 

longitude, altitude, and accuracy) tagged by the UAV 

system to EXIF data. The camera positions of the images 

taken in PKK mode were corrected using the data from 

the GNSS, IZMI, CESM, and KIKA fixed stations and 

recorded as a CSV file for each station. Later, the images 

and corrected location information were imported from 

these files to the Metashape software and image 

orientation was performed. The images were aligned in 

the “Reference pre-selection” mode. The option of 

accuracy was selected as “medium” and the limit key 

points and tie points were set as 40,000 and 4000, 

respectively. After the images were aligned, camera 

positions were optimized in four scenarios for each 

method: (1) using only cameras without GCPs, (2) using 

cameras with one GCP, (3) using cameras with two 

GCPs, and (4) using cameras with three GCPs. The 

remaining GCPs were then used as checkpoints for the 

accuracy calculation and a high-quality reconstruction of 

the dense point cloud was conducted. The orthomosaics 

and DEMs were created in photogrammetric workflow 

of Metashape software, and exported with spatial 

resolution of 5 cm and 10 cm, respectively. 

 

2.4. Evaluating accuracy of the UAV RTK/PPK 

methods  

In the comparison of the UAV RTK/PPK methods 

(Table 1), first, the accuracy of the corrected camera 

positions in X (easting), Y (northing), and Z (altitude) 

was used. In addition, the average error rates of the 

camera locations computed in the photo alignment and 

optimization process for X, Y, Z, XY, and in total were 

compared. In here, X error (m) is root mean square 

(RMS) error for X coordinate for all the cameras, Y error  

(m) is RMS error for Y coordinate for all the cameras, 

XY error (m) is RMS error for X and Y coordinates for 

all the cameras, Z error (m) is RMS for Z coordinate for 

all the cameras, and Total error (m) is RMS error for X, 

Y, Z coordinates for all the cameras, which is calculated 

by following equation (Agisoft Metashape User Manual, 

2019): 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 = 

√∑ [(𝑋𝑖,𝑒𝑠𝑡 − 𝑋𝑖,𝑖𝑛)
2

+ (𝑌𝑖,𝑒𝑠𝑡 − 𝑌𝑖,𝑖𝑛)
2

+ (𝑍𝑖,𝑒𝑠𝑡 − 𝑍𝑖,𝑖𝑛)
2

]𝑛
𝑖=1 /𝑛              (1) 

where 𝑋𝑖,𝑖𝑛 is input value for X coordinate for i camera 

position, 𝑋𝑖,𝑒𝑠𝑡 is estimated value for X coordinate for i 

camera position, 𝑌𝑖,𝑖𝑛 is input value for Y coordinate for 

i camera position, 𝑌𝑖,𝑒𝑠𝑡  is estimated value for Y 

coordinate for i camera position, 𝑍𝑖,𝑖𝑛 is input value for 

Z coordinate for i camera position, and 𝑍𝑖,𝑒𝑠𝑡 is estimated 

value for Z coordinate for i camera position. 

 
Table 1. UAV RTK/PPK methods in the comparison 

No Methods Definition 
1 M1 RTK-CORS method 
2 M2 PPK method using GNSS base 

station data (PPK-GNSS) 
3 M3 PPK method using IZMI reference 

station data (PPK-IZMI) 
4 M4 PPK method using CESM reference 

station data (PPK-CESM) 
5 M5 PPK method using KIKA reference 

station data (PPK-KIKA) 
 

Georeferencing error rates of the models (X, Y, Z, 

and total) were also compared using nine GCPs 

surveyed. These error rates are RMS error for X, Y, Z 

coordinates for a GCP location/check point (Agisoft 

Metashape User Manual, 2019). For this process, four 

scenarios were carried out for both the RTK and PPK 

methods: (1) using only cameras without any GCPs, (2) 

using cameras with one GCP, (3) using cameras with two 

GCPs, and (4) using cameras with three GCPs. The aim 



 Eker et al. 

17 
 

was to evaluate the accuracy of the RTK/PPK methods 

without using GCPs, and to determine the necessity of 

using some GCPs to improve accuracy. 

In addition, differences in the Z direction of the 

DEMs were evaluated by calculating RMS error rates for 

different surface objects over six different surface types 

(roads, shadows, shrubs, boulders, trees, and ground). 

For this aim, ArcGIS 10.6 software was used to manually 

create 480 artificial GCPs with a regular distribution for 

each surface type. In RMS error calculation, the DEMs 

generated from all PPK methods were compared to the 

DEM generated using the RTK method. In addition, the 

DEMs generated via the PPK methods were also 

compared to the DEM generated via the PPK method 

based on the GNSS base station.  

 

3. Results and Discussion 

In this study, two UAV flights (one in RTK and one 

in PPK) were carried out using the same flight plan at the 

same altitude (120 m a.g.l.), with 186 images acquired in 

RTK mode and 192 images acquired in PPK mode. All 

camera positions were fixed when the base RINEX files 

from the GNSS receiver and the IZMI station were used. 

However, 182 cameras were fixed when the base RINEX 

file from the CESM station was used, whereas 190 

cameras were fixed when the base RINEX file from the 

KIKA station was used. In the photogrammetric analysis 

of all RTK and PPK methods, only two images could not 

be aligned. In order to achieve centimeter-level accuracy 

with the UAV system, a high-quality, multi-frequency 

GNSS receiver mounted to a platform is needed. The 

GNSS receiver must at the least handle both L1 and L2 

frequencies. The level of absolute accuracy depends on 

the correction data from the static base-station logging. 

If the base station is close to the rover (i.e., UAV 

platform), the amount of time necessary to ensure quality 

positioning is generally reduced, thus enabling better 

correction data to be logged by the GNSS receiver on the 

platform (Rydlund and Densmore, 2012). According to 

White Paper on drone survey accuracy (White Paper, 

2018), every 10 km in distance adds 1 cm to the RMS 

error rate, and vertical accuracy suffers more than 

horizontal accuracy. In addition to the distance between 

base station and rover, elevation difference has an 

important effect on accuracy. Accuracy will be worse 

with elevation differences of more than 500 m (White 

Paper, 2018). In the RTK/PPK methods, when the base 

station is set up on an unknown point, the GNSS receiver 

should log the GPS data for a more than 3 h. If the base 

station is established on a known point, the absolute 

accuracy will depend on how accurately the location of 

the base station was measured. In the present study, both 

RTK and PPK methods were based on corrections from 

base stations where locations were accurately known. 

Another important requirement in achieving centimeter-

level absolute accuracy is the time interval of the 

continuous logging. For the highest accuracy, a 1-second 

time interval is best. However, logging at less frequent 

intervals of more than 15 s is not recommended (White 

Paper, 2018). In the present study, a static survey using 

a base GNSS receiver was conducted at 2-s time 

intervals, whereas the RINEX files obtained from the 

TUSAGA-Aktif reference stations recorded continuous 

logging at 1-s time intervals. In the present study, the 

three TUSAGA-Aktif reference stations selected as the 

closest were located 17.7 km (IZMI), 70.7 km (CESM), 

and 78.1 km (KIKA) from the study area. The elevation 

differences were 548 m (IZMI), 546 m (CESM), and 362 

m (KIKA).  

Based on previous explanations regarding the effects 

of parameters on accuracy, as expected, the PPK-GNSS 

(M2) provided the best accuracy in camera locations, 

whereas the PPK-CESM (M4) provided the worst (Table 

2, Figure 4). The greatest deviations in accuracy values 

for all directions (X, Y, and Z) resulted from M4, where 

both the distance to the rover and the elevation difference 

were beyond the range of recommended values. The M1 

method resulted in worse accuracy in the Z direction 

compared to the accuracy in the X and Y directions, 

whereas all other methods resulted in better accuracy in 

the Z direction, especially in comparison with accuracy 

in the Y direction.  

The lowest error average of the computed camera 

locations resulted from all scenarios of the M2, as 

expected (Table 3). Although the M1 resulted in lower 

errors in both X and Y in comparison to the M3, errors 

in Z were higher than with the M3. However, the total 

error of the M3 method was also lower than that of the 

M1. All scenarios of the M4 resulted in the highest error 

rates in computing camera locations. All scenarios of the 

M5 method resulted in lower error rates than the M4. In 

addition, the use of GCPs together with cameras in the 

photo alignment and optimization processes did not have 

a significant impact on the average error of the computed 

camera locations in the photogrammetric analysis.  

When the models were compared in terms of 

georeferencing errors based on checkpoints (GCPs not 

used together with cameras in the process of optimizing 

camera positions), the lowest total RMS error rates were 

obtained with all scenarios of M2 (Table 4). The results 

showed that the short-baseline PPK method yielded the 

best results compared to all the other methods used in the 

present study. Even though errors in the Z direction for 

the M2 were lower than those in the Y direction, 

georeferencing errors in the Z direction were higher than 

the errors in both X and Y directions. For all methods 

except the M2, using GCP together with cameras enabled 

reduction of errors, especially in the Z direction. Using 

GCPs together with cameras did not provide significant 

reduction of errors in either the X or Y directions. 

Moreover, using GCPs together with cameras did not 

lower total georeferencing errors under 10 cm for the 

long-baseline methods (M4 and M5). When more than 

two GCPs were used together with the cameras, similar 

rates were obtained with the M1, M2, and M3 for errors 

in the Z direction. 
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Table 2. Camera position accuracy with RTK and PPK methods 

Methods Statistics X (m) Y(m)  Z(m) 

M1 

Min 0.0116 0.0089 0.0167 

Max 0.0315 0.0176 0.0438 

Mean 0.0145 0.0138 0.0261 

SD 0.0015 0.0010 0.0026 

M2 

Min 0.0057 0.0074 0.0057 

Max 0.0095 0.0109 0.0087 

Mean 0.0065 0.0084 0.0066 

SD 0.0005 0.0005 0.0005 

M3 

Min 0.0149 0.0198 0.0138 

Max 0.0213 0.0257 0.0178 

Mean 0.0164 0.0209 0.0147 

SD 0.0008 0.0008 0.0006 

M4 

Min 0.0222 0.0295 0.0227 

Max 0.0723 0.0681 0.0387 

Mean 0.0366 0.0414 0.0288 

SD 0.0146 0.0090 0.0037 

M5 

Min 0.0229 0.0302 0.0234 

Max 0.0350 0.0496 0.0381 

Mean 0.0267 0.0359 0.0273 

SD 0.0025 0.0034 0.0024 

 

 
Figure 4. Camera position accuracy obtained with RTK and PPK methods 
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Table 3. Average error rates of computed camera locations in photogrammetric analysis of UAV data  

Methods Baseline 

(Horizontal) 

(km) 

Baseline 

(Vertical) 

(m) 

X  

Error 

(cm) 

Y  

Error 

(cm) 

Z  

Error 

(cm) 

XY  

Error 

(cm) 

Total 

Error 

(cm) 

M1 

Unknown Unknown 

0.23 0.27 0.86 0.35 0.93 
M1 + 1 GCP 0.23 0.27 0.89 0.36 0.95 
M1 + 2 GCP 0.23 0.27 0.88 0.36 0.95 
M1 + 3 GCP 0.23 0.27 0.88 0.36 0.95 

M2 

0.2 <25 

0.06 0.11 0.15 0.12 0.19 
M2 + 1 GCP 0.06 0.11 0.15 0.12 0.19 
M2 + 2 GCP 0.06 0.11 0.15 0.12 0.19 
M2 + 3 GCP 0.06 0.11 0.15 0.12 0.19 

M3 

17.7 548 

0.32 0.52 0.45 0.61 0.75 
M3 + 1 GCP 0.32 0.52 0.45 0.61 0.76 
M3 + 2 GCP 0.32 0.52 0.48 0.61 0.78 
M3 + 3 GCP 0.32 0.52 0.48 0.61 0.78 

M4 

70.7 546 

2.92 2.63 4.62 3.92 6.06 
M4 + 1 GCP 3.01 2.90 4.73 4.18 6.31 
M4 + 2 GCP 2.95 3.02 4.80 4.22 6.40 
M4 + 3 GCP 3.07 2.98 4.83 4.28 6.45 

M5 

78.1 362 

0.89 1.14 1.41 1.42 2.01 
M5 + 1 GCP 0.86 1.18 1.42 1.46 2.03 
M5 + 2 GCP 0.86 1.21 1.42 1.48 2.05 
M5 + 3 GCP 0.87 1.23 1.42 1.51 2.07 

 

Table 4. Georeferencing error rates of models based on checkpoints 

Methods Baseline 

(Horizontal) 

(km) 

Baseline 

(Vertical) 

(m) 

Number of 

Check- 

points 

X  

Error  

(cm) 

Y  

Error  

(cm) 

Z  

Error  

(cm) 

XY  

Error  

(cm) 

Total  

Error  

(cm) 

M1 

Unknown Unknown 

9 2.38 2.34 9.43 3.34 10.01 
M1 + 1 GCP 8 1.92 2.02 6.09 2.79 6.69 
M1 + 2 GCP 7 2.05 2.31 6.22 3.09 6.95 
M1 + 3 GCP 6 1.99 1.89 6.21 2.75 6.79 

M2 

<0.25 <25 

9 1.72 2.91 4.81 3.38 5.88 
M2 + 1 GCP 8 1.84 1.49 4.63 3.57 5.85 
M2 + 2 GCP 7 2.21 2.71 4.66 3.50 5.82 
M2 + 3 GCP 6 2.38 2.49 5.30 3.44 6.32 

M3 

17.7 548 

9 5.82 5.65 10.31 8.12 13.12 
M3 + 1 GCP 8 5.03 5.62 7.34 7.54 10.53 
M3 + 2 GCP 7 5.11 6.06 5.67 7.93 9.75 
M3 + 3 GCP 6 5.47 6.27 6.52 8.32 10.57 

M4 

70.7 546 

9 10.54 20.65 53.84 23.19 58.62 
M4 + 1 GCP 8 13.75 18.20 22.01 22.81 31.70 
M4 + 2 GCP 7 13.44 18.23 29.38 22.65 37.10 
M4 + 3 GCP 6 12.99 19.36 27.18 23.32 35.81 

M5 

78.1 362 

9 6.46 16.25 12.93 17.50 21.75 
M5 + 1 GCP 8 5.97 15.60 10.60 16.70 19.78 
M5 + 2 GCP 7 6.19 16.24 11.76 17.37 20.98 
M5 + 3 GCP 6 6.67 17.06 7.83 18.31 19.91 

Model accuracy obtained by photogrammetry depends 

on many factors, such as image quality, camera 

calibration, flight plan characteristics, the SfM 

algorithm, and surface texture and albedo (Zhang et al., 

2019). In the present study, two flights were carried out 

using the same platform from the same altitude with the 

same flight plan. For both flights, image quality values 

calculated during the photogrammetric process varied 

between 0.65 and 0.85. All image datasets from each 

method were processed using the same SfM algorithm. 

The remaining factor affecting model accuracy was 

assumed to be surface texture. Thus, in this study, the 

models were also compared by calculating RMS error 

rates in the Z direction for different surface objects such 

as roads, boulders, ground, shrubs, trees, and shadows. 

The surface type “road” is a man-made infrastructure 

with a certain geometry that may have a tarmacked or 

graveled surface. The surface type “boulder” refers to 

rocks of varying diameter and stones that are too large 

for a person to move. The type “ground” means a surface 

covered by bare earth, short grasses, or pebbles. 

Although boulders, roads, and ground are solid types of 

surface, shrubs and trees are not solid. They form hollow 

structures that have an important effect on 

photogrammetric modeling. First, the M1 method was 

considered as the reference data for comparing the PPK 

methods, and the M2 method was considered as the 

reference for comparing the short-baseline PPK method 

with the long-baseline PPK methods (Figure 5). 
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Figure 5. RMS errors (m) calculated from DEMs generated from methods using only cameras 

 

The M1 and M2 methods were chosen as reference 

because the lower error rates are expected from them 

relative to other long-baseline PPK methods. The RMS 

error rates were then calculated from the DEMs 

generated from the methods using only cameras. In other 

words, the GCPs were not used together with cameras in 

the process of optimizing the cameras, because the aim 

of use RTK/PPK methods in UAV photogrammetry is to 

eliminate the need of GCP. Lower RMS error rates were 

obtained for the surface types of “ground”, “roads”, and 

“shrubs” than for other types. For the surface type 

“trees”, the RMS error between the RTK and PPK 

methods was more than 15 cm. The lowest RMS error 

was 10 cm between M2 and M3 for the surface type 

“trees”. The RMS errors for “shadows” were similar to 

those for “trees”, since they are mostly located in gaps 

between trees. Because of the irregular, complex, and 

hollow-shaped tree crowns, the RMS error values were 

higher than for other surface types. An elevation profile 

of the surface type “boulders” was drawn for each of the 

RTK/PPK methods (Figure 6). According to this profile, 

in the DEM generated by the M1 method, the elevations 

modeled were mostly higher than with the other 

methods. Even though a similar pattern in the elevation 

profiles of the surface objects was observed, important 

fluctuations in the Z values were seen in the profiles of 

objects. These caused an increase in RMS error among 

the models. This was caused by shifts in the X and Y 

directions that prevented the elevation profile of the 

same line to be drawn between two points located in 

exactly the same position over the reference DEM 

(Figure 7). Elevation profiles are also given for other 

surface types: roads in Figure 8, ground in Figure 9, and 

trees in Figures 10 and 11. 

 

 
Figure 6. Elevation profile of a boulder  
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Figure 7. Position of line between two points (A and A’) drawn over the reference orthomosaic (M1) and its locational 

difference on other models (M2, M3, M4, and M5) 

 

 
Figure 8. Elevation profile of a road 

 

 
Figure 9. Elevation profile of the ground  
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Figure 10. Elevation profile of trees  

 

 
Figure 11. Elevation profile of a single tree  

 

4. Conclusion  
The utilization of direct georeferencing approaches 

(e.g., RTK and PPK) using a GNSS receiver integrated 

into a UAV provides the potential for avoiding/mitigating 

the need for GCPs. In the present study, we tested UAV-

PPK and UAV-RTK methods by comparing them in the 

mapping of different surface types. In this study, five 

methods were compared: (1) RTK-CORS, (2) PPK using 

GNSS base station data (PPK-GNSS), (3) PPK using 

IZMI reference station data (PPK-IZMI), (4) PPK using 

CESM reference station data (PPK-CESM), and (5) PPK 

using KIKA reference station data (PPK-KIKA). The 

study concluded that the lowest error rate in the corrected 

camera locations via the differential GNSS solution was 

obtained by the PPK-GNSS method, as expected. 

However, it was determined that both RTK-CORS and 

PPK-IZMI provided similar accuracy rates since both 

methods used the same reference station to acquire 

corrections. All methods were found to provide camera 

position accuracy calculated as less than 5 cm. In addition 

to positional corrections of the cameras by differential 

GNSS solutions, the error rates of camera locations 

computed via the alignment process in the 

photogrammetric analysis were within similar ranges. 

This study concluded that using GCPs together with 

corrected camera positions in the image alignment process 

did not significantly affect the error of the computed 

camera locations in the photogrammetric analysis. 

However, using GCPs could still have a significant impact 

on the georeferencing error of the models obtained via the 

photogrammetric process. This impact becomes 

especially important when long-baseline methods such as 

RTK-CORS and PPK methods use corrections obtained 

from TUSAGA-Aktif reference stations. In addition, the 

short-baseline PPK method using GNSS-based 

corrections was not significantly affected by using GCPs. 

It can be concluded that when long-baseline differential 

GNSS solutions are preferred, using GCPs remains a 
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necessity for the image alignment process in addition to 

their usage as checkpoints.  

In this study, the models generated using only image 

locations were also compared by calculating the RMS 

error rates in the Z direction for different surface objects 

such as roads, boulders, ground, shrubs, trees, and 

shadows. The model obtained via the RTK-CORS method 

was assumed as the reference in the first comparison, 

whereas the model obtained via the PPK-GNSS method 

was assumed as the reference in the second comparison. 

These comparisons concluded that the lowest RMS error 

rates were determined over solid-textured surfaces such as 

ground and roads. The greatest differences in RMS error 

rates were obtained over trees and shadowed areas. The 

study determined that in models generated by applying 

different methods, the error differences could vary greatly, 

within the range of 3‒23 cm, depending on the surface 

type modeled. Consequently, in such model comparisons, 

considering the mean RMS error regardless of surface 

type could be misleading. 
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