Results in Nonlinear Analysis 4 (2021) No. 3, 186–199 https://doi.org/10.53006/rna.938851 Available online at www.nonlinear-analysis.com

Results in Nonlinear Analysis

Peer Reviewed Scientific Journal

Existence of the positive solutions for a tripled system of fractional differential equations via integral boundary conditions

Hojjat Afshari^a, Hadi Shojaat^b, Mansoureh Siahkali Moradi^c

^aDepartment of Mathematics, Faculty of Sciences, University of Bonab, Bonab, Iran.

^bDepartment of Mathematics, Farhangian University, Qazvin, Iran.

^cDepartment of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.

Abstract

The purpose of this paper, is studying the existence and nonexistence of positive solutions to a class of a following tripled system of fractional differential equations.

$$\begin{cases} D^{\alpha}u(\zeta) + a(\zeta)f(\zeta, v(\zeta), \omega(\zeta)) = 0, & u(0) = 0, \quad u(1) = \int_0^1 \phi(\zeta)u(\zeta)d\zeta, \\ D^{\beta}v(\zeta) + b(\zeta)g(\zeta, u(\zeta), \omega(\zeta)) = 0, & v(0) = 0, \quad v(1) = \int_0^1 \psi(\zeta)v(\zeta)d\zeta, \\ D^{\gamma}\omega(\zeta) + c(\zeta)h(\zeta, u(\zeta), v(\zeta)) = 0, & \omega(0) = 0, \quad \omega(1) = \int_0^1 \eta(\zeta)\omega(\zeta)d\zeta, \end{cases}$$

where $0 \leq \zeta \leq 1, 1 < \alpha, \beta, \gamma \leq 2, a, b, c \in C((0, 1), [0, \infty)), \phi, \psi, \eta \in L^1[0, 1]$ are nonnegative and $f, g, h \in C([0, 1] \times [0, \infty) \times [0, \infty), [0, \infty))$ and D is the standard Riemann-Liouville fractional derivative. Also, we provide some examples to demonstrate the validity of our results.

Keywords: Tripled system, fractional differential equation, integral boundary conditions, existence and nonexistence of positive solutions.

2010 MSC: 34A08, 34B37, 35R11

Received : May 18, 2021; Accepted: August 25, 2021; Online: August 28, 2021.

Email addresses: hojat.afshari@yahoo.com (Hojjat Afshari), hadishojaat@yahoo.com (Hadi Shojaat), mansorehmoradi@gmail.com (Mansoureh Siahkali Moradi)

1. Introduction

E. Karapınar and coauthors obtained some fixed point results and applied them to proving the existence and uniqueness of positive solutions for functional boundary value problem (see [1]-[17], [15], [26]). In recent years, some systems of nonlinear fractional differential equations were examined by many authors, [18]-[25] and other references. In [27], Su investigated some conditions for the existence of solutions for a coupled system of two-point fractional boundary value problem.

In [31] the authors studied the existence and nonexistence of positive solutions to boundary values problem for a coupled system of nonlinear fractional differential equations as follows:

$$D^{\alpha}u(\zeta) + a(\zeta)f(\zeta, v(\zeta)) = 0, \quad u(0) = 0, \quad u(1) = \int_0^1 \phi(\zeta)u(\zeta)d\zeta,$$

$$D^{\beta}v(\zeta) + b(\zeta)g(\zeta, u(\zeta)) = 0, \quad v(0) = 0, \quad v(1) = \int_0^1 \psi(\zeta)v(\zeta)d\zeta,$$
(1)

where $0 \leq \zeta \leq 1, 1 < \alpha, \beta \leq 2, a, b \in C((0,1), [0,\infty)), \phi, \psi \in L^1[0,1]$ are nonnegative and $f, g \in C([0,1] \times [0,\infty), [0,\infty))$ and D is the standard Riemann-Liouville fractional derivative.

In this paper we study the equations

$$\begin{aligned}
D^{\alpha}u(\zeta) + a(\zeta)f(\zeta, v(\zeta), \omega(\zeta)) &= 0, \quad u(0) = 0, \quad u(1) = \int_0^1 \phi(\zeta)u(\zeta)d\zeta, \\
D^{\beta}v(\zeta) + b(\zeta)g(\zeta, u(\zeta), \omega(\zeta)) &= 0, \quad v(0) = 0, \quad v(1) = \int_0^1 \psi(\zeta)v(\zeta)d\zeta, \\
D^{\gamma}\omega(\zeta) + c(\zeta)h(\zeta, u(\zeta), v(\zeta)) &= 0, \quad \omega(0) = 0, \quad \omega(1) = \int_0^1 \eta(\zeta)\omega(\zeta)d\zeta,
\end{aligned}$$
(2)

where $0 \leq \zeta \leq 1, 1 < \alpha, \beta, \gamma \leq 2, a, b, c \in C((0,1), [0,\infty)), \phi, \psi, \eta \in L^1[0,1]$ are nonnegative and $f, g, h \in C([0,1] \times [0,\infty) \times [0,\infty), [0,\infty))$ and D is the standard Riemann-Liouville fractional derivative.

Definition 1.1. [28, 29] The Riemann-Liouville fractional derivative for a continuous function f is defined by

$$D^{\nu}f(\tau) = \frac{1}{\Gamma(n-\nu)} (\frac{d}{d\tau})^n \int_0^{\tau} \frac{f(\zeta)}{(\tau-\zeta)^{\nu-n+1}} d\zeta, \qquad (n = [\nu] + 1)$$

where the right-hand side is point-wise defined on $(0, \infty)$.

Definition 1.2. [28, 29] Let [a, b] be an interval in \mathbb{R} and $\nu > 0$. The Riemann-Liouville fractional order integral of a function $f \in L^1([a, b], \mathbb{R})$ is defined by

$$I_a^{\nu} f(\tau) = \frac{1}{\Gamma(\nu)} \int_a^{\tau} \frac{f(\zeta)}{(\tau - \zeta)^{1-\nu}} d\zeta,$$

whenever the integral exists.

Lemma 1.3. (Nonlinear Differentiation of Leray-Schauder Type, [32]). Let E be a Banach space with $C \subset E$ closed and convex. Let U be a relatively open subset of C with $0 \in U$ and let $T: U \to C$ be a continuous and compact mapping. Then either

(a) the mapping T has a fixed point in U,

or (b) there exist $u \in \partial U$ and $\lambda \in (0,1)$ with $u = \lambda T u$.

Lemma 1.4. (Fixed-Point Theorem of Cone Expansion and Compression of Norm Type, See [33]). Let P be a cone of real Banach space E, and let Ω_1 and Ω_2 be two bounded open sets in E such that $0 \in \Omega_1 \subset \overline{\Omega_1} \subset \Omega_2$. Let operator $A: P \cap (\overline{\Omega_2} - \Omega_1) \to P$ be completely continuous operator. Suppose that one of the two conditions holds:

- (i1) $||Au|| \leq ||u||$, for all $u \in P \cap \partial \Omega_1$; $||Au|| \geq ||u||$, for all $u \in P \cap \partial \Omega_2$;
- (i₂) $||Au|| \ge ||u||$, for all $u \in P \cap \partial \Omega_1$; $||Au|| \le ||u||$, for all $u \in P \cap \partial \Omega_2$.
- Then A has at least one fixed point in $P \cap (\overline{\Omega_2} \Omega_1)$.

Lemma 1.5. Assume that $\int_0^1 \zeta^{\nu-1} \phi(\zeta) d\zeta \neq 1$. Then for any $\sigma \in C[0,1]$, the unique solution of boundary value problem

$$\begin{cases} D^{\nu}u(\zeta) + \sigma(\zeta) = 0, \quad 0 < \tau < 1, \\ u(0) = 0, \quad u(1) = \int_0^1 \phi(\zeta)u(\zeta)d\zeta, \end{cases}$$

is given by

$$u(\zeta) = \int_0^1 G_{1\nu}(\zeta, \tau) \sigma(\tau) d\tau$$

where

$$G_{1\nu}(\zeta,\tau) = G_{2\nu}(\zeta,\tau) + G_{3\nu}(\zeta,\tau), \quad (\zeta,\tau) \in [0,1] \times [0,1],$$

with

$$G_{2\nu}(\zeta,\tau) = \frac{1}{\Gamma(\nu)} \begin{cases} \zeta^{\nu-1}(1-\tau)^{\nu-1} - (\zeta-\tau)^{\nu-1}, & 0 \le \tau \le \zeta \le 1, \\ \zeta^{\nu-1}(1-\tau)^{\nu-1}, & 0 \le \zeta \le \tau \le 1 \end{cases}$$

and

$$G_{3\nu}(\zeta,\tau) = \frac{\zeta^{\nu-1}}{1 - \int_0^1 \phi(\zeta) \zeta^{\nu-1} d\zeta} \int_0^1 G_{2\nu}(\zeta,\tau) \phi(\zeta) d\zeta.$$

We call $G = (G_{1\nu}, G_{1\nu'}, G_{1\nu''})$ the Green's functions of the boundary value problem (2). Lemma 1.6. If $\int_{1}^{0} \varphi(\tau) \tau^{\nu-1} d\tau \in [0, 1)$, the function $G_{1\nu}(\tau, \zeta)$ defined by (3) satisfies

(i₁) $G_{1\nu}(\tau,\zeta) \ge 0$ is continuous for all $\tau,\zeta \in [0,1]$, $G_{1\nu}(\tau,\zeta) > 0$ for all $\tau,\zeta \in (0,1)$;

(i₂) $G_{1\nu}(\tau,\zeta) \leq G_{1\nu}(\zeta)$ for each $\tau,\zeta \in (0,1)$, and $\min_{\tau \in [\theta,1-\theta]} G_{1\nu}(\tau,\zeta) \geq G_{1\nu}(\zeta)$, where $\theta \in (0,\frac{1}{2})$ and

$$G_{1\nu}(\zeta) = G_{2\nu}(\zeta,\zeta) + G_{3\nu}(1,\zeta), \qquad \Upsilon_{\nu} = \theta^{\nu-1}.$$

We will discuss the existence of positive solutions for boundary value problem (2). First of all, we define the Banach space

$$\begin{split} X &= \{u(\zeta)|u(\zeta) \in C[0,1]\} \quad endowed \ with \ the \ norm \|u\|_X = \max_{\zeta \in [0,1]} |u|, \\ Y &= \{v(\zeta)|v(\zeta) \in C[0,1]\} \quad endowed \ with \ the \ norm \|v\|_Y = \max_{\zeta \in [0,1]} |v|, \\ Z &= \{\omega(\zeta)|\omega(\zeta) \in C[0,1]\} \quad endowed \ with \ the \ norm \|\omega\|_Z = \max_{\zeta \in [0,1]} |\omega|. \end{split}$$

For $(u, v, \omega) \in X \times Y \times Z$, let $||(u, v, \omega)||_{X \times Y \times Z} = \max\{||u||_X, ||v||_Y, ||\omega||_Z\}$. Clearly, $(X \times Y \times Z, ||(u, v, \omega)||_{X \times Y \times Z})$ is a Banach space. Define, $P = \{(u, v, \omega) \in X \times Y \times Z | u(\zeta) \ge 0, v(\zeta) \ge 0, \omega(\zeta) \ge 0\}$, then the cone $P \subset X \times Y \times Z$. Let $J_{\theta} = [\theta, 1 - \theta]$ for $\theta \in (0, \frac{1}{2})$ and

$$K = \left\{ \begin{array}{l} (u, v, \omega) \in P, \min_{\tau \in J_{\theta}} u(\tau) \ge \Upsilon_{\alpha} \|u\|, \\ \min_{\tau \in J_{\theta}} v(\tau) \ge \Upsilon_{\beta} \|v\|, \min_{\tau \in J_{\theta}} \omega(\tau) \ge \Upsilon_{\gamma} \|\omega\| \end{array} \right\},$$

$$K_{r} = \left\{ \begin{array}{l} (u, v, \omega) \in K, \|(u, v, \omega)\| \le r \end{array} \right\},$$

$$\partial K_{r} = \left\{ \begin{array}{l} (u, v, \omega) \in K, \|(u, v, \omega)\| = r \end{array} \right\}.$$

From Lemma 1.5, we can obtain the following lemma.

(3)

-1

Lemma 1.7. Suppose that $f(t, v, \omega)$, $g(t, u, \omega)$ and h(t, u, v) are continuous, then $(u, v, \omega) \in X \times Y \times Z$ is a solution of B. V. P(2) if and only if

 $(u, v, \omega) \in X \times Y \times Z$ is a solution of the integral equations 1

$$\begin{cases} u(\zeta) = \int_0^1 G_{1\alpha}(\zeta, \tau) a(\tau) f(\tau, v(\tau), \omega(\tau)) d\tau, \\ v(\zeta) = \int_0^1 G_{1\beta}(\zeta, \tau) b(\tau) g(\tau, u(\tau), \omega(\tau)) d\tau, \\ \omega(\zeta) = \int_0^1 G_{1\gamma}(\zeta, \tau) c(\tau) h(\tau, u(\tau), v(\tau)) d\tau. \end{cases}$$

Let $T: X \times Y \times Z \to X \times Y \times Z$ be the operator defined as

$$T(u, v, \omega) = \left(\int_0^1 G_{1\alpha}(\zeta, \tau) a(\tau) f(\tau, v(\tau), \omega(\tau)) d\tau, \int_0^1 G_{1\beta}(\zeta, \tau) b(\tau) g(\tau, u(\tau), \omega(\tau)) d\tau, \int_0^1 G_{1\gamma}(\zeta, \tau) c(\tau) h(\tau, u(\tau), v(\tau)) d\tau\right)$$

$$=: (T_1 u(\zeta), T_2 v(\zeta), T_3 \omega(\zeta)), \tag{4}$$

then by Lemma (1.7), the fixed point of operator T coincides with the solution of system (2).

Lemma 1.8. Let $f(\tau, v, v)$, $g(\tau, u, u)$ and $h(\tau, \omega, \omega)$ be continuous on $[0,1] \times [0,+\infty) \times [0,+\infty) \rightarrow [0,+\infty)$, then $T: P \rightarrow P, T: K \rightarrow K$ defined by (4) are completely continuous.

Proof. Since Lemma (1.8) is similar to Lemma (1.8) in [2] and [30] we omit the proof Lemma (1.8).

Theorem 1.9. Assume that $a(\tau)$, $b(\tau)$ and $c(\tau)$, are continuous on $(0,1) \rightarrow [0,+\infty)$ and $f(\tau,v(\tau),\omega(\tau)), g(\tau,u(\tau),\omega(\tau))$ and $h(\tau,u(\tau),v(\tau))$ are continuous on $[0,1] \times [0,\infty) \times [0,\infty)$ $[0,\infty) \to [0,\infty)$, and there exist three positive functions $m(\tau)$, $n(\tau)$ and $k(\tau)$ that satisfy

- $(L_1) \ f(\tau, v_2, \omega_2) f(\tau, v_1, \omega_1) \le m(\tau) \max\{|v_2 v_1|, |\omega_2 \omega_1|\},\$
- (L₂) $g(\tau, u_2, \omega_2) g(\tau, u_1, \omega_1) \le k(\tau) \max\{|u_2 u_1|, |\omega_2 \omega_1|\},\$
- (L₃) $h(\tau, u_2, v_2) h(\tau, u_1, v_1) \le n(\tau) \max\{|v_2 v_1|, |u_2 u_1|\},\$

for $\tau \in (0,1)$, $v_1, v_2, \omega_1, \omega_2, u_1, u_2 \in (0, +\infty)$.

Then system (2) has a unique positive solution if

$$\rho = \int_0^1 G_{1\alpha}(\tau) a(\tau) m(\tau) d\tau < 1,$$

$$\theta = \int_0^1 G_{1\beta}(\tau) b(\tau) k(\tau) d\tau < 1,$$

$$\kappa = \int_0^1 G_{1\gamma}(\tau) c(\tau) n(\tau) d\tau < 1.$$
(6)

Proof. For all $(u, v, \omega) \in P$ by the nonnegativeness of $G(\zeta, \tau)$ and $a(\tau), b(\tau), c(\tau), f(\tau, v(\tau), \omega(\tau)), g(\tau, u(\tau), \omega(\tau)), d(\tau)$ $h(\tau, u(\tau), v(\tau))$, we have

 $T(u, v, \omega) \geq 0$. Hence, $T(P) \subset P$. From Lemma 1.6, we obtain

$$\|T_{1}v_{2} - T_{1}v_{1}\| = \max_{\zeta \in [0,1]} |T_{1}v_{2} - T_{1}v_{1}|$$

$$= \max_{\zeta \in [0,1]} |\left(\int_{0}^{1} G_{1\alpha}(\zeta,\tau)a(\tau)[f(\tau,v_{2}(\tau),\omega(\tau)) - f(\tau,v_{1}(\tau),\omega(\tau))]\right)d\tau|$$

$$\leq \left(\int_{0}^{1} G_{1\alpha}(\tau)a(\tau)m(\tau)\right)d\tau|\|v_{2} - v_{1}\| = \rho\|v_{2} - v_{1}\|$$
(7)

Similarly,

$$||T_2u_2 - T_2u_1|| \le \theta ||u_2 - u_1|| \tag{8}$$

and

$$\|T_3\omega_2 - T_3\omega_1\| \le \kappa \|\omega_2 - \omega_1\| \tag{9}$$

From (7), (8) to (9), we get

$$||T(u_2, v_2, \omega_2) - T(u_1, v_1, \omega_1)|| \le \max(\rho, \theta, \kappa) ||(u_2, v_2, \omega_2) - (u_1, v_1, \omega_1)||$$

From Lemma (1.8), T is completely continuous, by Banach fixed point theorem, the operator T has a unique fixed point in P, which is the unique positive solution of system (2). This completes the proof.

Theorem 1.10. Assume that $a(\tau)$, $b(\tau)$ and $c(\tau)$, are continuous on $(0,1) \rightarrow [0,+\infty)$ and $f(\tau,v(\tau),\omega(\tau))$, $g(\tau,u(\tau),\omega(\tau))$ and $h(\tau,u(\tau),v(\tau))$ are continuous on $[0,1] \times [0,\infty) \times [0,\infty) \rightarrow [0,\infty)$, and satisfy

 $\begin{array}{ll} (L_4) \ |f(\tau,v(\tau),\omega(\tau))| \leq a_1(\tau) + a_2(\tau) \max\{|v(\tau)|,|\omega(\tau)|\},\\ (L_5) \ |g(\tau,u(\tau),\omega(\tau))| \leq b_1(\tau) + b_2(\tau) \max\{|u(\tau)|,|\omega(\tau)|\},\\ (L_6) \ |h(\tau,u(\tau),v(\tau))| \leq c_1(\tau) + c_2(\tau) \max\{|v(\tau)|,|u(\tau)|\},\\ (L_7) \ A_1 = \int_0^1 G_{1\alpha}(\tau)a(\tau)a_2(\tau)d\tau < 1, B_1 = \int_0^1 G_{1\alpha}(\tau)a(\tau)a_1(\tau)d\tau < \infty,\\ (L_8) \ A_2 = \int_0^1 G_{1\beta}(\tau)b(\tau)b_2(\tau)d\tau < 1, B_2 = \int_0^1 G_{1\beta}(\tau)b(\tau)b_1(\tau)d\tau < \infty,\\ (L_9) \ A_3 = \int_0^1 G_{1\gamma}(\tau)c(\tau)c_2(\tau)d\tau < 1, B_3 = \int_0^1 G_{1\gamma}(\tau)c(\tau)c_1(\tau)d\tau < \infty.\\ Then the system (2) has at least one positive solution (u, v, \omega) in \end{array}$

$$Q = \left\{ (u, v, \omega) \in P : \|(u, v, \omega)\| < \min(\frac{A_1}{1 - B_1}, \frac{A_2}{1 - B_2}, \frac{A_3}{1 - B_3}) \right\}.$$

Proof. Let $Q = \{ (u, v, \omega) \in P : ||(u, v, \omega)|| < r \}$ with

$$r = \min(\frac{A_1}{1 - B_1}, \frac{A_2}{1 - B_2}, \frac{A_3}{1 - B_3})$$

Define the operator $T: Q \to P$ as (4). Let $(u, v, \omega) \in Q$, that is, $||(u, v, \omega)|| < r$. Then

$$\begin{aligned} \|T_1 u\| &= \max_{\zeta \in [0,1]} |\int_0^1 G_{1\alpha}(\zeta,\tau) a(\tau) f(\tau,v(\tau),\omega(\tau)) d\tau| \\ &\leq \int_0^1 G_{1\alpha}(\tau) a(\tau) (a_1(\tau) + a_2(\tau) |v(\tau)|) d\tau \\ &\leq \int_0^1 G_{1\alpha}(\tau) a(\tau) a_1(\tau) d\tau + \int_0^1 G_{1\alpha}(\tau) a(\tau) a_2(\tau) d\tau \|v(\tau)\| \\ &= B_1 + A_1 \|v(\tau)\| \leq r. \end{aligned}$$

Similarly, $||T_2v|| \leq r$, $||T_3\omega|| \leq r$. So, $T(u, v, \omega) \leq (r, r, r)$ and hence $T(u, v, \omega) \in \overline{Q}$. From Lemma (1.8), we have $T: Q \to \overline{Q}$ is completely continuous. Consider the eigenvalue problem

$$(u, v, \omega) = \lambda T(u, v, \omega), \qquad \lambda \in (0, 1).$$
(10)

Under the assumption that (u, v, ω) is a solution of (10) for $\lambda \in (0, 1)$, we have

$$\begin{aligned} \|u\| &= \|\lambda T_1 u\| = \max_{\zeta \in [0,1]} |\int_0^1 G_{1\alpha}(\zeta,\tau) a(\tau) f(\tau,v(\tau),\omega(\tau)) d\tau| \\ &\leq \int_0^1 G_{1\alpha}(\tau) a(\tau) (a_1(\tau) + a_2(\tau) |v(\tau)|) d\tau \\ &\leq \int_0^1 G_{1\alpha}(\tau) a(\tau) a(\tau) d\tau + \int_0^1 G_{1\alpha}(\tau) a(\tau) a_2(\tau) d\tau \|v(\tau)\| \\ &= B_1 + A_1 \|v(\tau)\| \leq r. \end{aligned}$$

Similarly, $||v|| = ||T_2\lambda v|| \le r$, $||\omega|| = ||T_3\lambda \omega|| \le r$, so, $||(u, v, \omega)|| \le r$, which shows that $(u, v, \omega) \in \partial Q$. By Lemma 1.3, T has a fixed point in Q. We complete the proof of theorem 1.10.

Remark 1.11. In the following we need the following assumptions and some notations: (B₁) $a, b, c \in C((0, 1), [0, \infty)), a(\tau) \neq 0, b(\tau) \neq 0, c(\tau) \neq 0$ on any subinterval of (0, 1) and

$$0 < \int_0^1 G_{1\alpha}(\tau) a(\tau) d\tau < \infty,$$

 $0 < \int_0^1 G_{1\beta}(\tau)b(\tau)d\tau < \infty$ and $0 < \int_0^1 G_{1\gamma}(\tau)c(\tau)d\tau < \infty$ where $G_{1\alpha}$, $G_{1\beta}$ and $G_{1\gamma}$ are defined in Lemma 1.6;

(B₂) $f, g, h \in C([0, 1] \times [0, \infty) \times [0, \infty))$ and $f(\zeta, 0, 0) = 0$, $g(\zeta, 0, 0) = 0$ and $h(\zeta, 0, 0) = 0$ uniformly with respect to ζ on [0, 1];

(B₃) $\lambda, \mu, \nu \in [0, 1)$ where λ, μ, ν is defined as follows:

$$\lambda = \int_0^1 \phi(\zeta) \zeta^{\alpha - 1} d\zeta, \quad \mu = \int_0^1 \psi(\zeta) \zeta^{\beta - 1} d\zeta \quad and \quad \nu = \int_0^1 \varphi(\zeta) \zeta^{\gamma - 1} d\zeta.$$

let

$$f^{\delta} = \limsup_{u \to \delta} \max_{\zeta \in [0,1]} \frac{f(\zeta, u, u)}{u}, \qquad f_{\delta} = \liminf_{u \to \delta} \min_{\zeta \in [0,1]} \frac{f(\zeta, u, u)}{u},$$

where δ denotes 0 or ∞ , and

$$\sigma_1 = \int_0^1 G_{1\alpha}(\tau) a(\tau) d\tau, \quad \sigma_2 = \int_0^1 G_{1\beta}(\tau) b(\tau) d\tau \quad and \ \sigma_3 = \int_0^1 G_{1\gamma}(\tau) c(\tau) d\tau.$$

Theorem 1.12. Assume that $(B_1) - (B_3)$ hold. And supposes that one of the following conditions is satisfied:

$$\begin{array}{ll} (H_1) \ f_0 > \frac{1}{\Upsilon^2_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau} \ and \ f^{\infty} < \frac{1}{\sigma_1} \ (particularly, \ f^0 = \infty \ and \ f^{\infty} = 0); \\ g_0 > \frac{1}{\Upsilon^2_{\beta} \int_{\theta}^{1-\theta} G_{1\beta}(\tau) b(\tau) d\tau} \ and \ g^{\infty} < \frac{1}{\sigma_2} \ (particularly, \ g^0 = \infty \ and \ g^{\infty} = 0); \\ h_0 > \frac{1}{\Upsilon^2_{\gamma} \int_{\theta}^{1-\theta} G_{1\gamma}(\tau) c(\tau) d\tau} \ and \ h^{\infty} < \frac{1}{\sigma_3} \ (particularly, \ h^0 = \infty \ and \ h^{\infty} = 0). \end{array}$$

(H₂) There exist two constants r_2, R_2 with $0 < r_2 \le R_2$ such that $f(\zeta, ., .), g(\zeta, ., .)$ and $h(\zeta, ., .)$ are nondecreasing on $[0, R_2]$ for all $\zeta \in [0, 1]$,

$$\begin{split} f(\zeta, \Upsilon_{\alpha} r_{2}, \Upsilon_{\alpha} r_{2}) &\geq \frac{r_{2}}{\Upsilon_{\alpha}^{2} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau}, \\ g(\zeta, \Upsilon_{\beta} r_{2}, \Upsilon_{\beta} r_{2}) &\geq \frac{r_{2}}{\Upsilon_{\beta}^{2} \int_{\theta}^{1-\theta} G_{1\beta}(\tau) b(\tau) d\tau}, \\ h(\zeta, \Upsilon_{\gamma} r_{2}, \Upsilon_{\gamma} r_{2}) &\geq \frac{r_{2}}{\Upsilon_{\gamma}^{2} \int_{\theta}^{1-\theta} G_{1\gamma}(\tau) c(\tau) d\tau} \end{split}$$

and $f(\zeta, R_2, R_2) \leq \frac{R_2}{\sigma_1}$, $g(\zeta, R_2, R_2) \leq \frac{R_2}{\sigma_2}$, $h(\zeta, R_2, R_2) \leq \frac{R_2}{\sigma_3}$ for all $\zeta \in [0, 1]$. Then boundary value problem (2) has at least one positive solution.

Proof. Let T be cone preserving completely continuous that is defined by (4).

Case1. The condition (H_1) holds. Considering $f_0 > \frac{1}{\Upsilon^2_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau}$, there exists $r_1 > 0$ such that $f(t, v, v) = (f_0 - \varepsilon_1)v$, for all $t \in [0, 1]$, $v \in [0, r_1]$, where $\varepsilon_1 > 0$, satisfies

$$(f_0 - \varepsilon_1)\Upsilon^2_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau \ge 1$$

Then, for $t \in [0,1], (u, v, \omega) \in \partial K_{r_1}$, we get

$$T_{1}v(t) = \int_{0}^{1} G_{1\alpha}(\zeta,\tau)a(\tau)f(\tau,v(\tau),v(\tau))d\tau$$

$$\geq \Upsilon_{\alpha} \int_{0}^{1} G_{1\alpha}(\tau)a(\tau)f(\tau,v(\tau),v(\tau))d\tau$$

$$\geq \Upsilon_{\alpha} \int_{0}^{1} G_{1\alpha}(\tau)a(\tau)(f_{0}-\varepsilon_{1})v(\tau)d\tau$$

$$\geq (f_{0}-\varepsilon_{1})\Upsilon_{\alpha}^{2} \int_{0}^{1} G_{1\alpha}(\tau)a(\tau)d\tau ||v||$$

$$\geq ||v||.$$

Similarly, we have $T_2\omega(t) \ge ||\omega||, T_3u(t) \ge ||u||$ that is $(u, v, \omega) \in \partial K_{r_1}$ implies that

$$|T(u, v, \omega)|| \ge ||(u, v, \omega)||.$$
 (11)

On the other hand, for $f^{\infty} < 1/\sigma_1$, there exists $\overline{R}_1 > 0$ such that $f(t, v, v) = (f_{\infty} + \varepsilon_2)v$, for $t \in [0, 1]$, $v \in (R_1, +\infty)$, where $\varepsilon_2 > 0$ satisfies $\sigma_1(f^{\infty} + \varepsilon_2) = 1$. Set $M = max_{t \in [0,1], v \in [0,R_1]}f(t, v, v)$, then $f(t, v, v) = M + (f^{\infty} + \varepsilon_2)v$. Choose

 $R_1 > max\{r_1, \overline{R}_1, M\sigma_1(1 - \sigma_1(f^{\infty} + \varepsilon_2))^{-1}\}$. Then, for $t \in [0, 1], (u, v, \omega) \in \partial K_{R_1}$, we get

$$T_1 v(t) = \int_0^1 G_{1\alpha}(\zeta, \tau) a(\tau) f(\tau, v(\tau), v(\tau)) d\tau$$

$$\leq \int_0^1 G_{1\alpha}(\tau) a(\tau) (M + (f^{\infty} + \varepsilon_2)) v(\tau) d\tau$$

$$\leq M \int_0^1 G_{1\alpha}(\tau) a(\tau) d\tau + \int_0^1 G_{1\alpha}(\tau) a(\tau) (f^{\infty} + \varepsilon_2) d\tau ||v||$$

$$\leq R_1 - \sigma_1 (f^{\infty} + \varepsilon_2) R_1 + (f^{\infty} + \varepsilon_2) \sigma_1 ||v||$$

$$\leq R_1.$$

Similarly, we have $T_3u(t) \leq ||u||, T_2\omega(t) \leq ||\omega||$ that is $(u, v, \omega) \in \partial K_{R_1}$ implies that

$$||T(u,v,\omega)|| \le ||(u,v,\omega)||.$$

$$\tag{12}$$

Case2. The condition (H_2) holds. For $(u, v, \omega) \in K$, from the definition of K, we obtain that

$$\min_{t \in J_{\theta}} u(t) \ge \Upsilon_{\alpha} \|u\|, \min_{t \in J_{\theta}} v(t) \ge \Upsilon_{\beta} \|v\|, \min_{t \in J_{\theta}} \omega(t) \ge \Upsilon_{\gamma} \|\omega\|$$

Therefore, for $(u, v, \omega) \in \partial K_{r_2}$, we have $||(u, v, \omega)|| = r_2$ for $t \in J_{\theta}$. From (H_2) , we have

$$T_{1}v(t) = \int_{0}^{1} G_{1\alpha}(\zeta,\tau)a(\tau)f(\tau,v(\tau),v(\tau))d\tau$$

$$\geq \Upsilon_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau)a(\tau)f(\tau,v(\tau),v(\tau))d\tau$$

$$\geq \Upsilon_{\alpha} \frac{r_{2}}{\Upsilon_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau)a(\tau)d\tau} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau)a(\tau)d\tau$$

$$= r_{2}.$$

Similarly, we have $T_3u(t) \ge r_2$, $T_2\omega(t) \ge r_2$ that is $(u, v, \omega) \in \partial K_{r_2}$ implies that

$$\|T(u,v,\omega)\| \ge \|(u,v,\omega)\| \tag{13}$$

On the other hand, for $(u, v, \omega) \in \partial K_{R_2}$, we have that $(u, v, \omega) = R_2$ for $t \in [0, 1]$, from (H_2) , we obtain

$$T_1 v(t) = \int_0^1 G_{1\alpha}(\zeta, \tau) a(\tau) f(\tau, v(\tau), v(\tau)) d\tau$$

$$\leq \Upsilon_\alpha \int_0^1 G_{1\alpha}(\tau) a(\tau) f(\tau, v(\tau), v(\tau)) d\tau$$

$$\leq \frac{R_2}{\sigma_1} \Upsilon_\alpha \int_0^1 G_{1\alpha}(\tau) a(\tau) d\tau$$

$$= R_2.$$

Similarly, we have $T_3u(t) \leq R_2$, $T_2\omega(t) \leq R_2$ that is $(u, v, \omega) \in \partial K_{R_2}$ implies that

$$|T(u,v,\omega)|| \le ||(u,v,\omega)||. \tag{14}$$

Applying Lemma 1.4 to (11) and (12), or (13) and (14), yields that T has a fixed point $(\overline{u}, \overline{v}, \overline{\omega}) \in \overline{K}_{r,R}$ or $(\overline{u}, \overline{v}, \overline{\omega}) \in \overline{K}_{r_i,R_i} (i = 1, 2)$ with $\overline{u}(t) = \Upsilon_{\alpha} ||u|| > 0$, $\overline{v}(t) = \Upsilon_{\beta} ||\overline{v}|| > 0$ and $\overline{\omega}(t) = \Upsilon_{\gamma} ||\overline{\omega}|| > 0$. Thus it follows that boundary value problems (1.1) has a positive solution $(\overline{u}, \overline{v}, \overline{\omega})$. We complete the proof of Theorem 1.12.

Theorem 1.13. Assume that $(B_1) - (B_3)$ hold. And supposes that the following three conditions are satisfied:

$$\begin{array}{ll} (H_3) \ f^0 < \frac{1}{\sigma_1} \ and \ f_\infty > \frac{1}{\Upsilon^2_\alpha \int_{\theta}^{1-\theta} G_{1\alpha}(\tau)a(\tau)d\tau} \ (particularly, \ f^0 = 0 \ and \ f_\infty = \infty); \\ g^0 < \frac{1}{\sigma_2} \ and \ g_\infty > \frac{1}{\Upsilon^2_\beta \int_{\theta}^{1-\theta} G_{1\beta}(\tau)b(\tau)d\tau} \ (particularly, \ g^0 = 0 \ and \ g_\infty = \infty); \\ h^0 < \frac{1}{\sigma_3} \ and \ h_\infty > \frac{1}{\Upsilon^2_\gamma \int_{\theta}^{1-\theta} G_{1\gamma}(\tau)c(\tau)d\tau} \ (particularly, \ h^0 = 0 \ and \ h_\infty = \infty). \end{array}$$

Then boundary value problem (2) has at least one positive solution.

Theorem 1.14. Assume that $(B_1) - (B_3)$ hold. And supposes that the following two conditions are satisfied:

$$\begin{array}{ll} (H_4) \ \ f_0 > \frac{1}{\Upsilon^2_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau} \ \ and \ \ f_{\infty} > \frac{1}{\Upsilon^2_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau} \\ (particularly, \ f^0 = f_{\infty} = \infty); \\ g_0 > \frac{1}{\Upsilon^2_{\beta} \int_{\theta}^{1-\theta} G_{1\beta}(\tau) b(\tau) d\tau} \ \ and \ \ g_{\infty} > \frac{1}{\Upsilon^2_{\beta} \int_{\theta}^{1-\theta} G_{1\beta}(\tau) b(\tau) d\tau} \\ (particularly, \ g^0 = g_{\infty} = \infty); \\ h_0 > \frac{1}{\Upsilon^2_{\gamma} \int_{\theta}^{1-\theta} G_{1\gamma}(\tau) c(\tau) d\tau} \ \ and \ \ h_{\infty} > \frac{1}{\Upsilon^2_{\gamma} \int_{\theta}^{1-\theta} G_{1\gamma}(\tau) c(\tau) d\tau} \\ (particularly, \ h^0 = h_{\infty} = \infty). \end{array}$$

 (H_5) there exists b > 0 such that

$$\max_{\zeta \in [0,1], (u,v,\omega) \in \partial K_b} f(\zeta, u, u) < b/\sigma_1, \max_{\zeta \in [0,1], (u,v,\omega) \in \partial K_b} g(\zeta, v, v) < b/\sigma_2$$

and

$$\max_{\zeta \in [0,1], (u,v,\omega) \in \partial K_b} h(\zeta, \omega, \omega) < b/\sigma_3.$$

Then boundary value problem (2) has at least two positive solutions (u_1, v_1, ω_1) , (u_2, v_2, ω_2) , which satisfy

$$0 < \|(u_1, v_1, \omega_1)\| < b < \|(u_2, v_2, \omega_2)\|.$$
(15)

Proof. We consider condition (H_4) . Choose r, R with 0 < r < b < R. If $f_0 > \frac{1}{\Upsilon^2_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau}$, $g_0 > \frac{1}{\Upsilon^2_{\beta} \int_{\theta}^{1-\theta} G_{1\beta}(\tau) b(\tau) d\tau}$ and $h_0 > \frac{1}{\Upsilon^2_{\gamma} \int_{\theta}^{1-\theta} G_{1\gamma}(\tau) c(\tau) d\tau}$, then similar to the proof of (11), we have

$$||T(u, v, \omega)|| \ge ||(u, v, \omega)||,$$

for

$$(u, v, \omega) \in \partial K_r. \tag{16}$$

If $f_{\infty} > \frac{1}{\Upsilon_{\alpha}^2 \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau}$, $g_{\infty} > \frac{1}{\Upsilon_{\beta}^2 \int_{\theta}^{1-\theta} G_{1\beta}(\tau) b(\tau) d\tau}$ and $h_{\infty} > \frac{1}{\Upsilon_{\gamma}^2 \int_{\theta}^{1-\theta} G_{1\gamma}(\tau) c(\tau) d\tau}$, then similar to the proof of (3.6), we have

$$||T(u,v,\omega)|| \ge ||(u,v,\omega)||, \quad for \quad (u,v,\omega) \in \partial K_R.$$
(17)

On the other hand, together with (H_5) , $(u, v, \omega) \in \partial K_b$, we have

$$T_1 v(\zeta) = \int_0^1 G_{1\alpha}(\zeta, \tau) a(\tau) f(\tau, v(\tau), \omega(\tau)) d\tau$$

$$\leq \int_0^1 G_{1\alpha}(\tau) a(\tau) f(\tau, v(\tau), \omega(\tau)) d\tau$$

$$< \frac{b}{\sigma_1} \int_0^1 G_{1\alpha}(\tau) a(\tau) d\tau$$

$$= b.$$

Similarly, we have $T_3u(\zeta) < b$, $T_2\omega(\zeta) < b$, that is $(u, v, \omega) \in \partial K_b$ implies that

$$||T(u, v, \omega)|| < ||(u, v, \omega)||.$$
(18)

Applying Lemma 1.4 to (16) - (18) yields that T has a fixed point

 $(u_1, v_1, \omega_1) \in \overline{\partial K_{r,b}}$, and a fixed point $(u_2, v_2, \omega_2) \in \overline{\partial K_{b,R}}$. Thus it follows that boundary value problem (2) has at least two positive solutions (u_1, v_1, ω_1) and (u_2, v_2, ω_2) . Noticing (18), we have $(u_1, v_1, \omega_1) \neq b$ and $(u_2, v_2, \omega_2) \neq b$. Therefore (15) holds, and the proof is complete.

Similarly, we have the following results.

Theorem 1.15. Assume that $(B_1) - (B_3)$ hold. And supposes that the following conditions is satisfied: (H₆) $f^0 < 1/\sigma_1$ and $f^{\infty} < 1/\sigma_1$; $g^0 < 1/\sigma_2$ and $g^{\infty} < 1/\sigma_2$; $h^0 < 1/\sigma_3$ and $h^{\infty} < 1/\sigma_3$. (H₇) there exists B > 0 such that

$$\max_{\zeta \in [0,1], (u,v,\omega) \in \partial K_B} f(\zeta, u, u) > \frac{B}{\Upsilon_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau},$$
$$\max_{\zeta \in [0,1], (u,v,\omega) \in \partial K_B} g(\zeta, v, v) > \frac{B}{\Upsilon_{\beta} \int_{\theta}^{1-\theta} G_{1\beta}(\tau) b(\tau) d\tau},$$
$$\max_{\zeta \in [0,1], (u,v,\omega) \in \partial K_B} h(\zeta, \omega, \omega) > \frac{B}{\Upsilon_{\gamma} \int_{\theta}^{1-\theta} G_{1\gamma}(\tau) c(\tau) d\tau},$$

Then boundary value problem (2) has at least two positive solutions (u_1, v_1, ω_1) , (u_2, v_2, ω_2) , which satisfy

$$0 < \|(u_1, v_1, \omega_1)\| < B < \|(u_2, v_2, \omega_2)\|.$$

Theorem 1.16. Assume that $(B_1) - (B_3)$ hold. If there exist 3l positive numbers d_k , D_k , $k = 1, 2, \dots, l$ with

$$d_1 < \Upsilon_{\alpha} D_1 < D_1 < d_2 < \Upsilon_{\alpha} D_2 < D_2 < \dots < d_l < \Upsilon_{\alpha} D_l < D_l,$$

$$d_1 < \Upsilon_\beta D_1 < D_1 < d_2 < \Upsilon_\beta D_2 < D_2 < \dots < d_l < \Upsilon_\beta D_l < D_l$$

and

$$d_1 < \Upsilon_{\gamma} D_1 < D_1 < d_2 < \Upsilon_{\gamma} D_2 < D_2 < \dots < d_l < \Upsilon_{\gamma} D_l < D_l,$$

such that

 (H_8)

$$f(\zeta, u, u) > \frac{d_k}{\Upsilon_{\alpha} \int_0^1 G_{1\alpha}(\tau) a(\tau) d\tau},$$

for

$$(\zeta, u, u) \in [0, 1] \times [\Upsilon_{\alpha} d_k, d_k] \times [\Upsilon_{\alpha} d_k, d_k]$$

and

$$f(\zeta, u, u) = \sigma_1^{-1} D_k$$

for

$$(\zeta, u, u) \in [0, 1] \times [\Upsilon_{\alpha} D_k, D_k] \times [\Upsilon_{\alpha} D_k, D_k], k = 1, 2, \cdots, l.$$

Also

$$g(\zeta, v, v) > \frac{d_k}{\Upsilon_\beta \int_0^1 G_{1\beta}(\tau) b(\tau) d\tau},$$

for

$$(\zeta, v, v) \in [0, 1] \times [\Upsilon_{\beta} d_k, d_k] \times [\Upsilon_{\beta} d_k, d_k]$$

and

$$g(\zeta, v, v) = \sigma_1^{-1} D_k$$

for

$$(\zeta, v, v) \in [0, 1] \times [\Upsilon_{\beta} D_k, D_k] \times [\Upsilon_{\beta} D_k, D_k], k = 1, 2, \cdots, l$$

 $And \ also$

$$h(\zeta,\omega,\omega) > \frac{d_k}{\Upsilon_\gamma \int_0^1 G_{1\gamma}(\tau)c(\tau)d\tau};$$

$$(\zeta,\omega,\omega)\in[0,1]\times[\Upsilon_{\gamma}d_k,d_k]\times[\Upsilon_{\gamma}d_k,d_k]$$

and

$$h(\zeta,\omega,\omega) = \sigma_1^{-1} D_k$$

for

$$(\zeta, \omega, \omega) \in [0, 1] \times [\Upsilon_{\gamma} D_k, D_k] \times [\Upsilon_{\gamma} D_k, D_k], k = 1, 2, \cdots, l.$$

Then boundary value problem (2) has at least l positive solutions (u_k, v_k, ω_k) which satisfy

$$d_k < ||(u_k, v_k, \omega_k)|| < D_k, \quad k = 1, 2, \cdots, l.$$

Theorem 1.17. Assume that $(B_1) - (B_3)$ hold. If there exist 3l positive numbers d_k , D_k , $k = 1, 2, \cdots, l$ with $d_1 < D_1 < d_2 < D_2 < \cdots < d_l < D_l$ such that

(H₉) $f(\zeta, ., .), g(\zeta, ., .)$ and $h(\zeta, ., .)$ are nondecreasing on $[0, D_l]$ for all $t \in [0, 1]$. (H₁₀)

$$f(\zeta, \Upsilon_{\alpha} d_k, \Upsilon_{\alpha} d_k) \geq \frac{a_k}{\Upsilon_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau},$$

and

$$f(\zeta, D_k, D_k) \le \sigma_1^{-1} D_k, k = 1, 2, \cdots, l.$$

Also

$$g(\zeta, \Upsilon_{eta} d_k, \Upsilon_{eta} d_k) \geq rac{d_k}{\Upsilon_{eta} \int_{ heta}^{1- heta} G_{1eta}(au) b(au) d au},$$

and

$$g(\zeta, D_k, D_k) \le \sigma_1^{-1} D_k, k = 1, 2, \cdots, l.$$

 $And \ also$

$$h(\zeta, \Upsilon_{\gamma} d_k, \Upsilon_{\gamma} d_k) \geq \frac{d_k}{\Upsilon_{\gamma} \int_{\theta}^{1-\theta} G_{1\gamma}(\tau) c(\tau) d\tau};$$

and

$$h(\zeta, D_k, D_k) \le \sigma_1^{-1} D_k, k = 1, 2, \cdots, l.$$

Then boundary value problem (2) has at least l positive solutions (u_k, v_k, ω_k) which satisfy

$$d_k < ||(u_k, v_k, \omega_k)|| < D_k, \quad k = 1, 2, \cdots, l$$

Now the nonexistence of positive solutions for boundary value problem (2).

Theorem 1.18. Suppose $(B_1) - (B_3)$ hold, $f(\zeta, u, u) < \sigma_1^1 u$, $g(\zeta, v, v) < \sigma_2^1 v$ and $h(\zeta, \omega, \omega) < \sigma_3^1 \omega$ for all $\zeta \in [0, 1]$, u > 0, v > 0 and $\omega > 0$ then boundary value problem (2) has no positive solution.

Proof. Assume to the contrary that (u, v, ω) is a positive solution of the boundary value problem (2). Then $(u, v, \omega) \in K$, u > 0, v > 0 and $\omega > 0$ for $\zeta \in [0, 1]$, and

$$\begin{aligned} \|u\| &= \max_{\zeta \in [0,1]} |u(\zeta)| = \max_{\zeta \in [0,1]} \int_0^1 G_{1\alpha}(\zeta,\tau) a(\tau) f(\tau,v(\tau),v(\tau)) d\tau \\ &\leq \int_0^1 G_{1\alpha}(\tau) a(\tau) f(\tau,v(\tau),v(\tau)) d\tau \\ &< \int_0^1 G_{1\alpha}(\tau) a(\tau) \frac{\|v\|}{\sigma_1} d\tau \\ &= \frac{1}{\sigma_1} \int_0^1 G_{1\alpha}(\tau) a(\tau) d\tau \|v\| \\ &= \|v\|. \end{aligned}$$

Similarly, ||v|| < ||u||, $||v|| < ||\omega||$ and $||\omega|| < ||v||$, which is a contradiction, and Theorem is received. **Theorem 1.19.** Assume that $(B_1) - (B_3)$ hold, and

$$\begin{split} f(\zeta, u, u) &> \frac{u}{\Upsilon^2_{\alpha} \int_{\theta}^{1-\theta} G_{1\alpha}(\tau) a(\tau) d\tau}, \\ g(\zeta, v, v) &> \frac{v}{\Upsilon^2_{\beta} \int_{\theta}^{1-\theta} G_{1\beta}(\tau) b(\tau) d\tau}, \\ h(\zeta, \omega, \omega) &> \frac{\omega}{\Upsilon^2_{\gamma} \int_{\theta}^{1-\theta} G_{1\gamma}(\tau) c(\tau) d\tau}, \end{split}$$

for all $t \in [0,1]$, $u > 0, v > 0, \omega > 0$, then boundary value problem (2) has no positive solution.

Example 1.20. Consider the system of nonlinear fractional differential equations:

$$\begin{aligned}
D^{\frac{5}{3}}u(\tau) + \frac{\tau}{1+\tau}|sinv(\tau)| &= 0, D^{\frac{3}{2}}v(\tau) + \frac{\tau}{1+\tau}|sin\omega(\tau)| = 0, D^{\frac{4}{3}}\omega(\tau) \\
+ \frac{\tau}{1+\tau}|sinu(\tau)| &= 0, \quad 0 < \tau < 1, \\
u(0) &= 0, u(1) = \int_0^1 \tau u(\tau)d\tau, v(0) = 0, v(1) = \int_0^1 \tau v(\tau)d\tau, \omega(0) = 0, \\
\omega(1) &= \int_0^1 \tau \omega(\tau)d\tau.
\end{aligned}$$
(19)

Set $e(\tau), f(\tau), g(\tau) \in [0, +\infty)$ and $\tau \in [0, 1]$, then we have

$$\begin{split} & \left|\frac{\tau}{1+\tau}|sine(\tau)| - \frac{\tau}{1+\tau}|sinf(\tau)|\right| \leq \frac{\tau}{1+\tau} \Big|e(\tau) - f(\tau)\Big|,\\ & \left|\frac{\tau}{1+\tau}|sinf(\tau)| - \frac{\tau}{1+\tau}|sing(\tau)|\right| \leq \frac{\tau}{1+\tau} \Big|f(\tau) - g(\tau)\Big|,\\ & \left|\frac{\tau}{1+\tau}|sing(\tau)| - \frac{\tau}{1+\tau}|sine(\tau)|\right| \leq \frac{\tau}{1+\tau} \Big|g(\tau) - e(\tau)\Big|. \end{split}$$

Therefore,

$$\begin{split} \rho &= \int_0^1 G_{1\alpha}(\tau) a(\tau) m(\tau) d\tau \leq \int_0^1 G_{1\alpha}(\tau) d\tau, \\ \theta &= \int_0^1 G_{1\beta}(\tau) b(\tau) k(\tau) d\tau \leq \int_0^1 G_{1\beta}(\tau) d\tau, \\ \kappa &= \int_0^1 G_{1\gamma}(\tau) c(\tau) n(\tau) d\tau \leq \int_0^1 G_{1\gamma}(\tau) d\tau. \end{split}$$

With the use of Theorem 1.4, B.V.P (19) has a unique positive solution.

Example 1.21. Consider the system of nonlinear fractional differential equations:

$$\begin{aligned}
D^{\frac{5}{3}}u(\tau) + [v(\tau)]^{a} &= 0, D^{\frac{5}{3}}v(\tau) + [\omega(\tau)]^{b} = 0, D^{\frac{5}{3}}\omega(\tau) + [u(\tau)]^{c} = 0, \\
0 < \tau < 1, \\
u(0) &= 0, u(1) = \int_{0}^{1}\tau u(\tau)d\tau, v(0) = 0, v(1) = \int_{0}^{1}\tau v(\tau)d\tau, \omega(0) = 0, \\
\omega(1) &= \int_{0}^{1}\tau\omega(\tau)d\tau.
\end{aligned}$$
(20)

Let $f(\tau, v, v) = va$, $g(\tau, u, u) = ub$ and $h(\tau, \omega, \omega) = \omega c$, 0 < a, b, c < 1. It is easy to see that $(B_1) - (B_3)$ hold. By simple computation, we have $f_0 = g_0 = h_0 = \infty$ and $f^{\infty} = g^{\infty} = h^{\infty} = 0$. Thus it follows that problem (20) has a positive solution by (H_1) .

Example 1.22. Consider the system of nonlinear fractional differential equations:

$$\begin{cases}
D^{\frac{3}{2}}u(\tau) + [v(\tau)]^{a'} = 0, D^{\frac{3}{2}}v(\tau) + [\omega(\tau)]^{b'} = 0, D^{\frac{3}{2}}\omega(\tau) + [u(\tau)]^{c'} = 0, \\
0 < \tau < 1, \\
u(0) = 0, u(1) = \int_0^1 \tau u(\tau)d\tau, v(0) = 0, v(1) = \int_0^1 \tau v(\tau)d\tau, \omega(0) = 0, \\
\omega(1) = \int_0^1 \tau \omega(\tau)d\tau.
\end{cases}$$
(21)

Let $f(\tau, v, v) = va'$, $g(\tau, u, u) = ub'$ and $h(\tau, \omega, \omega) = \omega c'$, 0 < a', b', c' < 1. It is easy to see that $(B_1) - (B_3)$ hold. By simple computation, we have $f^0 = g^0 = h^0 = 0$ and $f_\infty = g_\infty = h_\infty = \infty$. Thus it follows that problem (21) has a positive solution by (H_3) .

References

- M. S. ABDO, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, Journal of Mathematical Analysis and Modeling, (2020)1(1): 33-46, doi:10.48185/jmam.v1i1.2.
- [2] B. Ahmad, J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl. 58 (2009) 1838-1843.
- [3] H. Afshari, M. Atapour, E. Karapınar, A discussion on a generalized Geraghty multi-valued mappings and applications. Adv. Differ. Equ. 2020, 356 (2020).
- [4] H. Afshari, D. Baleanu, Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel, Advances in Difference Equations, 140 (2020), Doi:10.1186/s13662-020-02592-2.
- [5] H. Afshari, S. Kalantari, D. Baleanu, Solution of fractional differential equations via α φ-Geraghty type mappings. Adv. Differ. Equ. 2018, 347(2018), https://doi.org/10.1186/s13662-018-1807-4.
- [6] H. Afshari, Solution of fractional differential equations in quasi-b-metric and b-metric-like spaces, Adv. Differ. Equ. 2018, 285(2018), https://doi.org/10.1186/s13662-019-2227-9.
- [7] H. Afshari, M. Sajjadmanesh, D. Baleanu, Existence and uniqueness of positive solutions for a new class of coupled system via fractional derivatives. Advances in Difference Equations. 2020 Dec;2020(1):1-8, https://doi.org/10.1186/s13662-020-02568-2.
- [8] H. Afshari, F. Jarad, and T., Abdeljawad, On a new fixed point theorem with an application on a coupled system of fractional differential equations. Advances in Difference Equations 2020.1 (2020): 1-13, https://doi.org/10.1186/s13662-020-02926-0.
- H. Aydi, E. Karapınar, W. Shatanawi, Tripled fixed point results in generalized metric spaces. J. Appl. Math. 10 (2012). Article ID 314279.

- [10] E. Karapınar, Couple fixed point theorems for nonlinear contractions in cone metric spaces Computers and Mathematics With Applications Volume: 59 Issue: 12 Pages: 3656-3668 Published: JUN 2010.
- [11] E. Karapınar, Fixed point theorems in cone Banach spaces, Fixed Point Theory Appl, (2009):9.
- [12] E. Karapınar, H.D. Binh, N.H. Luc, and N.H., Can, On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Advances in Difference Equations 2021, no. 1 (2021): 1-24.
- [13] E. Karapınar, S.I. Moustafa, A. Shehata, R.P. Agarwal, Fractional Hybrid Differential Equations and Coupled Fixed-Point Results for α -Admissible $F(\psi_1, \psi_1)$ -Contractions in *M*-Metric Spaces, Discrete Dynamics in Nature and Society, Volume 2020, Article ID 7126045, 13 pages https://doi.org/10.1155/2020/7126045,2020.
- [14] C. Li, X. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl. 59 (2010) 1363-1375.
- [15] H.R. Marasi, H. Afshari, M. Daneshbastam, C.B. Zhai, Fixed points of mixed monotone operators for existence and uniqueness of nonlinear fractional differential equations, Journal of Contemporary Mathematical Analysis, vol. 52, p. 8C13, (2017).
- [16] S. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput. Math. Appl. 59 (2010) 1300-1309.
- [17] Y. Zhao, et al., Positive solutions for boundary value problems of nonlinear fractional differential equations, Appl. Math. Comput. 217 (2011) 6950-6958.
- [18] V. Daftardar-Gejji, Positive solutions of a system of non-autonomous fractional differential equations, J. Math. Anal. Appl. 302 (2005) 56-64.
- [19] J. Henderson, et al., Positive solutions for systems of generalized three-point nonlinear boundary value problems, Comment. Math. Univ. Carolin. 49 (2008) 79-91.
- [20] C. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. 23 (2010) 1050-1055.
- [21] H. Salem, On the existence of continuous solutions for a singular system of nonlinear fractional differential equations, Appl. Math. Comput. 198 (2008) 445-452.
- [22] X. Su, Existence of solution of boundary value problem for coupled system of fractional differential equations, Engrg. Math. 26 (2009) 134–137.
- [23] C. Bai, J. Fang, The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Appl. Math. Comput. 150 (2004) 611-621.
- [24] M. Rehman, R. Khan, A note on boundary value problems for a coupled system of fractional differential equations, Comput. Math. Appl. 61 (2011) 2630-2637.
- [25] W. Feng, et al., Existence of solutions for a singular system of nonlinear fractional differential equations, Comput. Math. Appl. 62 (2011) 1370-1378.
- [26] H. Shojaat, H. Afshari, M.S. Asgari, A new class of mixed monotone operators with concavity and applications to fractional differential equations, TWMS J. App. and Eng. Math. V.11, N.1, 2021, pp. 122-133.
- [27] X. Su, Boundaryvalue problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett. 22 (2009) 64-69.
- [28] A.A., Kilbas, H.M., Srivastava, j.j., Trujillo, (2006), Theory and applications of fractiona differential equations, North-Holland Mathematics Studies. 204(204) 7-10.
- [29] Podlubny, I. (1999), Fractional Differential Equations, Academic Press, New york.
- [30] J. Wang, H. Xiang, Z. Liu, Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations, Internat. J. Differ. Equ. 2010 (2010) 12. Article ID 186928.
- [31] W. Yang, Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions, Computers and Mathematics with Applications 63 (2012) 288-297.
- [32] E. Zeidler, Nonlinear Functional Analysis and Its Applications-I: Fixed-Point Theorems, Springer, New York, NY, USA, 1986.
- [33] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, in: Mathematics and Its Applications, vol. 373, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.