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Abstract

The purpose of this paper, is studying the existence and nonexistence of positive solutions to a class of a
following tripled system of fractional differential equations.

Du(¢) + a(Q)F(¢,0(¢),w(Q)) =0,  w(0) =0, u(l)= fy é(Qu(()dC,
Dﬁv(g) + b(C)g(Cv U(C),M(C)) =0, U(O) =0, fo dC,
D7w(Q) + e(Q)h(C, u((), v(()) =0, w(0) =0, f() ¢)dc¢,

where 0 < ¢ < 1,1 < a,8,7 <2, a,b,c € C(0,1),[0,00)), ¢,%,7 € L'[0,1] are nonnegative and f,g,h €
C([0,1] x [0,00) x [0,00),[0,00)) and D is the standard Riemann-Liouville fractional derivative.
Also, we provide some examples to demonstrate the validity of our results.
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1. Introduction

E. Karapinar and coauthors obtained some fixed point results and applied them to proving the existence
and uniqueness of positive solutions for functional boundary value problem (see [I]-[17], [I5], [26]). In recent
years, some systems of nonlinear fractional differential equations were examined by many authors, [18]-[25]
and other references. In [27], Su investigated some conditions for the existence of solutions for a coupled
system of two-point fractional boundary value problem.

In [31] the authors studied the existence and nonexistence of positive solutions to boundary values problem
for a coupled system of nonlinear fractional differential equations as follows:

Du(¢) +a(¢)f(¢,0(¢) =0, w(0) =0, u(l)= fy d(Qu(¢)dC,

DO+ (G u) =0, w(0) =0, w(1) = L p(Cu(0)dC, o

where 0 < ¢ < 1,1 < o,8 < 2, a,b € C((0,1),[0,00)), #,9 € L'[0,1] are nonnegative and f,g €
C([0,1] x [O 00), [0,00)) and D is the standard Riemann-Liouville fractional derivative.

In this paper we study the equations

Dau(C) + a(()f(C7U(C)aw(C)) =0, U(O) =0, fo dC>
DFo(¢) + (g (¢, u(¢),w(€) =0, w(0) =0, = Jo $(Qv(Q)dC, (2)
DYw(C) + c(Oh(C,u(C), v(C) =0,  w(0) =0, = Jo n(Qw(Q)dc,

a,B,7 < 2, a,b,c € C((0,1),[0,00)), &,¢,n € LY0,1] are nonnegative and
[0,00),]0,00)) and D is the standard Riemann-Liouville fractional derivative.

Definition 1.1. [28, [29] The Riemann-Liouville fractional derivative for a continuous function f is defined
by

D50 = g " [ e, (=14 D

where the right-hand side is point-wise defined on (0,00).

Definition 1.2. [28, [29] Let [a,b] be an interval in R and v > 0. The Riemann-Liouville fractional order
integral of a function f € L'([a,b],R) is defined by

v _ 1 i f(C)
B0 = 175 [ o g

whenever the integral exists.

Lemma 1.3. (Nonlinear Differentiation of Leray-Schauder Type, [32]). Let E be a Banach space with C C E
closed and convex. Let U be a relatively open subset of C with 0 € U and let T : U — C be a continuous and
compact mapping. Then either

(a) the mapping T has a fizved point in U,

or (b) there exist u € OU and X € (0,1) with u = \Tu.

Lemma 1.4. (Fized-Point Theorem of Cone Ezpansion and Compression of Norm Type, See [35]). Let P be
a cone of real Banach space E, and let 1 and Qo be two bounded open sets in E such that 0 € 0y C Q1 C Qo.

Let operator A : PN(Qy—Q1) — P be completely continuous operator. Suppose that one of the two conditions
holds:
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(11) ||Aul] < ||lul|, for all w € PN OQ; ||Aul| > ||ull, for all u € PN OQe;
(i2) ||Aul| > ||lull, for all w € PN o ; ||Aul|| < |ull, for all u € P N Os.

Then A has at least one fived point in PN (Qa — Q1).
Lemma 1.5. Assume that fol " 1p(Q)d¢ # 1. Then for any o € C[0,1], the unique solution of boundary

value problem
{ D'u(()+0(()=0, 0<7<1,
u(0) =0, u(l) = [y ¢(¢)u(Q)dc,

is given by )
= G ) d
Q) = [ Gl otryar

where

Glu(ga T) = GQV(C_:7 T) + G31/(<7 T)a (Ca 7-) € [07 1] X [07 1]7 (3)
with

I B e e ) L (S S e A G ¥
G2V(C7T)_F(V){ Cz/fl(l_,]_)ufl’ OSCSTﬁl

and

Gau((,7) = oz Jo Gow(&)O(QdC.

We call G = (G1,, G1yr, G1,7) the Green’s functions of the boundary value problem (12).
Lemma 1.6. If flo o(T)r~tdr €]0,1), the function G1,(7,¢) defined by satisfies

(11) G1u(7,¢) > 0 is continuous for all 7,¢ € [0,1], G1,(7,¢) > 0 for all 7,¢ € (0,1);

(i2) G1u(1,¢) < G1u(C) f each 7, € (0,1), and
mlnTE[@ 1-0] GlV(T C) ( ); where 6 € (07 %) and

G1,(¢) = Ga,(¢,¢) + G3,(1,C), T, =61,

We will discuss the existence of positive solutions for boundary value problem . First of all, we define
the Banach space

X ={u(Q)|u(¢) € C[0,1]} endowed with the norm|ul||x = m{g}i] lul,

Y = {v({)|v(¢) € C[0,1]} endowed with the norm|v|ly = Cm[%}i} [v],
€10,

Z ={w({)|w(¢) € C[0,1]} endowed with the norm|w|z = m[a)i] |w].

For (u,v,w) € X XY x Z, let ||(u,v,w)| xxyxz = max{||ul|x, [|[v|y, ||w||z}. Clearly,

(X XY x Z,||(u,v,w)||xxyxz) is a Banach space. Define,

P = {(u,v w) € X XY x Zu(¢) > 0,v(¢) > 0,w(¢) > 0}, then the cone P C X xY x Z. Let Jp = [0,1—0]
for 6 € (0,%) and

K- { (u,v,w) € P,min ¢, u(1) > Tollul, }
minre s, v(7) = Tgllv]l, minze 5, w(r) > Ty [lw]|

K, ={ (u,v,w) € K, |(u,v,w)|| <7 },

0K, = { (u,v,w) € K, ||(u,v,w)| =7 }

From Lemma [1.5] we can obtain the following lemma.
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Lemma 1.7. Suppose that f(t,v,w), g(t,u,w) and h(t,u,v) are continuous, then (u,v,w) € X XY X Z is
a solution of B.V.P if and only if
(u,v,w) € X XY X Z is a solution of the integral equations

= fol Gia(C,T)a(r) f(r,v(7),w(T))dT,
0(€) = Ji Gra(¢,m)b(T)g(T, u(T), w(T))dr,

= Jy Gy (&, T)e(m)h (T, ul7), v(7))dr.
Let T : X XY X Z = X XY X Z be the operator defined as

T, v,) / Gira(C, P)a(m) £ (r, v(r),w(r))dr, (4)

1
/0 G1p(C, 7)b(T)g (T, u(T), w(T ))dT’/O G14(C, 7)e(T)h(7, u(7), v(T))dr)
=: (Thu(C), T2v(¢), T3w(¢)), (5)
then by Lemma , the fized point of operator T coincides with the solution of system .

Lemma 1.8. Let f(7,v,v), g(7,u,u) and h(T,w,w) be continuous on
[0, 1] x [0, 400) x [0, 400) — [0,4+00), then T : P — P, T : K — K defined by (4] are completely continuous.

Proof. Since Lemma (1.8)) is similar to Lemma (1.8) in [2] and [30] we omit the proof Lemma ([1.8). O

Theorem 1.9. Assume that a(1), b(T) and c(7), are continuous on
(0,1) = [0,400) and f(1,v(7),w(7)), g(T,u(T),w(T)) and h(7,u(T),v(T)) are continuous on [0,1] x [0, c0) X
[0,00) — [0,00), and there exist three positive functions m(t), n(T) and k(7) that satisfy

(L1) f(7,02,w2) — f(7,v1,w1) < m(7) max{|vy — v1|, jwa — w1},

(L2) g(7,ug,w2) — g(7,u1,w1) < k(1) max{|uz — u1l, |we —w1l},

(L3) h(r,u2,v2) — h(T,u1,v1) < n(r) max{|ve — v1|, |us — u1|},
for 7 €(0,1), v1,v2, w1, ws, ut,ug € (0,400).

Then system has a unique positive solution if
1
p= / Gio(T)a(r)m(7)dr < 1,
0
1
o / Gra(P)b(r)k()dr < 1,

= / G (P)e(r)n(r)dr < 1. (6)
Proof. For all (u,v,w) € P by the nonnegativeness of G(¢, ) and a(7), b(7), c(7), f(7,v(7),w(7T)), (7, u(T),w(7)),
h(7,u(7),v(T)), we have
T(u,v,w) > 0. Hence, T(P) C P. From Lemma [1.6] we obtain

||T1U2 — Tl’UlH = Iél[aX] |T1U2 — T11)1|

1
= max I(/0 G1a(C; T)a(T)[f (7, v2(7),w(7)) = f(7, 01(7), w(7))])d]

¢elo,1]

1
< (| Gua(matrymr)drlies = ol = pllez = o] (7)
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Similarly,

| Tyug — Tour || < 0]jug — uy| (8)

and
[ T3w2 — Twi || < Kl|ws — wi| (9)

From (7)), to (9), we get
T (uz, va,w2) — T(ur,v1,wr)|| < max(p,0, k)| (uz, v, w2) — (u1,v1,w)]|

From Lemma (1.8)), 7" is completely continuous, by Banach fixed point theorem, the operator 7" has a unique
fixed point in P, which is the unique positive solution of system . This completes the proof. O

Theorem 1.10. Assume that a(1), b(T) and c(7), are continuous on
(0,1) = [0, +00) and f(1,v(7),w(T)), g(T,u(T),w()) and h(7,u(T),v(T)) are continuous on [0, 1] x [0, 00) X
[0,00) — [0,00), and satisfy

(La) [f(7,0(7),w(T))| < a1(7) + az(7) max{[v(7)], lw(T)[},
(Ls) |g(r,u(r),w(7))| < b1(7) + ba(7) max{[u(r)], |w(T)]},
(Le) |h(T u(r),v(r))| §01(7)+C2(T)max{lv( ) lu(r )\}
(L7) A fo Gia(T)a(r)ag(T)dr < 1,B; = fo Gia(T)a(T)a

(Lg) A fo G1a(T)b(T)bo(T)dT < 1, By = fo G1(T)b(T)b1(T)dT < 00,
(Lg) A (T)c

ay
( (7

Ly fO Gl'y ) ( )dT <1,Bs = fO Gl’y ( ) (T)dT < 00.

Then the system (2) has at least one positive solution (u,v,w) in

(T)dT < o0,

Q={ (wv,w) € P (uv,w)| <min(2h, 25, 145 b
Proof. Let Q@ ={ (u,v,w) € P: ||(u,v,w)|| <r } with

A A, As
1-B,’1-By 1—Bs

r = min(

).

Define the operator T': Q — P as (). Let (u,v,w) € @, that is,
||(u,v,w)|| < r. Then

[Tyl = max | ; Gra(C 7)a(r) f(1,0(7), w(7))dr|
= Gla(T)a(T)( 1(7) + az(7)|v(7)[)dr

/Gm Pax(r m+/Gm a(r)as(r)dr[v(r)]|
= B1 + Aiflo(7)|| < .

Similarly, || Tov|| < 7, || T3w| < 7. So, T(u,v,w) < (r,r,7) and hence T(u,v,w) € Q. From Lemma (1.8)), we
have T : Q — Q is completely continuous. Consider the eigenvalue problem

(u,v,w) = AT (u,v,w), A e (0,1). (10)
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Under the assumption that (u,v,w) is a solution of for A € (0,1), we have
1
Jull = IXTil = mas | [ GralG,m)a(r)f (7, v(r), ()|
¢efo,1]  Jo
1
< / Gia(T)a(r)(a1(7) + az(7)|v(7)|)dr

/ Gra(P)a(r)ay(r)dr + / Gra(r)a(r)as(r)dr|fo(r)]
= By + Adflo(r)] <.

Similarly, ||v|| = ||TeAv|| < 7, |Jw|| = || T3 \w]| < 7, so, ||(u,v,w)| < r, which shows that (u,v,w) € 9Q. By
Lemma [[.3] T has a fixed point in ). We complete the proof of theorem [I.10] O

Remark 1.11. In the following we need the following assumptions and some notations:
(B1) a,b,c € C((0,1),[0,00)), a(T) # 0, b(T) # 0, ¢(7) # 0 on any subinterval of (0,1) and

0</G1a d7'<OO

0 < fol Gi5(T)b(T)dT < 00 and 0 < fo Gi(7)e(T)dr < 00 where Gio, Gis and G are defined in
Lemma |1.6]

(B2) f.9.h € C([0,1] % [0,00) x [0,00), [0, 00)) and F(¢,0,0) =0,
9(¢,0,0) =0 and h(¢,0,0) = 0 uniformly with respect to ¢ on [0,1];

(Bs) A\, p,v €[0,1) where \, u,v is defined as follows:

1 1 .
= [foc e, n= [ w0 ta and v [ e
0 0 0

let
f(c7 u7u) f(C?u’ u)

f = limsup max ————=, fs = liminf min ——"—=/
u—d§  CE[0,1] u u—4  (€[0,1] u

where ¢ denotes 0 or oo, and

o1 = /Gm T)dT, 09= /Glﬁ T)dT and 03—/ Giy(7)e(T)dr.

Theorem 1.12. Assume that (B1)—(Bs) hold. And supposes that one of the following conditions is satisfied:

1 %) 1 : 0 _ 0o __ .
(Hy) fo> T2 T G (et and f* < ;- (particularly, f° = oo and > =0);
1

12 [y~ Gig(r)b(r)dr

and goo < O'Lz (particularl% gO = 0 and goo — 0)}
1 0 1 . 0 _ o
ho = 12 [y~ Gy (n)e(r)dr and h* < - (particularly, h” = oo and h> =0).

(Hg) There exist two constants ro, Ry with 0 < ro < Ry such that f((,.,.), 9(C,.,.) and h(C,.,.) are nonde-
creasing on [0, Ra] for all ¢ € [0,1],

go >

]
f C,TQT‘ aTaT > s
( 2 Yor2) 12 (170 Gro(r)alr)dr
T2
g CvT r?aT T2 ;
(6 Tpr2, Tra) 2 T2 (170 G (r)b(r)dr
T2

e ”T2)>T2 G (r)e(r)dr

and f(¢, Rg, Ry) < — 9(¢, Ry, R) < G2 (C,RQ,RQ) < % for all ¢ € [0,1]. Then boundary value
problem . ) has at least one positive solutzon
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Proof. Let T be cone preserving completely continuous that is defined by .

Casel. The condition (H;) holds. Considering fy > T gGl P there exists r1 > 0 such that
la a(T)aT
f(t,v,v) = (fo —e1)v, for all t € [0,1], v € [0,71], where g1 > 0, satisfies
1-6
(fo—e1)Ya Gia(T)a(r)dr > 1.
0

Then, for t € [0, 1], (u,v,w) € 0K,,, we get

Tyt / Gra(C, 7)a(P) f (7, v(r), v(r))dr
> T, / Cro(P)a(r) f (7, 0(7), v(7))dr
> T, /Gla (fo—er)v(r)dr

0 — 81 / Gla dTHvH

> ||l

Similarly, we have Tow(t) > ||w||, T3u(t) > ||u| that is
(u,v,w) € OK,, implies that
1T (u, v, )| = [ (u, v, ). (11)

On the other hand, for f* < 1/, there exists Ry > 0 such that f(t,v,v) = (fs + €2)v, for t € [0,1],
€ (Ry,+00), where g2 > 0 satisfies 01(f> +e2) = 1. Set M = mawyc(o,1)vefo,r,) f (¢ v,v), then

f(t,v,v) = M + (f*° + e2)v. Choose

Ry > max{ry, Ri, Mo1(1 — o1(f* +€2))~'}. Then, for t € [0,1], (u,v,w) € KR, , we get

gM/ Ghra(T d¢+/ Gia(T)a(T)(f* + e2)dT||v]|

< Ry —01(f* 4+ e2)R1 + (f* + e2)a1||v]|
< R;.

Similarly, we have Tsu(t) < |ju||, Tow(t) < ||w|| that is
(u,v,w) € OKg, implies that

1T (u, v, )| < [ (w, v, 0)- (12)
Case2. The condition (Hs) holds. For (u,v,w) € K, from the definition of K, we obtain that

mine ju(t) = Tollull, minies,v(t) = Tplloll, mintesw(t) > Tyllw].
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Therefore, for (u,v,w) € K, , we have ||(u,v,w)| = rq for t € Jp . From (Ha), we have

Trolt / Gra (G, P)a(r) f(7,0(7), v(7))dr

> 7T, ; Gla( Ja(T)f(T,v(T),v(T))dT
> T, 2 o G d
T, f Gla Ya(T)dT Jo ta{r)a(r)dr

=T9.

Similarly, we have Tsu(t) > ro, Thw(t) > ro that is (u,v,w) € 0K, implies that
1T (u, v, )| = [ (u, v, @) (13)

On the other hand, for (u,v,w) € 0Kg, , we have that (u,v,w) = Ry for t € [0,1], from (Ha), we
obtain

Trolt / Gia(¢,T)a(r) (7, 0(7), v(r))dr
< Y. / Gira(T)a(7) f(r, v(r), v(7))dr

<*T / Gla

Similarly, we have Tsu(t) < Ra, Thw(t) < Rj that is (u,v,w) € 0Kp, implies that
1T (u, v, )| < [ (u, 0, 0)]- (14)

Applying Lemmato and (12 . or ([13) and (14), yields that T has a fixed point (7,7,®) € K, r
or (u,v,w) € K, g, (i =1,2) with u(t) = OéHuH >0, v(t) = Ygl|v]| > 0 and w(t) = Y, ||w| > 0. Thus

it follows that boundary value problems (1.1) has a positive solution (u,v,w). We complete the proof
of Theorem

O
Similarly, we have the following result.

Theorem 1.13. Assume that (B1)—(B3) hold. And supposes that the following three conditions are satisfied:

0_ 1 1 : 0_ )

(H3) fY< e and foo > N 1a(7)a(T)dT (particularly, f* =0 and foo = 0);
¢° < L and goo > T3 TG (Perticularty, g° = 0 and goo = 00);

ho < a%, and hoo > T GL( Y (partzcularly, RO =0 and he = 00).

Then boundary value problem has at least one positive solution.

Theorem 1.14. Assume that (B1) — (B3) hold. And supposes that the following two conditions are satisfied:
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1 1
<H4) fo> T2 f;ie Gia(T)a(T)dr and foo > T2 f;ie Gia(T)a(r)dr
(particularly, = fo = 00);

go > and goo > L

T% f;ie G1(T)b(T)dT

T[Qj f0179 G1(T)b(T)dT
(particularly, ¢° = goo = 00);

1 1
ho > T2 fel_e Gi~(T)e(T)dr and hoo > T2 f91—9 Gi~(T)e(r)dr

(particularly, h° = hoo = 00).

(Hs) there exists b > 0 such that

a ) Wy < b ) a, s U,y < b
CE[O,I],{E,U}L)EGKZ,]C(C b u) /Jl Ce[O,l},Eﬂ,vi)eaKbg(C v v) /02
and
max h(¢,w,w) < b/os.

C€[071]7(u7v7w)€8Kb

Then boundary value problem has at least two positive solutions (uy, vy, w1),
(ug2,v2,w2), which satisfy

0< H(ul,vl,wl)H <b< H(UQ,'UQ,WQ)H. (15)

Proof. We consider condition (H4). Choose r, R with 0 <7 < b < R.

1 1 1
If fo> 12 [0 Gra(r)a(r)dr’ go > 12 [} 77 Cip(r)b(r)dr and ho > 12 (10 Gy (T)e(r)dr

, we have

, then similar to the proof of

1T (u, 0, )| = [|(u, v, @),

for

(u,v,w) € 0K,. (16)

and hso >

y Joo > , then similar to the proof

It - 1 1 1
foo > 12 [0 Gra(r)a(r)dr 12 [y~ Gip(r)b(r)dr T2 [0 Gry(r)e(r)dr

of (3.6), we have

1T (u, v, )| = [|(w, 0,w)[[,  for  (u,v,w) € OKRg. (17)

On the other hand, together with (Hs), (u,v,w) € 0K}, we have

1

TIU(C) == Gla(C,T)CL(T)f<T,U(T),W(T))dT

0
1
< i Gia(T)a(T) f(T,0(7), w(T))dT
b 1
< — Gia(T)a(T)dr
01 0

Similarly, we have T3u({) < b, Tow(() < b, that is (u,v,w) € K} implies that

1T (u, v, )| < [ (w, 0, 0)]- (18)
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Applying Lemma [1.4 u to

— (18) yields that T has a fixed point
(u1,v1,wi) € 0Ky, and a ﬁxed point (ug, ve, ws) € 0Ky g. Thus it follows that boundary value problem .
has at least two positive solutions (u1,v1,wi) and (ug2,v2,w2). Noticing ., we have (u1,v1,w1) # b and

(ug, v, ws) # b. Therefore holds, and the proof is complete.

Similarly, we have the following results.

Theorem 1.15. Assume that (By) — (Bs) hold. And supposes that the following conditions is satisfied:

(Hg) fO<1/oy and f>* < 1/a1; ¢° < 1/0o9 and g>° < 1/oq; hY < 1/o3 and h*™ < 1/03.

(H7) there exists B > 0 such that

max  f(Cusu) >

Ce [071} ’ (U,U,w)GaKB

max
¢€l0,1],(u,v,w)E0Kp

max
Ce [0,1],(U,U,M)EBKB

B

9(¢;0,0) >

)

Yo f91_9 Gia(T)a(T)dT

B

h(¢,w,w) >

Ts [, " Grp(r)b(r)dr’

B
1, [0 Guy(r)e(r)dr

Then boundary value problem has at least two positive solutions (uy, vy, w1),

(ug2,ve,w2), which satisfy

0 < ||(ug,v1,w1)| < B < ||(ug2,v2,w2)]|-

Theorem 1.16. Assume that (By) —

(B3) hold. If there exist 3l positive numbers dy, Dy, k = 1,2,---

with
d1<TaD1<D1<d2<TaD2<D2<-"<dl<TaDl<Dl,
dy <YgD1 <Dy <dy <TgDy<Dy<---<d <TgDy <D
and
dy <T7D1 < Dy <dy <T7D2<D2<"' <dl <T7Dl <Dl,
such that
(Hs) ;
F(Cuu) > i ,
( ) T, fol Gia(T)a(T)dr
for
(<7u7u) € [071} X [Tadkadk] X [Tadkad/ﬂ]
and
f(C7 u, U) = Glek
for
((,u,u) S [0, 1] X [TaDk,Dk] X [TaDk,Dk],k? =1,2,--- ,l.
Also p
g(¢,v,v) > ‘

Y5 fy Giplr

)b(r)dr

O

N
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for
(¢,v,v) € [0,1] x [Ypgdg, di] x [T gdy, d]
and
g(<7vvv) = Ul_le
for
(C,’U,U) € [07 1] X [TﬁDkaDk] X [TﬁDkaDkLk - 1727' T 7l'
And also J
WG w,w) > ——— :
T, fo GIV(T)C(T)dT
for
(C,W,OJ) S [07 1] X [T’}’dkvdk‘} X [T'ydk’adk]
and
h(vavw) = Ulek
for

(C,W,W) € [0’ 1] X [T’YD]C)D]C] X [T’YDkaDk]vk - 1)27"' 7l‘

Then boundary value problem has at least | positive solutions (ug, vk, wy) which satisfy

di, < || (u, v, wip)|| < Dy, k=1,2,--- 1.

Theorem 1.17. Assume that (B1) — (Bs) hold. If there exist 3l positive numbers dy, Dy, k = 1,2,---

with di < D1 <do < Dy < --- < d; < D; such that

(Hy) f(¢,.,.), g(C,.,.) and h(C,.,.) are nondecreasing on [0, D;] for all t € [0,1].
(Hio)

dy

T, fel_e Gia(T)a(T)dr

f(Ca Tadka Tadk) >

9

and
f(¢, Dy, Dy) <0y Dy =1,2,-- 1.
Also )
k
g(<7T dk,T dk) > — ,
o Ty [y’ Gip(r)b(r)dr
and
9(¢, Dy, D) < 07 ' Dy k= 1,2, -+ L.
And also ]
! ! T, fgl OGIW(T)C(T)dT
and

h(<7Dk7Dk) < Ul_lDlmk = 1727... ’l.
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Then boundary value problem has at least | positive solutions (ug, vk, wy) which satisfy
di < H(uk,vk,wk)H <Dy, k=1,2,---,L.
Now the nonexistence of positive solutions for boundary value problem .

Theorem 1.18. Suppose (B1) — (Bs) hold, f(¢,u,u) < oiu, g(¢,v,v) < ojv and h(¢,w,w) < oiw for all
¢€]0,1], u>0,v>0 and w > 0 then boundary value problem has no positive solution.

Proof. Assume to the contrary that (u,v,w) is a positive solution of the boundary value problem . Then

(u,v,w) € K, u>0,v>0andw>0for ¢ €[0,1], and

’W—ﬁ%@|—%ﬁ/GmQ (1) (7, v(7), o(r))dr

0
e ol
1a(T)a(r)—dr
0 o1
1 1
= — [ Gua(r)a(r)dr]lv
01
= [l
Similarly, ||v|| < ||u|l, [|[v]| < |w|| and |lw|| < ||v]|, which is a contradiction, and Theorem is received. O

Theorem 1.19. Assume that (B1) — (Bs) hold, and

u
JGuw > ;*GcthﬁmTwh’
v
9(¢v,0) > X2 1 (b )dr
B¢, w,w) > “ ,

12 f, " Gy (r)el(r)dr

for allt € [0,1], u > 0,v > 0,w > 0, then boundary value problem has no positive solution.
Example 1.20. Consider the system of nonlinear fractional differential equations:

D%U(T) + 1= Isinv(T)[ = 0, ng(T) + 1= sinw(T)| = 0, Dgw(T)
+izlsinu(T)[ =0, 0<7 <1,
(19)
u(0) =0,u(l) = fol Tu(r)dr,v(0) = fo Tv(T)dT,w(0) =0,
w(l) = fol Tw(T)dT.

Set e(7), f(7),9(T) € [0,+00) and T € [0, 1], then we have

\1+4mmwﬂ—l+ sind(r)| < T—elr) ~ £,
| Jsinf(r)] - 1 wmg < 17 =900,
1+7

’1—7;7’81”9( )\— ]sme H ‘ T —6(7’)‘
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Therefore,

1 1

p:/o Gla(T)a(T)m(T)dTS/O Gio(7)dT,
1 1

6= /0 G (Pb(r)k(7)dr < /0 Grg(r)dr,
1 1

/{z/ Gh,(T)C(T)n(T)dTg/ G (T)dT.
0 0

With the use of Theorem B.V.P has a unique positive solution.

Example 1.21. Consider the system of nonlinear fractional differential equations:

D3u(r) + [o(1)]* = 0, D3v(r) + [w(r)]> = 0, D3w(r) + [u(r)}¢ = 0,
0<7T<1,
(20)
u(0) = O,lu(l) = [ Tu(r)dr, v(0) = 0,0(1) = [5 Tv(7)dT,w(0) = 0,
w(l) = [, Tw(T)dr.

Let f(7,v,v) = va, g(T,u,u) = ub and h(r,w,w) = we, 0 < a,b,c < 1. It is easy to see that (By) — (B3)
hold. By simple computation, we have fo = go = hg = 00 and f*° = ¢ = h*>® = 0. Thus it follows that
problem has a positive solution by (Hy).

Example 1.22. Consider the system of nonlinear fractional differential equations:
D2u(r) + [o(m)]* = 0, D3v(r) + [w(r)] = 0,D2w(r) + [u(r)] =0,
0<7T<1,
(21)
w(0) = 0,u(1) = [ Tu(r)dr,v(0) = 0,v(1) = [ Tv(7)dT,w(0) = 0,
w(l) = fol Tw(T)dT.

Let f(r,v,v) =vd, g(T,u,u) = ub and h(r,w,w) =wd, 0 < d', b, < 1. It is easy to see that (By) — (Bs)
hold. By simple computation, we have f© = ¢° = h® = 0 and foo = goo = hoo = 00. Thus it follows that
problem has a positive solution by (Hs).
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