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Abstract

The purpose of this paper, is studying the existence and nonexistence of positive solutions to a class of a
following tripled system of fractional di�erential equations.

Dαu(ζ) + a(ζ)f(ζ, v(ζ), ω(ζ)) = 0, u(0) = 0, u(1) =
∫ 1
0 ϕ(ζ)u(ζ)dζ,

Dβv(ζ) + b(ζ)g(ζ, u(ζ), ω(ζ)) = 0, v(0) = 0, v(1) =
∫ 1
0 ψ(ζ)v(ζ)dζ,

Dγω(ζ) + c(ζ)h(ζ, u(ζ), v(ζ)) = 0, ω(0) = 0, ω(1) =
∫ 1
0 η(ζ)ω(ζ)dζ,

where 0 ≤ ζ ≤ 1, 1 < α, β, γ ≤ 2, a, b, c ∈ C((0, 1), [0,∞)), ϕ, ψ, η ∈ L1[0, 1] are nonnegative and f, g, h ∈
C([0, 1]× [0,∞)× [0,∞), [0,∞)) and D is the standard Riemann-Liouville fractional derivative.
Also, we provide some examples to demonstrate the validity of our results.
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1. Introduction

E. Karap�nar and coauthors obtained some �xed point results and applied them to proving the existence
and uniqueness of positive solutions for functional boundary value problem (see [1]-[17], [15], [26]). In recent
years, some systems of nonlinear fractional di�erential equations were examined by many authors, [18]-[25]
and other references. In [27], Su investigated some conditions for the existence of solutions for a coupled
system of two-point fractional boundary value problem.
In [31] the authors studied the existence and nonexistence of positive solutions to boundary values problem
for a coupled system of nonlinear fractional di�erential equations as follows:

Dαu(ζ) + a(ζ)f(ζ, v(ζ)) = 0, u(0) = 0, u(1) =
∫ 1
0 ϕ(ζ)u(ζ)dζ,

Dβv(ζ) + b(ζ)g(ζ, u(ζ)) = 0, v(0) = 0, v(1) =
∫ 1
0 ψ(ζ)v(ζ)dζ,

(1)

where 0 ≤ ζ ≤ 1, 1 < α, β ≤ 2, a, b ∈ C((0, 1), [0,∞)), ϕ, ψ ∈ L1[0, 1] are nonnegative and f, g ∈
C([0, 1]× [0,∞), [0,∞)) and D is the standard Riemann-Liouville fractional derivative.

In this paper we study the equations

Dαu(ζ) + a(ζ)f(ζ, v(ζ), ω(ζ)) = 0, u(0) = 0, u(1) =
∫ 1
0 ϕ(ζ)u(ζ)dζ,

Dβv(ζ) + b(ζ)g(ζ, u(ζ), ω(ζ)) = 0, v(0) = 0, v(1) =
∫ 1
0 ψ(ζ)v(ζ)dζ,

Dγω(ζ) + c(ζ)h(ζ, u(ζ), v(ζ)) = 0, ω(0) = 0, ω(1) =
∫ 1
0 η(ζ)ω(ζ)dζ,

(2)

where 0 ≤ ζ ≤ 1, 1 < α, β, γ ≤ 2, a, b, c ∈ C((0, 1), [0,∞)), ϕ, ψ, η ∈ L1[0, 1] are nonnegative and
f, g, h ∈ C([0, 1]× [0,∞)× [0,∞), [0,∞)) and D is the standard Riemann-Liouville fractional derivative.

De�nition 1.1. [28, 29] The Riemann-Liouville fractional derivative for a continuous function f is de�ned
by

Dνf(τ) =
1

Γ(n− ν)
(
d

dτ
)n

∫ τ

0

f(ζ)

(τ − ζ)ν−n+1
dζ, (n = [ν] + 1)

where the right-hand side is point-wise de�ned on (0,∞).

De�nition 1.2. [28, 29] Let [a, b] be an interval in R and ν > 0. The Riemann-Liouville fractional order
integral of a function f ∈ L1([a, b],R) is de�ned by

Iνaf(τ) =
1

Γ(ν)

∫ τ

a

f(ζ)

(τ − ζ)1−ν
dζ,

whenever the integral exists.

Lemma 1.3. (Nonlinear Di�erentiation of Leray-Schauder Type, [32]). Let E be a Banach space with C ⊂ E
closed and convex. Let U be a relatively open subset of C with 0 ∈ U and let T : U → C be a continuous and
compact mapping. Then either
(a) the mapping T has a �xed point in U ,
or (b) there exist u ∈ ∂U and λ ∈ (0, 1) with u = λTu.

Lemma 1.4. (Fixed-Point Theorem of Cone Expansion and Compression of Norm Type, See [33]). Let P be
a cone of real Banach space E, and let Ω1 and Ω2 be two bounded open sets in E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2.
Let operator A : P ∩(Ω2−Ω1) → P be completely continuous operator. Suppose that one of the two conditions
holds:
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(i1) ∥Au∥ ≤ ∥u∥, for all u ∈ P ∩ ∂Ω1; ∥Au∥ ≥ ∥u∥, for all u ∈ P ∩ ∂Ω2;

(i2) ∥Au∥ ≥ ∥u∥, for all u ∈ P ∩ ∂Ω1; ∥Au∥ ≤ ∥u∥, for all u ∈ P ∩ ∂Ω2.

Then A has at least one �xed point in P ∩ (Ω2 − Ω1).

Lemma 1.5. Assume that
∫ 1
0 ζ

ν−1ϕ(ζ)dζ ̸= 1. Then for any σ ∈ C[0, 1], the unique solution of boundary
value problem {

Dνu(ζ) + σ(ζ) = 0, 0 < τ < 1,

u(0) = 0, u(1) =
∫ 1
0 ϕ(ζ)u(ζ)dζ,

is given by

u(ζ) =

∫ 1

0
G1ν(ζ, τ)σ(τ)dτ

where

G1ν(ζ, τ) = G2ν(ζ, τ) +G3ν(ζ, τ), (ζ, τ) ∈ [0, 1]× [0, 1], (3)

with

G2ν(ζ, τ) =
1

Γ(ν)

{
ζν−1(1− τ)ν−1 − (ζ − τ)ν−1, 0 ≤ τ ≤ ζ ≤ 1,
ζν−1(1− τ)ν−1, 0 ≤ ζ ≤ τ ≤ 1

and

G3ν(ζ, τ) =
ζν−1

1−
∫ 1
0 ϕ(ζ)ζν−1dζ

∫ 1
0 G2ν(ζ, τ)ϕ(ζ)dζ.

We call G = (G1ν , G1ν′ , G1ν′′) the Green's functions of the boundary value problem (2).

Lemma 1.6. If
∫ 0
1 φ(τ)τ

ν−1dτ ∈ [0, 1), the function G1ν(τ, ζ) de�ned by (3) satis�es

(i1) G1ν(τ, ζ) ≥ 0 is continuous for all τ, ζ ∈ [0, 1], G1ν(τ, ζ) > 0 for all τ, ζ ∈ (0, 1);

(i2) G1ν(τ, ζ) ≤ G1ν(ζ) for each τ, ζ ∈ (0, 1), and
minτ∈[θ,1−θ]G1ν(τ, ζ) ≥ G1ν(ζ), where θ ∈ (0, 12) and

G1ν(ζ) = G2ν(ζ, ζ) +G3ν(1, ζ), Υν = θν−1.

We will discuss the existence of positive solutions for boundary value problem (2). First of all, we de�ne
the Banach space

X = {u(ζ)|u(ζ) ∈ C[0, 1]} endowed with the norm∥u∥X = max
ζ∈[0,1]

|u|,

Y = {v(ζ)|v(ζ) ∈ C[0, 1]} endowed with the norm∥v∥Y = max
ζ∈[0,1]

|v|,

Z = {ω(ζ)|ω(ζ) ∈ C[0, 1]} endowed with the norm∥ω∥Z = max
ζ∈[0,1]

|ω|.

For (u, v, ω) ∈ X × Y × Z, let ∥(u, v, ω)∥X×Y×Z = max{∥u∥X , ∥v∥Y , ∥ω∥Z}. Clearly,
(X × Y × Z, ∥(u, v, ω)∥X×Y×Z) is a Banach space. De�ne,
P = {(u, v, ω) ∈ X × Y ×Z|u(ζ) ≥ 0, v(ζ) ≥ 0, ω(ζ) ≥ 0}, then the cone P ⊂ X × Y ×Z. Let Jθ = [θ, 1− θ]
for θ ∈ (0, 12) and

K =

{
(u, v, ω) ∈ P,minτ∈Jθ u(τ) ≥ Υα∥u∥,
minτ∈Jθ v(τ) ≥ Υβ∥v∥,minτ∈Jθ ω(τ) ≥ Υγ∥ω∥

}
,

Kr =
{

(u, v, ω) ∈ K, ∥(u, v, ω)∥ ≤ r
}
,

∂Kr =
{

(u, v, ω) ∈ K, ∥(u, v, ω)∥ = r
}
.

From Lemma 1.5, we can obtain the following lemma.
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Lemma 1.7. Suppose that f(t, v, ω), g(t, u, ω) and h(t, u, v) are continuous, then (u, v, ω) ∈ X × Y × Z is
a solution of B.V.P (2) if and only if
(u, v, ω) ∈ X × Y × Z is a solution of the integral equations

u(ζ) =
∫ 1
0 G1α(ζ, τ)a(τ)f(τ, v(τ), ω(τ))dτ,

v(ζ) =
∫ 1
0 G1β(ζ, τ)b(τ)g(τ, u(τ), ω(τ))dτ,

ω(ζ) =
∫ 1
0 G1γ(ζ, τ)c(τ)h(τ, u(τ), v(τ))dτ.

Let T : X × Y × Z → X × Y × Z be the operator de�ned as

T (u, v, ω) =
( ∫ 1

0
G1α(ζ, τ)a(τ)f(τ, v(τ), ω(τ))dτ, (4)∫ 1

0
G1β(ζ, τ)b(τ)g(τ, u(τ), ω(τ))dτ,

∫ 1

0
G1γ(ζ, τ)c(τ)h(τ, u(τ), v(τ))dτ

)
=: (T1u(ζ), T2v(ζ), T3ω(ζ)), (5)

then by Lemma (1.7), the �xed point of operator T coincides with the solution of system (2).

Lemma 1.8. Let f(τ, v, v), g(τ, u, u) and h(τ, ω, ω) be continuous on
[0, 1]× [0,+∞)× [0,+∞) → [0,+∞), then T : P → P , T : K → K de�ned by (4) are completely continuous.

Proof. Since Lemma (1.8) is similar to Lemma (1.8) in [2] and [30] we omit the proof Lemma (1.8).

Theorem 1.9. Assume that a(τ), b(τ) and c(τ), are continuous on
(0, 1) → [0,+∞) and f(τ, v(τ), ω(τ)), g(τ, u(τ), ω(τ)) and h(τ, u(τ), v(τ)) are continuous on [0, 1]× [0,∞)×
[0,∞) → [0,∞), and there exist three positive functions m(τ), n(τ) and k(τ) that satisfy

(L1) f(τ, v2, ω2)− f(τ, v1, ω1) ≤ m(τ)max{|v2 − v1|, |ω2 − ω1|},
(L2) g(τ, u2, ω2)− g(τ, u1, ω1) ≤ k(τ)max{|u2 − u1|, |ω2 − ω1|},
(L3) h(τ, u2, v2)− h(τ, u1, v1) ≤ n(τ)max{|v2 − v1|, |u2 − u1|},

for τ ∈ (0, 1), v1, v2, ω1, ω2, u1, u2 ∈ (0,+∞).

Then system (2) has a unique positive solution if

ρ =

∫ 1

0
G1α(τ)a(τ)m(τ)dτ < 1,

θ =

∫ 1

0
G1β(τ)b(τ)k(τ)dτ < 1,

κ =

∫ 1

0
G1γ(τ)c(τ)n(τ)dτ < 1. (6)

Proof. For all (u, v, ω) ∈ P by the nonnegativeness ofG(ζ, τ) and a(τ), b(τ), c(τ), f(τ, v(τ), ω(τ)), g(τ, u(τ), ω(τ)),
h(τ, u(τ), v(τ)), we have
T (u, v, ω) ≥ 0. Hence, T (P ) ⊂ P . From Lemma 1.6, we obtain

∥T1v2 − T1v1∥ = max
ζ∈[0,1]

|T1v2 − T1v1|

= max
ζ∈[0,1]

|
( ∫ 1

0
G1α(ζ, τ)a(τ)[f(τ, v2(τ), ω(τ))− f(τ, v1(τ), ω(τ))])dτ |

≤
( ∫ 1

0
G1α(τ)a(τ)m(τ))dτ |∥v2 − v1∥ = ρ∥v2 − v1∥ (7)
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Similarly,

∥T2u2 − T2u1∥ ≤ θ∥u2 − u1∥ (8)

and

∥T3ω2 − T3ω1∥ ≤ κ∥ω2 − ω1∥ (9)

From (7), (8) to (9), we get

∥T (u2, v2, ω2)− T (u1, v1, ω1)∥ ≤ max(ρ, θ, κ)∥(u2, v2, ω2)− (u1, v1, ω1)∥

From Lemma (1.8), T is completely continuous, by Banach �xed point theorem, the operator T has a unique
�xed point in P , which is the unique positive solution of system (2). This completes the proof.

Theorem 1.10. Assume that a(τ), b(τ) and c(τ), are continuous on
(0, 1) → [0,+∞) and f(τ, v(τ), ω(τ)), g(τ, u(τ), ω(τ)) and h(τ, u(τ), v(τ)) are continuous on [0, 1]× [0,∞)×
[0,∞) → [0,∞), and satisfy

(L4) |f(τ, v(τ), ω(τ))| ≤ a1(τ) + a2(τ)max{|v(τ)|, |ω(τ)|},
(L5) |g(τ, u(τ), ω(τ))| ≤ b1(τ) + b2(τ)max{|u(τ)|, |ω(τ)|},
(L6) |h(τ, u(τ), v(τ))| ≤ c1(τ) + c2(τ)max{|v(τ)|, |u(τ)|},
(L7) A1 =

∫ 1
0 G1α(τ)a(τ)a2(τ)dτ < 1, B1 =

∫ 1
0 G1α(τ)a(τ)a1(τ)dτ <∞,

(L8) A2 =
∫ 1
0 G1β(τ)b(τ)b2(τ)dτ < 1, B2 =

∫ 1
0 G1β(τ)b(τ)b1(τ)dτ <∞,

(L9) A3 =
∫ 1
0 G1γ(τ)c(τ)c2(τ)dτ < 1, B3 =

∫ 1
0 G1γ(τ)c(τ)c1(τ)dτ <∞.

Then the system (2) has at least one positive solution (u, v, ω) in

Q =
{

(u, v, ω) ∈ P : ∥(u, v, ω)∥ < min( A1
1−B1

, A2
1−B2

, A3
1−B3

)
}
.

Proof. Let Q =
{

(u, v, ω) ∈ P : ∥(u, v, ω)∥ < r
}
with

r = min(
A1

1−B1
,

A2

1−B2
,

A3

1−B3
).

De�ne the operator T : Q→ P as (4). Let (u, v, ω) ∈ Q, that is,
∥(u, v, ω)∥ < r. Then

∥T1u∥ = max
ζ∈[0,1]

|
∫ 1

0
G1α(ζ, τ)a(τ)f(τ, v(τ), ω(τ))dτ |

≤
∫ 1

0
G1α(τ)a(τ)(a1(τ) + a2(τ)|v(τ)|)dτ

≤
∫ 1

0
G1α(τ)a(τ)a1(τ)dτ +

∫ 1

0
G1α(τ)a(τ)a2(τ)dτ∥v(τ)∥

= B1 +A1∥v(τ)∥ ≤ r.

Similarly, ∥T2v∥ ≤ r, ∥T3ω∥ ≤ r. So, T (u, v, ω) ≤ (r, r, r) and hence T (u, v, ω) ∈ Q. From Lemma (1.8), we
have T : Q→ Q is completely continuous. Consider the eigenvalue problem

(u, v, ω) = λT (u, v, ω), λ ∈ (0, 1). (10)
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Under the assumption that (u, v, ω) is a solution of (10) for λ ∈ (0, 1), we have

∥u∥ = ∥λT1u∥ = max
ζ∈[0,1]

|
∫ 1

0
G1α(ζ, τ)a(τ)f(τ, v(τ), ω(τ))dτ |

≤
∫ 1

0
G1α(τ)a(τ)(a1(τ) + a2(τ)|v(τ)|)dτ

≤
∫ 1

0
G1α(τ)a(τ)a1(τ)dτ +

∫ 1

0
G1α(τ)a(τ)a2(τ)dτ∥v(τ)∥

= B1 +A1∥v(τ)∥ ≤ r.

Similarly, ∥v∥ = ∥T2λv∥ ≤ r, ∥ω∥ = ∥T3λω∥ ≤ r, so, ∥(u, v, ω)∥ ≤ r, which shows that (u, v, ω) ∈ ∂Q. By
Lemma 1.3, T has a �xed point in Q. We complete the proof of theorem 1.10.

Remark 1.11. In the following we need the following assumptions and some notations:

(B1) a, b, c ∈ C((0, 1), [0,∞)), a(τ) ̸= 0, b(τ) ̸= 0, c(τ) ̸= 0 on any subinterval of (0, 1) and

0 <

∫ 1

0
G1α(τ)a(τ)dτ <∞,

0 <
∫ 1
0 G1β(τ)b(τ)dτ < ∞ and 0 <

∫ 1
0 G1γ(τ)c(τ)dτ < ∞ where G1α, G1β and G1γ are de�ned in

Lemma 1.6;

(B2) f, g, h ∈ C([0, 1]× [0,∞)× [0,∞), [0,∞)) and f(ζ, 0, 0) = 0,
g(ζ, 0, 0) = 0 and h(ζ, 0, 0) = 0 uniformly with respect to ζ on [0, 1];

(B3) λ, µ, ν ∈ [0, 1) where λ, µ, ν is de�ned as follows:

λ =

∫ 1

0
ϕ(ζ)ζα−1dζ, µ =

∫ 1

0
ψ(ζ)ζβ−1dζ and ν =

∫ 1

0
φ(ζ)ζγ−1dζ.

let

f δ = lim sup
u→δ

max
ζ∈[0,1]

f(ζ, u, u)

u
, fδ = lim inf

u→δ
min
ζ∈[0,1]

f(ζ, u, u)

u
,

where δ denotes 0 or ∞, and

σ1 =

∫ 1

0
G1α(τ)a(τ)dτ, σ2 =

∫ 1

0
G1β(τ)b(τ)dτ and σ3 =

∫ 1

0
G1γ(τ)c(τ)dτ.

Theorem 1.12. Assume that (B1)−(B3) hold. And supposes that one of the following conditions is satis�ed:

(H1) f0 >
1

Υ2
α

∫ 1−θ
θ G1α(τ)a(τ)dτ

and f∞ < 1
σ1

(particularly, f0 = ∞ and f∞ = 0);

g0 >
1

Υ2
β

∫ 1−θ
θ G1β(τ)b(τ)dτ

and g∞ < 1
σ2

(particularly, g0 = ∞ and g∞ = 0);

h0 >
1

Υ2
γ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

and h∞ < 1
σ3

(particularly, h0 = ∞ and h∞ = 0).

(H2) There exist two constants r2, R2 with 0 < r2 ≤ R2 such that f(ζ, ., .), g(ζ, ., .) and h(ζ, ., .) are nonde-
creasing on [0, R2] for all ζ ∈ [0, 1],

f(ζ,Υαr2,Υαr2) ≥
r2

Υ2
α

∫ 1−θ
θ G1α(τ)a(τ)dτ

,

g(ζ,Υβr2,Υβr2) ≥
r2

Υ2
β

∫ 1−θ
θ G1β(τ)b(τ)dτ

,

h(ζ,Υγr2,Υγr2) ≥
r2

Υ2
γ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

and f(ζ,R2, R2) ≤ R2
σ1
, g(ζ,R2, R2) ≤ R2

σ2
, h(ζ,R2, R2) ≤ R2

σ3
for all ζ ∈ [0, 1]. Then boundary value

problem (2) has at least one positive solution.
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Proof. Let T be cone preserving completely continuous that is de�ned by (4).

Case1. The condition (H1) holds. Considering f0 > 1

Υ2
α

∫ 1−θ
θ G1α(τ)a(τ)dτ

, there exists r1 > 0 such that

f(t, v, v) = (f0 − ε1)v, for all t ∈ [0, 1], v ∈ [0, r1], where ε1 > 0, satis�es

(f0 − ε1)Υ
2
α

∫ 1−θ

θ
G1α(τ)a(τ)dτ ≥ 1.

Then, for t ∈ [0, 1], (u, v, ω) ∈ ∂Kr1 , we get

T1v(t) =

∫ 1

0
G1α(ζ, τ)a(τ)f(τ, v(τ), v(τ))dτ

≥ Υα

∫ 1

0
G1α(τ)a(τ)f(τ, v(τ), v(τ))dτ

≥ Υα

∫ 1

0
G1α(τ)a(τ)(f0 − ε1)v(τ)dτ

≥ (f0 − ε1)Υ
2
α

∫ 1

0
G1α(τ)a(τ)dτ∥v∥

≥ ∥v∥.

Similarly, we have T2ω(t) ≥ ∥ω∥, T3u(t) ≥ ∥u∥ that is
(u, v, ω) ∈ ∂Kr1 implies that

∥T (u, v, ω)∥ ≥ ∥(u, v, ω)∥. (11)

On the other hand, for f∞ < 1/σ1, there exists R1 > 0 such that f(t, v, v) = (f∞ + ε2)v, for t ∈ [0, 1],
v ∈ (R1,+∞), where ε2 > 0 satis�es σ1(f

∞ + ε2) = 1. Set M = maxt∈[0,1],v∈[0,R1]f(t, v, v), then
f(t, v, v) =M + (f∞ + ε2)v. Choose
R1 > max{r1, R1,Mσ1(1− σ1(f

∞ + ε2))
−1}. Then, for t ∈ [0, 1], (u, v, ω) ∈ ∂KR1 , we get

T1v(t) =

∫ 1

0
G1α(ζ, τ)a(τ)f(τ, v(τ), v(τ))dτ

≤
∫ 1

0
G1α(τ)a(τ)(M + (f∞ + ε2))v(τ)dτ

≤M

∫ 1

0
G1α(τ)a(τ)dτ +

∫ 1

0
G1α(τ)a(τ)(f

∞ + ε2)dτ∥v∥

≤ R1 − σ1(f
∞ + ε2)R1 + (f∞ + ε2)σ1∥v∥

≤ R1.

Similarly, we have T3u(t) ≤ ∥u∥, T2ω(t) ≤ ∥ω∥ that is
(u, v, ω) ∈ ∂KR1 implies that

∥T (u, v, ω)∥ ≤ ∥(u, v, ω)∥. (12)

Case2. The condition (H2) holds. For (u, v, ω) ∈ K, from the de�nition of K, we obtain that

mint∈Jθu(t) ≥ Υα∥u∥,mint∈Jθv(t) ≥ Υβ∥v∥,mint∈Jθω(t) ≥ Υγ∥ω∥.
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Therefore, for (u, v, ω) ∈ ∂Kr2 , we have ∥(u, v, ω)∥ = r2 for t ∈ Jθ . From (H2), we have

T1v(t) =

∫ 1

0
G1α(ζ, τ)a(τ)f(τ, v(τ), v(τ))dτ

≥ Υα

∫ 1−θ

θ
G1α(τ)a(τ)f(τ, v(τ), v(τ))dτ

≥ Υα
r2

Υα

∫ 1−θ
θ G1α(τ)a(τ)dτ

∫ 1−θ

θ
G1α(τ)a(τ)dτ

= r2.

Similarly, we have T3u(t) ≥ r2, T2ω(t) ≥ r2 that is (u, v, ω) ∈ ∂Kr2 implies that

∥T (u, v, ω)∥ ≥ ∥(u, v, ω)∥ (13)

On the other hand, for (u, v, ω) ∈ ∂KR2 , we have that (u, v, ω) = R2 for t ∈ [0, 1], from (H2), we
obtain

T1v(t) =

∫ 1

0
G1α(ζ, τ)a(τ)f(τ, v(τ), v(τ))dτ

≤ Υα

∫ 1

0
G1α(τ)a(τ)f(τ, v(τ), v(τ))dτ

≤ R2

σ1
Υα

∫ 1

0
G1α(τ)a(τ)dτ

= R2.

Similarly, we have T3u(t) ≤ R2, T2ω(t) ≤ R2 that is (u, v, ω) ∈ ∂KR2 implies that

∥T (u, v, ω)∥ ≤ ∥(u, v, ω)∥. (14)

Applying Lemma 1.4 to (11) and (12), or (13) and (14), yields that T has a �xed point (u, v, ω) ∈ Kr,R

or (u, v, ω) ∈ Kri,Ri(i = 1, 2) with u(t) = Υα∥u∥ > 0, v(t) = Υβ∥v∥ > 0 and ω(t) = Υγ∥ω∥ > 0. Thus
it follows that boundary value problems (1.1) has a positive solution (u, v, ω). We complete the proof
of Theorem 1.12.

Similarly, we have the following result.

Theorem 1.13. Assume that (B1)−(B3) hold. And supposes that the following three conditions are satis�ed:

(H3) f
0 < 1

σ1
and f∞ > 1

Υ2
α

∫ 1−θ
θ G1α(τ)a(τ)dτ

(particularly, f0 = 0 and f∞ = ∞);

g0 < 1
σ2

and g∞ > 1

Υ2
β

∫ 1−θ
θ G1β(τ)b(τ)dτ

(particularly, g0 = 0 and g∞ = ∞);

h0 < 1
σ3

and h∞ > 1

Υ2
γ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

(particularly, h0 = 0 and h∞ = ∞).

Then boundary value problem (2) has at least one positive solution.

Theorem 1.14. Assume that (B1)− (B3) hold. And supposes that the following two conditions are satis�ed:
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(H4) f0 >
1

Υ2
α

∫ 1−θ
θ G1α(τ)a(τ)dτ

and f∞ > 1

Υ2
α

∫ 1−θ
θ G1α(τ)a(τ)dτ

(particularly, f0 = f∞ = ∞);
g0 >

1

Υ2
β

∫ 1−θ
θ G1β(τ)b(τ)dτ

and g∞ > 1

Υ2
β

∫ 1−θ
θ G1β(τ)b(τ)dτ

(particularly, g0 = g∞ = ∞);
h0 >

1

Υ2
γ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

and h∞ > 1

Υ2
γ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

(particularly, h0 = h∞ = ∞).

(H5) there exists b > 0 such that

max
ζ∈[0,1],(u,v,ω)∈∂Kb

f(ζ, u, u) < b/σ1, max
ζ∈[0,1],(u,v,ω)∈∂Kb

g(ζ, v, v) < b/σ2

and
max

ζ∈[0,1],(u,v,ω)∈∂Kb

h(ζ, ω, ω) < b/σ3.

Then boundary value problem (2) has at least two positive solutions (u1, v1, ω1),
(u2, v2, ω2), which satisfy

0 < ∥(u1, v1, ω1)∥ < b < ∥(u2, v2, ω2)∥. (15)

Proof. We consider condition (H4). Choose r,R with 0 < r < b < R.
If f0 >

1

Υ2
α

∫ 1−θ
θ G1α(τ)a(τ)dτ

, g0 >
1

Υ2
β

∫ 1−θ
θ G1β(τ)b(τ)dτ

and h0 >
1

Υ2
γ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

, then similar to the proof of

(11), we have
∥T (u, v, ω)∥ ≥ ∥(u, v, ω)∥,

for

(u, v, ω) ∈ ∂Kr. (16)

If f∞ > 1

Υ2
α

∫ 1−θ
θ G1α(τ)a(τ)dτ

, g∞ > 1

Υ2
β

∫ 1−θ
θ G1β(τ)b(τ)dτ

and h∞ > 1

Υ2
γ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

, then similar to the proof

of (3.6), we have

∥T (u, v, ω)∥ ≥ ∥(u, v, ω)∥, for (u, v, ω) ∈ ∂KR. (17)

On the other hand, together with (H5), (u, v, ω) ∈ ∂Kb, we have

T1v(ζ) =

∫ 1

0
G1α(ζ, τ)a(τ)f(τ, v(τ), ω(τ))dτ

≤
∫ 1

0
G1α(τ)a(τ)f(τ, v(τ), ω(τ))dτ

<
b

σ1

∫ 1

0
G1α(τ)a(τ)dτ

= b.

Similarly, we have T3u(ζ) < b, T2ω(ζ) < b, that is (u, v, ω) ∈ ∂Kb implies that

∥T (u, v, ω)∥ < ∥(u, v, ω)∥. (18)
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Applying Lemma 1.4 to (16)− (18) yields that T has a �xed point
(u1, v1, ω1) ∈ ∂Kr,b, and a �xed point (u2, v2, ω2) ∈ ∂Kb,R. Thus it follows that boundary value problem (2)
has at least two positive solutions (u1, v1, ω1) and (u2, v2, ω2). Noticing (18), we have (u1, v1, ω1) ̸= b and
(u2, v2, ω2) ̸= b. Therefore (15) holds, and the proof is complete.

Similarly, we have the following results.

Theorem 1.15. Assume that (B1)− (B3) hold. And supposes that the following conditions is satis�ed:

(H6) f
0 < 1/σ1 and f∞ < 1/σ1; g

0 < 1/σ2 and g∞ < 1/σ2; h
0 < 1/σ3 and h∞ < 1/σ3.

(H7) there exists B > 0 such that

max
ζ∈[0,1],(u,v,ω)∈∂KB

f(ζ, u, u) >
B

Υα

∫ 1−θ
θ G1α(τ)a(τ)dτ

,

max
ζ∈[0,1],(u,v,ω)∈∂KB

g(ζ, v, v) >
B

Υβ

∫ 1−θ
θ G1β(τ)b(τ)dτ

,

max
ζ∈[0,1],(u,v,ω)∈∂KB

h(ζ, ω, ω) >
B

Υγ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

,

Then boundary value problem (2) has at least two positive solutions (u1, v1, ω1),
(u2, v2, ω2), which satisfy

0 < ∥(u1, v1, ω1)∥ < B < ∥(u2, v2, ω2)∥.

Theorem 1.16. Assume that (B1) − (B3) hold. If there exist 3l positive numbers dk, Dk, k = 1, 2, · · · , l
with

d1 < ΥαD1 < D1 < d2 < ΥαD2 < D2 < · · · < dl < ΥαDl < Dl,

d1 < ΥβD1 < D1 < d2 < ΥβD2 < D2 < · · · < dl < ΥβDl < Dl

and
d1 < ΥγD1 < D1 < d2 < ΥγD2 < D2 < · · · < dl < ΥγDl < Dl,

such that

(H8)

f(ζ, u, u) >
dk

Υα

∫ 1
0 G1α(τ)a(τ)dτ

,

for
(ζ, u, u) ∈ [0, 1]× [Υαdk, dk]× [Υαdk, dk]

and

f(ζ, u, u) = σ−1
1 Dk

for
(ζ, u, u) ∈ [0, 1]× [ΥαDk, Dk]× [ΥαDk, Dk], k = 1, 2, · · · , l.

Also

g(ζ, v, v) >
dk

Υβ

∫ 1
0 G1β(τ)b(τ)dτ

,
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for
(ζ, v, v) ∈ [0, 1]× [Υβdk, dk]× [Υβdk, dk]

and

g(ζ, v, v) = σ−1
1 Dk

for
(ζ, v, v) ∈ [0, 1]× [ΥβDk, Dk]× [ΥβDk, Dk], k = 1, 2, · · · , l.

And also

h(ζ, ω, ω) >
dk

Υγ

∫ 1
0 G1γ(τ)c(τ)dτ

;

for
(ζ, ω, ω) ∈ [0, 1]× [Υγdk, dk]× [Υγdk, dk]

and

h(ζ, ω, ω) = σ−1
1 Dk

for
(ζ, ω, ω) ∈ [0, 1]× [ΥγDk, Dk]× [ΥγDk, Dk], k = 1, 2, · · · , l.

Then boundary value problem (2) has at least l positive solutions (uk, vk, ωk) which satisfy

dk < ∥(uk, vk, ωk)∥ < Dk, k = 1, 2, · · · , l.

Theorem 1.17. Assume that (B1) − (B3) hold. If there exist 3l positive numbers dk, Dk, k = 1, 2, · · · , l
with d1 < D1 < d2 < D2 < · · · < dl < Dl such that
(H9) f(ζ, ., .), g(ζ, ., .) and h(ζ, ., .) are nondecreasing on [0, Dl] for all t ∈ [0, 1].
(H10)

f(ζ,Υαdk,Υαdk) ≥
dk

Υα

∫ 1−θ
θ G1α(τ)a(τ)dτ

,

and

f(ζ,Dk, Dk) ≤ σ−1
1 Dk, k = 1, 2, · · · , l.

Also

g(ζ,Υβdk,Υβdk) ≥
dk

Υβ

∫ 1−θ
θ G1β(τ)b(τ)dτ

,

and

g(ζ,Dk, Dk) ≤ σ−1
1 Dk, k = 1, 2, · · · , l.

And also

h(ζ,Υγdk,Υγdk) ≥
dk

Υγ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

;

and

h(ζ,Dk, Dk) ≤ σ−1
1 Dk, k = 1, 2, · · · , l.
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Then boundary value problem (2) has at least l positive solutions (uk, vk, ωk) which satisfy

dk < ∥(uk, vk, ωk)∥ < Dk, k = 1, 2, · · · , l.

Now the nonexistence of positive solutions for boundary value problem (2).

Theorem 1.18. Suppose (B1) − (B3) hold, f(ζ, u, u) < σ11u, g(ζ, v, v) < σ12v and h(ζ, ω, ω) < σ13ω for all
ζ ∈ [0, 1], u > 0, v > 0 and ω > 0 then boundary value problem (2) has no positive solution.

Proof. Assume to the contrary that (u, v, ω) is a positive solution of the boundary value problem (2). Then
(u, v, ω) ∈ K, u > 0, v > 0 and ω > 0 for ζ ∈ [0, 1], and

∥u∥ = max
ζ∈[0,1]

|u(ζ)| = max
ζ∈[0,1]

∫ 1

0
G1α(ζ, τ)a(τ)f(τ, v(τ), v(τ))dτ

≤
∫ 1

0
G1α(τ)a(τ)f(τ, v(τ), v(τ))dτ

<

∫ 1

0
G1α(τ)a(τ)

∥v∥
σ1

dτ

=
1

σ1

∫ 1

0
G1α(τ)a(τ)dτ∥v∥

= ∥v∥.

Similarly, ∥v∥ < ∥u∥, ∥v∥ < ∥ω∥ and ∥ω∥ < ∥v∥, which is a contradiction, and Theorem is received.

Theorem 1.19. Assume that (B1)− (B3) hold, and

f(ζ, u, u) >
u

Υ2
α

∫ 1−θ
θ G1α(τ)a(τ)dτ

,

g(ζ, v, v) >
v

Υ2
β

∫ 1−θ
θ G1β(τ)b(τ)dτ

,

h(ζ, ω, ω) >
ω

Υ2
γ

∫ 1−θ
θ G1γ(τ)c(τ)dτ

,

for all t ∈ [0, 1], u > 0, v > 0, ω > 0, then boundary value problem (2) has no positive solution.

Example 1.20. Consider the system of nonlinear fractional di�erential equations:

D
5
3u(τ) + τ

1+τ |sinv(τ)| = 0, D
3
2 v(τ) + τ

1+τ |sinω(τ)| = 0, D
4
3ω(τ)

+ τ
1+τ |sinu(τ)| = 0, 0 < τ < 1,

u(0) = 0, u(1) =
∫ 1
0 τu(τ)dτ, v(0) = 0, v(1) =

∫ 1
0 τv(τ)dτ, ω(0) = 0,

ω(1) =
∫ 1
0 τω(τ)dτ.

(19)

Set e(τ), f(τ), g(τ) ∈ [0,+∞) and τ ∈ [0, 1], then we have∣∣ τ

1 + τ
|sine(τ)| − τ

1 + τ
|sinf(τ)|

∣∣ ≤ τ

1 + τ

∣∣e(τ)− f(τ)
∣∣,∣∣ τ

1 + τ
|sinf(τ)| − τ

1 + τ
|sing(τ)|

∣∣ ≤ τ

1 + τ

∣∣f(τ)− g(τ)
∣∣,∣∣ τ

1 + τ
|sing(τ)| − τ

1 + τ
|sine(τ)|

∣∣ ≤ τ

1 + τ

∣∣g(τ)− e(τ)
∣∣.
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Therefore,

ρ =

∫ 1

0
G1α(τ)a(τ)m(τ)dτ ≤

∫ 1

0
G1α(τ)dτ,

θ =

∫ 1

0
G1β(τ)b(τ)k(τ)dτ ≤

∫ 1

0
G1β(τ)dτ,

κ =

∫ 1

0
G1γ(τ)c(τ)n(τ)dτ ≤

∫ 1

0
G1γ(τ)dτ.

With the use of Theorem 1.4, B.V.P (19) has a unique positive solution.

Example 1.21. Consider the system of nonlinear fractional di�erential equations:

D
5
3u(τ) + [v(τ)]a = 0, D

5
3 v(τ) + [ω(τ)]b = 0, D

5
3ω(τ) + [u(τ)]c = 0,

0 < τ < 1,

u(0) = 0, u(1) =
∫ 1
0 τu(τ)dτ, v(0) = 0, v(1) =

∫ 1
0 τv(τ)dτ, ω(0) = 0,

ω(1) =
∫ 1
0 τω(τ)dτ.

(20)

Let f(τ, v, v) = va, g(τ, u, u) = ub and h(τ, ω, ω) = ωc, 0 < a, b, c < 1. It is easy to see that (B1) − (B3)
hold. By simple computation, we have f0 = g0 = h0 = ∞ and f∞ = g∞ = h∞ = 0. Thus it follows that
problem (20) has a positive solution by (H1).

Example 1.22. Consider the system of nonlinear fractional di�erential equations:

D
3
2u(τ) + [v(τ)]a

′
= 0, D

3
2 v(τ) + [ω(τ)]b

′
= 0, D

3
2ω(τ) + [u(τ)]c

′
= 0,

0 < τ < 1,

u(0) = 0, u(1) =
∫ 1
0 τu(τ)dτ, v(0) = 0, v(1) =

∫ 1
0 τv(τ)dτ, ω(0) = 0,

ω(1) =
∫ 1
0 τω(τ)dτ.

(21)

Let f(τ, v, v) = va′, g(τ, u, u) = ub′and h(τ, ω, ω) = ωc′, 0 < a′, b′, c′ < 1. It is easy to see that (B1)− (B3)
hold. By simple computation, we have f0 = g0 = h0 = 0 and f∞ = g∞ = h∞ = ∞. Thus it follows that
problem (21) has a positive solution by (H3).
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