# Linear Convex Combination Estimators and Comparisons 

Selahattin KAÇIRANLAR ${ }^{1, *}$, Issam A. DAWOUD², Dünya KARAPINAR ${ }^{3}$<br>${ }^{1}$ Çukurova University, Faculty of Science and Letters, Department of Statistics, Adana, Türkiye skacır@cu.edu.tr,ORCID: 0000-0003-0678-7935<br>${ }^{2}$ Al-Aqsa University, Faculty of Applied Sciences, Department of Mathematics, Gaza, Palestina isamdawoud@gmail.com, ORCID: 0000-0002-6733-7308<br>${ }^{3}$ Karadeniz Technical University, Faculty of Science, Department of Mathematics, Trabzon, Türkiye dunyakarapinar@ktu.edu.tr,ORCID: 0000-0001-5516-4780

Received: 31.05.2021
Accepted: 05.10.2021
Published: 31.12.2021


#### Abstract

In this paper, we introduce two linear convex combination estimators by using known estimators such as ordinary least squares, ridge and Liu estimators and examine the predictive performance of these estimators. Furthermore, a numerical example is examined to compare these estimators under the prediction mean squared error criterion.


Keywords: Biased estimation; Ridge estimator; Linear convex combination; Liu estimator; Prediction mean square error.

## Lineer Konveks Kombinasyon Tahmin Ediciler ve Karşılaştırmalar

Öz

Bu makalede, en küçük kareler, ridge ve Liu tahmin ediciler gibi bilinen tahmin edicilerle öngörü performansını karşılaştırmak için iki lineer konveks kombinasyon tahmin edicisi
tanımlanmıştır. Ayrıca, öngörü hata kareleri ortalaması kriterine göre bu tahmin edicilerin karşılaştrılmaları bir sayısal örnek ile incelenmiştir.

Anahtar Kelimeler: Yanlı tahmin; Ridge tahmin edici; Lineer konveks kombinasyon; Liu tahmin edici; Öngörü hata kareleri ortalaması.

## 1. Introduction

Consider the following multiple linear regression model:

$$
\begin{equation*}
y=X \beta+\varepsilon, \tag{1}
\end{equation*}
$$

where $y$ is an $n x 1$ vector of responses, $X$ is an $n x p$ full column rank matrix of explanatory variables, $\beta$ is a $p x 1$ vector of unknown parameters, and $\varepsilon$ is an $n x 1$ vector of random errors with iid $\left(0, \sigma^{2}\right)$.

The ordinary least squares (OLS) estimator is given by
$\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$.
In the presence of multicollinearity, the OLS estimator is unstable and gives unreliable information. As biased alternatives, ridge, Liu, and two-parameter estimators can be handled in this context.

Hoerl and Kennard [1] proposed the ordinary ridge regression (ORR) estimator which is given by

$$
\begin{equation*}
\hat{\beta}(k)=\left(X^{\prime} X+k I\right)^{-1} X^{\prime} y, \quad k \geq 0, \tag{3}
\end{equation*}
$$

where $k$ is the biasing parameter. The ORR estimator was commonly used in applied researches. For example; Askin [2] suggested several approaches for extending estimation results to forecasting with multicollinearity, Montgomery and Friedman [3] examined several biased estimation methods for forecasting and prediction with multicollinearity.

Liu [4] defined the following alternative biased estimator dealing with multicollinearity

$$
\begin{align*}
\hat{\beta}(d) & =\left(X^{\prime} X+I\right)^{-1}\left(X^{\prime} y+d \hat{\beta}\right) \\
& =\left(X^{\prime} X+I\right)^{-1}\left(X^{\prime} X+d I\right) \hat{\beta}, 0<d<1, \tag{4}
\end{align*}
$$

where $d$ is the biasing parameter. $\hat{\beta}(d)$ is called the Liu estimator by Akdeniz and Kaçıranlar [5]. Liu estimator has an advantage over the ORR estimator because it is a linear function of $d$ and it has smaller mean square error (MSE) than the OLS estimator. Sakalloğlu et al. [6] compared the performance of Liu estimator with the ORR and the iterative estimators using the matrix MSE
(MMSE) criterion. In the literature, Liu and Liu-type estimators were widely used in linear models.

Furthermore, Özkale and Kaçıranlar [7] introduced a new two-parameter estimator (TPE) by grafting the contraction estimator into the modified ridge estimator proposed by Swindel [8]. This estimator is given by

$$
\begin{equation*}
\hat{\beta}(k, d)=\left(X^{\prime} X+k I\right)^{-1}\left(X^{\prime} y+k d \hat{\beta}\right), k \geq 0,0<d<1 . \tag{5}
\end{equation*}
$$

$\hat{\beta}(k, d)$ is a two-parameter variation of the Liu estimator. Özkale [9] has also noted that $\hat{\beta}(k, d)$ can also be demonstrated as

$$
\begin{equation*}
\hat{\beta}(k, d)=d \hat{\beta}+(1-d) \hat{\beta}(k) . \tag{6}
\end{equation*}
$$

The TPE is a convex combination of the OLS and the ORR estimator. It is also called the 'affine combination type' estimator by Özkale [9]. Using the mixed estimation method suggested by Theil [10] and Theil and Goldberger [11], we also derive $\hat{\beta}(k, d)$. Similar to the ORR and Liu estimator, $\hat{\beta}(k, d)$ was used both theoretically and practically by researchers in various fields. Özbay and Kaçıranlar [12] introduced Almon TPE based on the TPE procedure for the distiributed lag models. Özbay and Kaçıranlar [13] introduced a new two-parameter-weighted mixed estimator (TPWME) by unifying the weighted mixed estimator of Schaffrin and Toutenburg [14] and the TPE. Tekeli et al. [15] introduced new algorithms using genetic algorithm (GA) for estimating the biasing parameters of TPE. Çetinkaya and Kaçıranlar [16] introduced new TPE for negative binomial regression (NBR) and Poisson regression (PR) models by unifying the TPE.

Gruber $[17,18]$ demonstrated that $\hat{\beta}(k, d)$ is a special case of the linear Bayes, mixed and minimax estimators. This new estimator is a general estimator which includes the OLS, the ORR, the Liu, and the contraction estimators as special cases. We have the following properties:

1. $\lim _{d \rightarrow 1} \hat{\beta}(k, d)=\hat{\beta}$ and $\lim _{k \rightarrow 0} \hat{\beta}(k, d)=\hat{\beta}$
2. $\lim _{d \rightarrow 0} \hat{\beta}(k, d)=\hat{\beta}(k)$
3. For $k=1$, we get the Liu estimator, $\hat{\beta}(1, d)=\hat{\beta}(d)$
4. $\hat{\beta}(k, d)$ has the following alternative forms

$$
\begin{aligned}
\hat{\beta}(k, d) & =\left[I+k\left(X^{\prime} X\right)^{-1}\right]^{-1}(\hat{\beta}-d \hat{\beta})+d \hat{\beta} \\
& =\left(X^{\prime} X+k I\right)^{-1}\left(X^{\prime} X+k d I\right) \hat{\beta} .
\end{aligned}
$$

From this representation, it is clear that $\lim _{k \rightarrow \infty} \hat{\beta}(k, d)=d \hat{\beta}$, which is the contraction estimator [19]. In this sense, $\hat{\beta}(k, d)$ overcomes the disadvantage of the contraction estimator.

Then, Gruber [18] demonstrated that the Liu-type estimator can be given as follows:

$$
\begin{equation*}
\hat{\beta}_{L O B}=d \hat{\beta}+(1-d) \hat{\beta}_{b} \tag{7}
\end{equation*}
$$

where $d$ is a biasing parameter, $0<d<1$ and $\hat{\beta}_{b}$ is the linear Bayes estimator (see in details, p. 3741, Eqn. (3.7), Eqn. (3.8) for $\hat{\beta}_{b}$ and p. 3742, Eqn. (3.12) for $\hat{\beta}_{L O B}$ ).

Gruber [18] showed how the Liu-type estimator is optimal according to the Zellner's balanced loss function (ZBLF) criterion and compared the efficiency of the Liu-type estimator to the OLS estimator in terms of the MSE and the ZBLF criteria. A convex combination of two estimators can be useful when both estimators appear to be appropriate in a specific situation. Following the Liu-type estimator in Eqn. (7), we consider linear convex combination estimators taking the ORR and the Liu estimators as the special cases of $\hat{\beta}_{b}$. Then, the linear convex combination of the OLS estimator and the ORR estimator (LOR) can be given as follows:

$$
\begin{equation*}
\hat{\beta}_{L O R}=\hat{\beta}(k, d)=d \hat{\beta}+(1-d) \hat{\beta}(k), k \geq 0,0<d<1 . \tag{8}
\end{equation*}
$$

Similarly, we can define another linear convex combination of the OLS estimator and the Liu estimator as follows:

$$
\begin{equation*}
\hat{\beta}_{L O L}=\hat{\beta}(d, \gamma)=\gamma \hat{\beta}+(1-\gamma) \hat{\beta}(d) \tag{9}
\end{equation*}
$$

where $\gamma$ is an arbitrary scalar and $0 \leq \gamma \leq 1$. Also, $\hat{\beta}_{L O L}=\hat{\beta}(d, \gamma)$ in Eqn. (9) includes $\hat{\beta}$ and $\hat{\beta}(d)$ as special cases:

$$
\begin{aligned}
& \text { 1. } \lim _{\gamma \rightarrow 1} \hat{\beta}(d, \gamma)=\hat{\beta} \\
& \text { 2. } \lim _{\gamma \rightarrow 0} \hat{\beta}(d, \gamma)=\hat{\beta}(d) .
\end{aligned}
$$

Friedman and Montgomery [20] compared the predictive performance (PP) of the ORR, OLS and the principal component (PC) estimators according to the prediction mean square error (PMSE) criterion. Later, Özbey and Kaçıranlar [21] compared the Liu estimator with the OLS, PC and ORR estimators. Dawoud and Kaçıranlar [22] examined the PP of biased regression predictors with correlated errors. Dawoud and Kaçıranlar [23, 24] evaluated the PP of the r-k and r-d class estimators and they also focused on evaluating the PP of the Liu-type estimator which is
defined by Liu [25]. This estimator is different from Gruber's Liu-type estimator which is given in Eqn. (7). Following Özbey and Kaçıranlar [21] and Dawoud and Kaçıranlar [22], Li et al. [26] evaluated the PP of the principal component two-parameter estimator which is defined by Chang and Yang [27].

As a consequence, since $\hat{\beta}_{L O R}=\hat{\beta}(k, d)$ and $\hat{\beta}_{L O L}=\hat{\beta}(d, \gamma)$ are more general than the ORR and the Liu estimators, respectively. Therefore, the PP of the LOR and the LOL estimators are examined in the sense of the PMSE criterion. To examine the theoretical results, a numerical example study is conducted.

## 2. Comparisons of the Prediction Mean Squared Errors

We can obtain the PMSE of the LOR and the LOL estimators. The PMSE of a predictor $\hat{y}_{0}$ is given by

$$
\begin{equation*}
P M S E=E\left(y_{0}-\hat{y}_{0}\right)^{2} \tag{10}
\end{equation*}
$$

where $y_{0}$ is the value to be predicted. Let $J$ represents the PMSE. $J$ is the sum of the variance $(V)$ and the squared bias $(B)$ :

$$
\begin{equation*}
J=V+B \tag{11}
\end{equation*}
$$

The variance and the bias can be given as follows:

$$
\begin{equation*}
V\left(y_{0}-\hat{y}_{0}\right)=V\left(y_{0}\right)+V\left(\hat{y}_{0}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { Bias }=E\left(y_{0}-\hat{y}_{0}\right) \tag{13}
\end{equation*}
$$

Now, we consider the following canonical form of the model (1)

$$
\begin{equation*}
y=Z \alpha+\varepsilon \tag{14}
\end{equation*}
$$

where $\alpha=U^{\prime} \beta$ and $Z=X U$. Then the OLS estimator of $\alpha$ is

$$
\begin{equation*}
\hat{\alpha}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} y=\Lambda^{-1} Z^{\prime} y \tag{15}
\end{equation*}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ is the matrix of the eigenvalues of $Z^{\prime} Z$ and for $i=1,2, \ldots, p \lambda_{i}{ }^{\prime}$ s are in descending order. Its PMSE is given by

$$
\begin{equation*}
J_{O L S}=\sigma^{2}\left(1+\sum_{i=1}^{p} \frac{z_{0 i}^{2}}{\lambda_{i}}\right) \tag{16}
\end{equation*}
$$

where $z_{0}$ is the orthonormalized point for $\hat{y}_{0}$. Since $\hat{\alpha}$ is unbiased, we have

$$
\begin{equation*}
J_{O L S}=V_{O L S} \tag{17}
\end{equation*}
$$

The ridge estimator of $\alpha$ is

$$
\begin{equation*}
\hat{\alpha}_{k}=\left(Z^{\prime} Z+k I\right)^{-1} Z^{\prime} y=(\Lambda+k I)^{-1} Z^{\prime} y, k \geq 0, \tag{18}
\end{equation*}
$$

and its PMSE is

$$
\begin{equation*}
J_{k}=\sigma^{2}\left(1+\sum_{i=1}^{p} \frac{z_{i 0}^{2} \lambda_{i}}{a_{i}^{2}}\right)+k^{2}\left(\sum_{i=1}^{p} \frac{z_{o i} \alpha_{i}}{a_{i}}\right)^{2}, \tag{19}
\end{equation*}
$$

where $a_{i}=\lambda_{i}+k$. The Liu estimator of $\alpha$ is

$$
\begin{align*}
\hat{\alpha}_{d} & =\left(Z^{\prime} Z+I\right)^{-1}\left(Z^{\prime} y+d \hat{\alpha}\right) \\
& =(\Lambda+I)^{-1}(\Lambda+d I) \hat{\alpha}, \quad 0<d<1, \tag{20}
\end{align*}
$$

and its PMSE is

$$
\begin{equation*}
J_{d}=\sigma^{2}\left(1+\sum_{i=1}^{p} \frac{z_{z_{i}}^{2} c_{i}^{2}}{\lambda_{i} b_{i}^{2}}\right)+(1-d)^{2}\left(\sum_{i=1}^{p} \frac{z_{o i} \alpha_{i}}{b_{i}}\right)^{2}, \tag{21}
\end{equation*}
$$

where $b_{i}=\lambda_{i}+1$ and $c_{i}=\lambda_{i}+d$. The LOR estimator or TPE of $\alpha$ is

$$
\begin{align*}
\hat{\alpha}_{L O R} & =\left[d\left(Z^{\prime} Z\right)^{-1}+(1-d)\left(Z^{\prime} Z+k I\right)^{-1}\right] Z^{\prime} y \\
& =\left[d \Lambda^{-1}+(1-d)(\Lambda+k I)^{-1}\right] Z^{\prime} y, k \geq 0 . \tag{22}
\end{align*}
$$

The variance and bias of the prediction error of the LOR estimator are given by respectively

$$
\begin{align*}
V_{\mathrm{LOR}}\left(y_{0}-\hat{y}_{0}\right) & =V\left(y_{0}\right)+V_{\mathrm{LOR}}\left(\hat{y}_{0}\right) \\
& =\sigma^{2}+V\left(z_{0}^{\prime} \hat{\alpha}_{\mathrm{LOR}}\right) \\
& =\sigma^{2}\left(1+\sum_{i=1}^{p} \frac{\left[(1-d) \lambda_{i}+d a_{i}\right]^{2} z_{0 i}^{2}}{\lambda_{i} a_{i}^{2}}\right), \tag{23}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Bias}_{\mathrm{LOR}} & =E\left(y_{0}-\hat{y}_{0}\right)=z_{0}^{\prime} \alpha-z_{0}^{\prime} E\left(\hat{\alpha}_{\mathrm{LOR}}\right) \\
& =k(1-d) \sum_{i=1}^{p} \frac{z_{o i} \alpha_{i}}{a_{i}} . \tag{24}
\end{align*}
$$

So, the squared bias is

$$
\begin{equation*}
B_{\mathrm{LOR}}=\operatorname{Bias}_{\mathrm{LOR}}^{2}=k^{2}(1-d)^{2}\left(\sum_{i=1}^{p} \frac{z_{o} \alpha_{i}}{a_{i}}\right)^{2} . \tag{25}
\end{equation*}
$$

By summing up the variance and the squared bias of the LOR estimator we obtain

$$
\begin{align*}
J_{\mathrm{LOR}} & =V_{\mathrm{LOR}}+B_{\mathrm{LOR}} \\
& =\sigma^{2}\left(1+\sum_{i=1}^{p} \frac{\left[(1-d) \lambda_{i}+d a_{i}\right]^{2} z_{0 i}^{2}}{\lambda_{i} a_{i}^{2}}\right)+k^{2}(1-d)^{2}\left(\sum_{i=1}^{p} \frac{z_{o i} \alpha_{i}}{a_{i}}\right)^{2} . \tag{26}
\end{align*}
$$

The LOL estimator of $\alpha$ is

$$
\begin{align*}
\hat{\alpha}_{\mathrm{LOL}} & =\left[\gamma I+(1-\gamma)\left(Z^{\prime} Z+I\right)^{-1}\left(Z^{\prime} Z+d I\right)\right] \hat{\alpha} \\
& =\left[\gamma I+(1-\gamma)(\Lambda+I)^{-1}(\Lambda+d I)\right] \Lambda^{-1} Z^{\prime} y, 0<d<1 . \tag{27}
\end{align*}
$$

The variance of the prediction error of the LOL estimator is

$$
\begin{align*}
V_{\mathrm{LOL}}\left(y_{0}-\hat{y}_{0}\right) & =V\left(y_{0}\right)+V_{\mathrm{LOL}}\left(\hat{y}_{0}\right) \\
& =\sigma^{2}+V\left(z_{0}^{\prime} \hat{\alpha}_{\mathrm{LOL}}\right) \\
& =\sigma^{2}\left(1+\sum_{i=1}^{p} \frac{\left[\gamma b_{i}+(1-\gamma) c_{i}\right]^{2} z_{0 i}^{2}}{\lambda_{i} b_{i}^{2}}\right) . \tag{28}
\end{align*}
$$

Similarly, the bias, the squared bias and PMSE of the prediction error of the LOL estimator are given by respectively

$$
\begin{align*}
\operatorname{Bias}_{\mathrm{LOL}} & =E\left(y_{0}-\hat{y}_{0}\right)=z_{0}^{\prime} \alpha-z_{0}^{\prime} E\left(\hat{\alpha}_{\mathrm{LOL}}\right) \\
& =(1-\gamma)(1-d) \sum_{i=1}^{p} \frac{z_{o i} \alpha_{i}}{b_{i}},  \tag{29}\\
B_{\mathrm{LOL}}= & \operatorname{Bias}_{\mathrm{LOL}}^{2}=(1-\gamma)^{2}(1-d)^{2}\left(\sum_{i=1}^{p} \frac{z_{o i} \alpha_{i}}{b_{i}}\right)^{2}, \tag{30}
\end{align*}
$$

and

$$
\begin{align*}
J_{\mathrm{LOL}} & =V_{\mathrm{LOL}}+B_{\mathrm{LOL}} \\
& =\sigma^{2}\left(1+\sum_{i=1}^{p} \frac{\left[\gamma b_{i}+(1-\gamma) c_{i}\right]^{2} z_{0 i}^{2}}{\lambda_{i} b_{i}^{2}}\right)+(1-\gamma)^{2}(1-d)^{2}\left(\sum_{i=1}^{p} \frac{z_{o i} \alpha_{i}}{b_{i}}\right)^{2} . \tag{31}
\end{align*}
$$

## 3. Comparisons of Prediction Mean Squared Errors in Two Dimensional Space

We will study the PP of the LOR and the LOL estimators. Considering a two-dimensional space, a single prediction point $\left(z_{01}, z_{02}\right)$ is to be predicted, the ratio $z_{02}^{2} / z_{01}^{2}$ can be obtained and used for a reference point in their comparisons. $\alpha_{1}^{2}$ will be set to zero because non-zero values of $\alpha_{1}^{2}$ increase only the intercept values for $J_{k}, J_{d}, J_{L O R}$ and $J_{L O L}$ but leave the curve for $J_{O L S}$ unchanged. So, comparisons of $J_{L O R}$ with $J_{O L S}$ and $J_{k}$ and $J_{L O L}$ with $J_{O L S}$ and $J_{d}$ will be made.

## Theorem 1.

a) If $\alpha_{2}^{2}>\frac{\sigma^{2}\left(a_{2}^{2}-\left((1-d) \lambda_{2}+d a_{2}\right)^{2}\right)}{\lambda_{2} k^{2}(1-d)^{2}}$, then
$-J_{L O R}<J_{O L S}$ for $a_{1}^{2}<\left((1-d) \lambda_{1}+d a_{1}\right)^{2}$,
$-J_{L O R}<J_{O L S} \Leftrightarrow \frac{z_{O 2}^{2}}{z_{01}^{2}}<f_{1}\left(\alpha_{2}^{2}\right)$ for $a_{1}^{2}>\left((1-d) \lambda_{1}+d a_{1}\right)^{2}$.
b) If $\alpha_{2}^{2}<\frac{\sigma^{2}\left(a_{2}^{2}-\left((1-d) \lambda_{2}+d a_{2}\right)^{2}\right)}{\lambda_{2} k^{2}(1-d)^{2}}$, then
$-J_{L O R}<J_{O L S}$ for $a_{1}^{2}>\left((1-d) \lambda_{1}+d a_{1}\right)^{2}$,
$-J_{L O R}<J_{O L S} \Leftrightarrow \frac{z_{O 2}^{2}}{z_{01}^{2}}<f_{1}\left(\alpha_{2}^{2}\right)$ for $a_{1}^{2}<\left((1-d) \lambda_{1}+d a_{1}\right)^{2}$,
where

$$
\begin{equation*}
\left.f_{1}\left(\alpha_{2}^{2}\right)=\frac{\sigma^{2}\left(\frac{1}{\lambda_{1}}\left((1-d) \lambda_{1}+d a_{1}\right)^{2}\right.}{\lambda_{1} a_{1}^{2}}\right) . \tag{32}
\end{equation*}
$$

Proof. If the LOR estimator is better than $\hat{\alpha}$, we have $J_{L O R}<J_{O L S}$. That is,

$$
\begin{aligned}
& \sigma^{2}+\sigma^{2}\left[\frac{\left((1-d) \lambda_{1}+d a_{1}\right)^{2} z_{01}^{2}}{\lambda_{1} a_{1}^{2}}+\frac{\left((1-d) \lambda_{2}+d a_{2}\right)^{2} z_{02}^{2}}{\lambda_{2} a_{2}^{2}}\right]+\frac{k^{2}(1-d)^{2} \alpha_{2}^{2} z_{02}^{2}}{a_{2}^{2}}< \\
& \sigma^{2}+\sigma^{2}\left(\frac{z_{01}^{2}}{\lambda_{1}}+\frac{z_{02}^{2}}{\lambda_{2}}\right) .
\end{aligned}
$$

Rearranging this inequality, we will obtain

$$
z_{02}^{2}\left(\frac{\sigma^{2}\left((1-d) \lambda_{2}+d a_{2}\right)^{2}}{\lambda_{2} a_{2}^{2}}+\frac{k^{2}(1-d)^{2} \alpha_{2}^{2}}{a_{2}^{2}}-\frac{\sigma^{2}}{\lambda_{2}}\right)<z_{01}^{2} \sigma^{2}\left(\frac{1}{\lambda_{1}}-\frac{\left((1-d) \lambda_{1}+d a_{1}\right)^{2}}{\lambda_{1} a_{1}^{2}}\right) .
$$

If both

$$
\begin{equation*}
\frac{\sigma^{2}\left((1-d) \lambda_{2}+d a_{2}\right)^{2}}{\lambda_{2} a_{2}^{2}}+\frac{k^{2}(1-d)^{2} \alpha_{2}^{2}}{a_{2}^{2}}-\frac{\sigma^{2}}{\lambda_{2}} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}\left(\frac{1}{\lambda_{1}}-\frac{\left((1-d) \lambda_{1}+d a_{1}\right)^{2}}{\lambda_{1} a_{1}^{2}}\right) \tag{34}
\end{equation*}
$$

have the same signs, the superiority condition of the LOR estimator over $\hat{\alpha}$ is

$$
\begin{equation*}
\frac{z_{02}^{2}}{z_{01}^{2}}<f_{1}\left(\alpha_{2}^{2}\right) . \tag{35}
\end{equation*}
$$

If Eqn. (33) and Eqn. (34) have opposite signs, we have

$$
\begin{equation*}
\frac{z_{02}^{2}}{z_{01}^{2}}>f_{1}\left(\alpha_{2}^{2}\right) . \tag{36}
\end{equation*}
$$

If Eqn. (33) and Eqn. (34) have different signs, the right-hand side of Eqn. (36) is smaller than zero, thus, Eqn. (36) always holds. That is, in this region the LOR estimator is superior to $\hat{\alpha}$. The condition for the positiveness of Eqn. (33) can be easily written as

$$
\begin{equation*}
\alpha_{2}^{2}>\frac{\sigma^{2}\left(a_{2}^{2}-\left((1-d) \lambda_{2}+d a_{2}\right)^{2}\right)}{\lambda_{2} k^{2}(1-d)^{2}} \tag{37}
\end{equation*}
$$

and the condition for the positiveness of Eqn. (34) can be given as

$$
\begin{equation*}
a_{1}^{2}>\left((1-d) \lambda_{1}+d a_{1}\right)^{2} \tag{38}
\end{equation*}
$$

The contrary conditions are required for the negativeness of Eqn. (33) and Eqn. (34). The vertical asymptote of the hyperbola $f_{1}\left(\alpha_{2}^{2}\right)$ is at the point

$$
\begin{equation*}
\alpha_{2}^{2}=\frac{\sigma^{2}\left(a_{2}^{2}-\left((1-d) \lambda_{2}+d a_{2}\right)^{2}\right)}{\lambda_{2} k^{2}(1-d)^{2}} \tag{39}
\end{equation*}
$$

Corollary 1. If $d=0$ in Theorem 1, we get Friedman and Montgomery's [20] results.

Corollary 2. If $k=1$ in Theorem 1, we get Özbey and Kaçıranlar's [21] results.

## Theorem 2.

a) If $\alpha_{2}^{2}>\frac{\sigma^{2}\left(\lambda_{2}^{2}-\left((1-d) \lambda_{2}+d a_{2}\right)^{2}\right)}{\lambda_{2} k^{2}\left[(1-d)^{2}-1\right]}$, then
$-J_{L O R}<J_{k}$ for $\lambda_{1}^{2}<\left((1-d) \lambda_{1}+d a_{1}\right)^{2}$,
$-J_{L O R}<J_{k} \Leftrightarrow \frac{z_{02}^{2}}{z_{01}^{2}}<f_{2}\left(\alpha_{2}^{2}\right)$ for $\lambda_{1}^{2}>\left((1-d) \lambda_{1}+d a_{1}\right)^{2}$.
b. If $\alpha_{2}^{2}<\frac{\sigma^{2}\left(\lambda_{2}^{2}-\left((1-d) \lambda_{2}+d a_{2}\right)^{2}\right)}{\lambda_{2} k^{2}\left[(1-d)^{2}-1\right]}$, then
$-J_{L O R}<J_{k}$ for $\lambda_{1}^{2}>\left((1-d) \lambda_{1}+d a_{1}\right)^{2}$, $-J_{L O R}<J_{k} \Leftrightarrow \frac{z_{02}^{2}}{z_{01}^{2}}<f_{2}\left(\alpha_{2}^{2}\right)$ for $\lambda_{1}^{2}<\left((1-d) \lambda_{1}+d a_{1}\right)^{2}$.
where

$$
\begin{equation*}
f_{2}\left(\alpha_{2}^{2}\right)=\frac{\sigma^{2}\left(\frac{\lambda_{1}}{a_{1}^{2}} \frac{\left((1-d) \lambda_{1}+d a_{1}\right)^{2}}{\lambda_{1} a_{1}^{2}}\right)}{\left(\frac{\sigma^{2}\left((1-d) \lambda_{2}+d a_{2}\right)^{2}}{\lambda_{2} a_{2}^{2}}+\frac{k^{2}(1-d)^{2} \alpha_{2}^{2}}{a_{2}^{2}}-\frac{\sigma^{2} \lambda_{2}}{a_{2}^{2}}-\frac{k^{2} \alpha_{2}^{2}}{a_{2}^{2}}\right.} . \tag{40}
\end{equation*}
$$

Proof. Suppose LOR estimator is better than $\hat{\alpha}_{k}$, then, $J_{L O R}<J_{k}$. That is,

$$
\begin{aligned}
& \sigma^{2}+\sigma^{2}\left[\frac{\left((1-d) \lambda_{1}+d a_{1}\right)^{2} z_{01}^{2}}{\lambda_{1} a_{1}^{2}}+\frac{\left((1-d) \lambda_{2}+d a_{2}\right)^{2} z_{02}^{2}}{\lambda_{2} a_{2}^{2}}\right]+\frac{k^{2}(1-d)^{2} \alpha_{2}^{2} z_{02}^{2}}{a_{2}^{2}}< \\
& \sigma^{2}+\sigma^{2}\left(\frac{\lambda_{1} z_{01}^{2}}{a_{1}^{2}}+\frac{\lambda_{2} z_{02}^{2}}{a_{2}^{2}}\right)+\frac{k^{2} \alpha_{2}^{2} z_{02}^{2}}{a_{2}^{2}}
\end{aligned}
$$

Rearranging this inequality, we get

$$
\begin{aligned}
& z_{02}^{2}\left(\frac{\sigma^{2}\left((1-d) \lambda_{2}+d a_{2}\right)^{2}}{\lambda_{2} a_{2}^{2}}+\frac{k^{2}(1-d)^{2} \alpha_{2}^{2}}{a_{2}^{2}}-\frac{\sigma^{2} \lambda_{2}}{a_{2}^{2}}-\frac{k^{2} \alpha_{2}^{2}}{a_{2}^{2}}\right)< \\
& z_{01}^{2} \sigma^{2}\left(\frac{\lambda_{1}}{a_{1}^{2}}-\frac{\left((1-d) \lambda_{1}+d a_{1}\right)^{2}}{\lambda_{1} a_{1}^{2}}\right) .
\end{aligned}
$$

If both

$$
\begin{equation*}
\left(\frac{\sigma^{2}\left((1-d) \lambda_{2}+d a_{2}\right)^{2}}{\lambda_{2} a_{2}^{2}}+\frac{k^{2}(1-d)^{2} \alpha_{2}^{2}}{a_{2}^{2}}-\frac{\sigma^{2} \lambda_{2}}{a_{2}^{2}}-\frac{k^{2} \alpha_{2}^{2}}{a_{2}^{2}}\right) \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}\left(\frac{\lambda_{1}}{a_{1}^{2}}-\frac{\left((1-d) \lambda_{1}+d a_{1}\right)^{2}}{\lambda_{1} a_{1}^{2}}\right) \tag{42}
\end{equation*}
$$

have the same signs, we have

$$
\begin{equation*}
\frac{z_{02}^{2}}{z_{01}^{2}}<f_{2}\left(\alpha_{2}^{2}\right) . \tag{43}
\end{equation*}
$$

If Eqn. (41) and Eqn. (42) have opposite signs, we have

$$
\begin{equation*}
\frac{z_{02}^{2}}{z_{01}^{2}}>f_{2}\left(\alpha_{2}^{2}\right) \tag{44}
\end{equation*}
$$

If Eqn. (41) and Eqn. (42) have opposite signs, the right-hand side of Eqn. (44) is negative, so, Eqn. (44) always holds. The condition for the positiveness of Eqn. (41) can be written as

$$
\begin{equation*}
\alpha_{2}^{2}>\frac{\sigma^{2}\left(\lambda_{2}^{2}-\left((1-d) \lambda_{2}+d a_{2}\right)^{2}\right)}{\lambda_{2} k^{2}\left[(1-d)^{2}-1\right]} . \tag{45}
\end{equation*}
$$

The condition for the positiveness of Eqn. (42) can be given as

$$
\begin{equation*}
\lambda_{1}^{2}>\left((1-d) \lambda_{1}+d a_{1}\right)^{2} . \tag{46}
\end{equation*}
$$

The contrary conditions are required for the negativeness of Eqn. (41) and Eqn. (42). The vertical asymptote of the hyperbola $f_{2}\left(\alpha_{2}^{2}\right)$ is

$$
\begin{equation*}
\alpha_{2}^{2}=\frac{\sigma^{2}\left(\lambda_{2}^{2}-\left((1-d) \lambda_{2}+d a_{2}\right)^{2}\right)}{\lambda_{2} k^{2}\left[(1-d)^{2}-1\right]} . \tag{47}
\end{equation*}
$$

## Theorem 3.

a) If $\alpha_{2}^{2}>\frac{\sigma^{2}\left(b_{2}^{2}-\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}\right)}{\lambda_{2}(1-\gamma)^{2}(1-d)^{2}}$, then
$-J_{L O L}<J_{O L S}$ for $b_{1}^{2}<\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2}$,
$-J_{L O L}<J_{O L S} \Leftrightarrow \frac{z_{02}^{2}}{z_{01}^{2}}<f_{3}\left(\alpha_{2}^{2}\right)$ for $b_{1}^{2}>\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2}$.
b) If $\alpha_{2}^{2}<\frac{\sigma^{2}\left(b_{2}^{2}-\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}\right)}{\lambda_{2}(1-\gamma)^{2}(1-d)^{2}}$, then

$$
\begin{aligned}
& -J_{L O L}<J_{O L S} \text { for } b_{1}^{2}>\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2}, \\
& -J_{L O L}<J_{O L S} \Leftrightarrow \frac{z_{02}^{2}}{z_{01}^{2}}<f_{3}\left(\alpha_{2}^{2}\right) \text { for } b_{1}^{2}<\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2},
\end{aligned}
$$

where

$$
\begin{equation*}
f_{3}\left(\alpha_{2}^{2}\right)=\frac{\sigma^{2}\left(\frac{1}{\lambda_{1}}\left(\frac{\left(v b_{1}+(1-\gamma) c_{1}\right)^{2}}{\lambda_{1} b_{1}^{2}}\right)\right.}{\left(\frac{\sigma^{2}\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}}{\lambda_{2} b_{2}^{2}}+\frac{\left.(1-\gamma)^{2}(1-d)^{2} a_{2}^{2}-\frac{\sigma^{2}}{\lambda_{2}}\right)}{b_{2}^{2}}\right)} . \tag{48}
\end{equation*}
$$

Proof. If the LOL estimator is superior to $\hat{\alpha}$, we have $J_{L O L}<J_{O L S}$. That is,

$$
\begin{aligned}
& \sigma^{2}+\sigma^{2}\left[\frac{\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2} z_{01}^{2}}{\lambda_{1} b_{1}^{2}}+\frac{\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2} z_{02}^{2}}{\lambda_{2} b_{2}^{2}}\right]+\frac{(1-\gamma)^{2}(1-d)^{2} \alpha_{2}^{2} z_{02}^{2}}{b_{2}^{2}} \\
& \quad< \\
& \sigma^{2}+\sigma^{2}\left(\frac{z_{01}^{2}}{\lambda_{1}}+\frac{z_{02}^{2}}{\lambda_{2}}\right) .
\end{aligned}
$$

Rearranging this inequality, we get

$$
z_{02}^{2}\left(\frac{\sigma^{2}\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}}{\lambda_{2} b_{2}^{2}}+\frac{(1-\gamma)^{2}(1-d)^{2} \alpha_{2}^{2}}{b_{2}^{2}}-\frac{\sigma^{2}}{\lambda_{2}}\right)<z_{01}^{2} \sigma^{2}\left(\frac{1}{\lambda_{1}}-\frac{\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2}}{\lambda_{1} b_{1}^{2}}\right) .
$$

If both

$$
\begin{equation*}
\frac{\sigma^{2}\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}}{\lambda_{2} b_{2}^{2}}+\frac{(1-\gamma)^{2}(1-d)^{2} \alpha_{2}^{2}}{b_{2}^{2}}-\frac{\sigma^{2}}{\lambda_{2}} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}\left(\frac{1}{\lambda_{1}}-\frac{\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2}}{\lambda_{1} b_{1}^{2}}\right) \tag{50}
\end{equation*}
$$

have the same signs, we have

$$
\begin{equation*}
\frac{z_{02}^{2}}{z_{01}^{2}}<f_{3}\left(\alpha_{2}^{2}\right) \tag{51}
\end{equation*}
$$

If Eqn. (49) and Eqn. (50) have opposite signs, we have

$$
\begin{equation*}
\frac{z_{02}^{2}}{z_{01}^{2}}>f_{3}\left(\alpha_{2}^{2}\right) \tag{52}
\end{equation*}
$$

If Eqn. (49) and Eqn. (50) have opposite signs, the right-hand side of Eqn. (52) is negative, thus Eqn. (52) always holds. The condition for the positiveness of Eqn. (49) can be written as

$$
\begin{equation*}
\alpha_{2}^{2}>\frac{\sigma^{2}\left(b_{2}^{2}-\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}\right)}{\lambda_{2}(1-\gamma)^{2}(1-d)^{2}} . \tag{53}
\end{equation*}
$$

Similarly, the condition for the positiveness of Eqn. (50) can be given as

$$
\begin{equation*}
b_{1}^{2}>\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2} \tag{54}
\end{equation*}
$$

The contrary conditions are required for the negativeness of Eqn. (49) and Eqn. (50). The vertical asymptote of the hyperbola $f_{3}\left(\alpha_{2}^{2}\right)$ is at the point

$$
\begin{equation*}
\alpha_{2}^{2}=\frac{\sigma^{2}\left(b_{2}^{2}-\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}\right)}{\lambda_{2}(1-\gamma)^{2}(1-d)^{2}} . \tag{55}
\end{equation*}
$$

Corollary 3: If $\gamma=0$ in Theorem 3, we get Özbey and Kaçıranlar's [21] results.

## Theorem 4.

a) If $\alpha_{2}^{2}>\frac{\sigma^{2}\left(c_{2}^{2}-\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}\right)}{\lambda_{2}(1-d)^{2}\left[(1-\gamma)^{2}-1\right]}$, then

$$
-J_{L O L}<J_{d} \text { for } c_{1}^{2}<\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2},
$$

$$
-J_{L O L}<J_{d} \Leftrightarrow \frac{z_{02}^{2}}{z_{01}^{2}}<f_{4}\left(\alpha_{2}^{2}\right) \text { for } c_{1}^{2}>\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2} .
$$

b) If $\alpha_{2}^{2}<\frac{\sigma^{2}\left(c_{2}^{2}-\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}\right)}{\lambda_{2}(1-d)^{2}\left[(1-\gamma)^{2}-1\right]}$, then
$-J_{L O L}<J_{d}$ for $c_{1}^{2}>\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2}$,
$-J_{L O L}<J_{d} \Leftrightarrow \frac{z_{02}^{2}}{Z_{01}^{2}}<f_{4}\left(\alpha_{2}^{2}\right)$ for $c_{1}^{2}<\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2}$,
where

$$
\begin{equation*}
f_{4}\left(\alpha_{2}^{2}\right)=\frac{\sigma^{2}\left(\frac{c_{1}^{2}}{\lambda_{1} b_{1}^{2}}\left(\frac{\left(v b_{1}+(1-\gamma) c_{1}\right)^{2}}{\lambda_{1} b_{1}^{2}}\right)\right.}{\left(\frac{\sigma^{2}\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}}{\lambda_{2} b_{2}^{2}}+\frac{(1-\gamma)^{2}(1-\alpha)^{2} a_{2}^{2}}{b_{2}^{2} c_{2}^{2}(1-d)^{2} \alpha_{2}^{2}} \frac{\lambda_{2} b_{2}^{2}}{b_{2}^{2}}\right)} . \tag{56}
\end{equation*}
$$

Proof. If the LOL estimator is superior to $\hat{\alpha}_{d}$, we have $J_{L O L}<J_{d}$. That is,

$$
\begin{aligned}
& \sigma^{2}+\sigma^{2}\left[\frac{\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2} z_{01}^{2}}{\lambda_{1} b_{1}^{2}}+\frac{\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2} z_{02}^{2}}{\lambda_{2} b_{2}^{2}}\right]+\frac{(1-\gamma)^{2}(1-d)^{2} \alpha_{2}^{2} z_{02}^{2}}{b_{2}^{2}}< \\
& \sigma^{2}+\sigma^{2}\left(\frac{c_{1}^{2} z_{01}^{2}}{\lambda_{1} b_{1}^{2}}+\frac{c_{2}^{2} z_{02}^{2}}{\lambda_{2} b_{2}^{2}}\right)+\frac{(1-d)^{2} \alpha_{2}^{2} z_{02}^{2}}{b_{2}^{2}}
\end{aligned}
$$

Rearranging this inequality, we get

$$
z_{02}^{2}\left(\frac{\sigma^{2}\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}}{\lambda_{2} b_{2}^{2}}+\frac{(1-\gamma)^{2}(1-d)^{2} \alpha_{2}^{2}}{b_{2}^{2}}-\frac{\sigma^{2} c_{2}^{2}}{\lambda_{2} b_{2}^{2}}-\frac{(1-d)^{2} \alpha_{2}^{2}}{b_{2}^{2}}\right)<
$$

$$
z_{01}^{2} \sigma^{2}\left(\frac{c_{1}^{2}}{\lambda_{1} b_{1}^{2}}-\frac{\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2}}{\lambda_{1} b_{1}^{2}}\right)
$$

If both

$$
\begin{equation*}
\left(\frac{\sigma^{2}\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}}{\lambda_{2} b_{2}^{2}}+\frac{(1-\gamma)^{2}(1-d)^{2} \alpha_{2}^{2}}{b_{2}^{2}}-\frac{\sigma^{2} c_{2}^{2}}{\lambda_{2} b_{2}^{2}}-\frac{(1-d)^{2} \alpha_{2}^{2}}{b_{2}^{2}}\right) \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}\left(\frac{c_{1}^{2}}{\lambda_{1} b_{1}^{2}}-\frac{\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2}}{\lambda_{1} b_{1}^{2}}\right) \tag{58}
\end{equation*}
$$

have the same signs, we have

$$
\begin{equation*}
\frac{z_{02}^{2}}{z_{01}^{2}}<f_{4}\left(\alpha_{2}^{2}\right) \tag{59}
\end{equation*}
$$

If Eqn. (55) and Eqn. (56) have opposite signs, we have

$$
\begin{equation*}
\frac{z_{02}^{2}}{z_{01}^{2}}>f_{4}\left(\alpha_{2}^{2}\right) . \tag{60}
\end{equation*}
$$

If Eqn. (55) and Eqn. (56) have opposite signs, the right-hand side of Eqn. (58) is negative, thus Eqn. (58) holds. The condition for the positiveness of Eqn. (55) can be given as follows

$$
\begin{equation*}
\alpha_{2}^{2}>\frac{\sigma^{2}\left(c_{2}^{2}-\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}\right)}{\lambda_{2}(1-d)^{2}\left[(1-\gamma)^{2}-1\right]} . \tag{61}
\end{equation*}
$$

Similarly, the condition for the positiveness of Eqn. (56) can be given as

$$
\begin{equation*}
c_{1}^{2}>\left(\gamma b_{1}+(1-\gamma) c_{1}\right)^{2} . \tag{62}
\end{equation*}
$$

The contrary conditions are required for the negativeness of Eqn. (55) and Eqn. (56). The vertical asymptote of the hyperbola $f_{4}\left(\alpha_{2}^{2}\right)$ is

$$
\begin{equation*}
\alpha_{2}^{2}=\frac{\sigma^{2}\left(c_{2}^{2}-\left(\gamma b_{2}+(1-\gamma) c_{2}\right)^{2}\right)}{\lambda_{2}(1-d)^{2}\left[(1-\gamma)^{2}-1\right]} . \tag{63}
\end{equation*}
$$

The estimation of the parameters $k$ and $d$ is an important issue. We have not made any attempt to estimate them. However, we refer our readers to Hoerl and Kennard [1], Kibria [28], Khalaf and Shukur [29], Muniz and Kibria [30] and Liu [4] among others.

## 4. Numerical Example

In this section, we will illustrate theoretical results using the example given by Friedman and Montgomery [20] (i.e., $\sigma^{2}=1, k=0.1$ and $r_{12}=0.95$ ) and Özbey and Kaçıranlar [21] (i.e., $d=0.9$ ) as well as we let $\gamma=0.5$.

Let us consider the LOR and the OLS estimators. From Eqn. (32), we get

$$
\begin{equation*}
f_{1}\left(\alpha_{2}^{2}\right)=\frac{0.004991}{0.004444 \alpha_{2}^{2}-2.57778}, \tag{64}
\end{equation*}
$$

which is a hyperbola with a vertical asymptote at

$$
\begin{equation*}
\alpha_{2}^{2}=580 \tag{65}
\end{equation*}
$$

Because of both $z_{02}^{2} / z_{01}^{2}$ and $\alpha_{2}^{2}$ are positive, we are interested only in the points which lie in the first quadrant. Figure 1 illustrates this situation. For values of $\alpha_{2}^{2}$ smaller than 580 , the LOR estimator is better than the OLS estimator. For larger values of $\alpha_{2}^{2}$, there is a trade-off between these two estimators. If the value of the ratio $z_{02}^{2} / z_{01}^{2}$ is smaller than the value of $f_{1}\left(\alpha_{2}^{2}\right)$, then the LOR estimator is superior to the OLS estimator; otherwise, the OLS estimator is better than the LOR estimator. We take different values of $d$ as $0.1,0.2, \ldots, 0.9$ to determine the effect of $d$ on the predictive performance of the LOR estimator and the OLS estimator. Table 1 shows that if $d$ increases, the value of $\alpha_{2}^{2}$ increases. That means, when $\alpha_{2}^{2}$ increases, the region where the LOR estimator is uniformly superior to the OLS estimator increases.

In this part, we get the same results of the example given by Friedman and Montgomery [20] if $d=0$. Also, we get the same results of the example given by Özbey and Kaçıranlar [21] if $k=1$.

Let us consider the ORR and the LOR estimators. From Eqn. (40) and Eqn. (47), we get

$$
\begin{equation*}
f_{2}\left(\alpha_{2}^{2}\right)=\frac{0.04382}{0.44 \alpha_{2}^{2}-15.2}, \tag{66}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{2}^{2}=34.54 . \tag{67}
\end{equation*}
$$

Figure 2 shows this case. For values of $\alpha_{2}^{2}<34.54$, the LOR estimator is better than $\hat{\alpha}_{k}$. For great values of $\alpha_{2}^{2}$ there is a trade-off between these estimators. If $\left(z_{02}^{2} / z_{01}^{2}\right)<f_{2}\left(\alpha_{2}^{2}\right)$, then the LOR estimator is superior to $\hat{\alpha}_{k}$, otherwise $\hat{\alpha}_{k}$ is better than the LOR estimator.

The effect of $d$ on the PP of the LOR estimator and $\hat{\alpha}_{k}$ is described in Table 2. Table 2 shows that if $d$ increases, the value of $\alpha_{2}^{2}$ increases. That means, when $\alpha_{2}^{2}$ increases, the region where the LOR estimator is better than $\hat{\alpha}_{k}$ increases.

Let us take into account the PP of the OLS and the LOL estimators. From Eqn. (48) and Eqn. (55), we have

$$
\begin{equation*}
f_{3}\left(\alpha_{2}^{2}\right)=\frac{0.017236}{0.00226 \alpha_{2}^{2}-1.8595}, \tag{68}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{2}^{2}=820 \tag{69}
\end{equation*}
$$

Figure 3 shows this situation. For values of $\alpha_{2}^{2}<820$, the LOL estimator is uniformly superior to the $\hat{\alpha}$. If $\left(z_{02}^{2} / z_{01}^{2}\right)<f_{3}\left(\alpha_{2}^{2}\right)$, then the LOL estimator is better than $\hat{\alpha}$. Otherwise, $\hat{\alpha}$ is better than the LOL estimator.

The effect of $\gamma$ on the PP of the LOL estimator and $\hat{\alpha}$ is described in Table 3. Table 3 shows that if $\gamma$ increases, the value of $\alpha_{2}^{2}$ increases. That means, when $\alpha_{2}^{2}$ increases, the region where the LOL estimator is uniformly superior to $\hat{\alpha}$ increases.

In this part, we get the same results of the example given by Özbey and Kaçıranlar [21] if $\gamma=0$.

Let us examine the PP of the LOL and $\hat{\alpha}_{d}$. From Eqn. (56) and Eqn. (63), we have

$$
\begin{equation*}
f_{4}\left(\alpha_{2}^{2}\right)=\frac{0.01694}{0.00681 \alpha_{2}^{2}-1.7687}, \tag{70}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{2}^{2}=260 \tag{71}
\end{equation*}
$$

Figure 4 shows this case. For values of $\alpha_{2}^{2}<260$, the LOL estimator is superior to $\hat{\alpha}_{d}$. If $\left(z_{02}^{2} / z_{01}^{2}\right)<f_{4}\left(\alpha_{2}^{2}\right)$, then the LOL estimator is superior to $\hat{\alpha}_{d}$; otherwise, $\hat{\alpha}_{d}$ is superior to the LOL estimator.

The effect of $\gamma$ on the PP of the LOL estimator and $\hat{\alpha}_{d}$ is described in Table 4. Table 4 shows that if $\gamma$ increases, the value of $\alpha_{2}^{2}$ increases. That means, when $\alpha_{2}^{2}$ increases, the region where the LOL estimator is uniformly superior to $\hat{\alpha}_{d}$ increases.

Table 1. $d$ and $\alpha_{2}^{2}$ values for the LOR vs. the OLS

| $d$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha_{2}^{2}$ | 46.67 | 55.00 | 65.71 | 80.00 | 100.00 | 130.00 | 180.00 | 280.00 | 580.00 |

Table 2. $d$ and $\alpha_{2}^{2}$ values for the LOR vs. the ORR

| $d$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha_{2}^{2}$ | 11.58 | 13.33 | 15.29 | 17.50 | 20.00 | 22.86 | 26.15 | 30.00 | 34.54 |

Table 3. $\gamma$ and $\alpha_{2}^{2}$ values for the LOL vs. the OLS

| $\gamma$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha_{2}^{2}$ | 446.667 | 505.000 | 580.000 | 680.000 | 820.000 | 1030.000 | 1380.000 | 2080.00 | 4180.00 |

Table 4. $\gamma$ and $\alpha_{2}^{2}$ values for the LOL vs. the Liu

| $\gamma$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha_{2}^{2}$ | 201.053 | 213.333 | 227.059 | 242.500 | 260.000 | 280.000 | 303.077 | 330.000 | 361.818 |



Figure 1: Comparison of the PMSE for LOR and OLS estimators


Figure 2: Comparison of the PMSE for LOR and ORR estimators


Figure 3: Comparison of the PMSE for LOL and OLS estimators


Figure 4: Comparison of the PMSE for LOL and Liu estimators

## 5. Conclusion

The predictive performance of the LOR estimator over the OLS and the ORR estimators is evaluated. Similarly, the predictive performance of the proposed LOL estimator over the OLS and the Liu estimators is examined in the sense of the PMSE. The comparisons of these estimators are in terms of the PMSE criterion at a specific point in the two-dimensional regressor variable spaces. In this context, the PMSE of the LOR and the LOL estimators are developed and four theorems are given. In addition, three corollaries are given here examining that the theorems given by Friedman and Montgomery [20] and Özbey and Kaçıranlar [21] are just special cases of the Theorems 1 and 3.

## References

[1] Hoerl, A.E., Kennard, R.W., Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55-76, 1970.
[2] Askın, R.G., Multicollinearity in regression: Review and examples, Journal of Forecasting, 1, 281-292, 1982.
[3] Montgomery, D.C., Friedman, D.J., Prediction using regression models with multicollinear predictor variables, IIE Transactions, 2 (3), 73-85, 1993.
[4] Liu, K., A new class of biased estimate in linear regression, Communications in Statistics- Theory and Methods, 22, 393-402, 1993.
[5] Akdeniz, F., Kaçıranlar, S., On the almost unbiased generalized Liu estimator and unbiased estimation of the bias and MSE, Communications in Statistics-Theory and Methods, 24, 1789-1797, 1995.
[6] Sakallığlu, S., Kaçıranlar, S., Akdeniz, F., Mean squared error comparisons of some biased regression estimator, Communications in Statistics-Theory and Methods, 30, 347-361, 2001.
[7] Özkale, M.R., Kaçıranlar, S., The restricted and unrestricted two parameter estimators, Communications in Statistics- Theory and Methods, 36, 2707-2725, 2007.
[8] Swindel, B.F., Good ridge estimators based on prior information, Communications in Statistics-Theory and Methods, A5, 1065-1075, 1976.
[9] Özkale, M.R., Influence measures in affine combination type regression, Journal of Applied Statistics, 40, 2219-2243, 2013.
[10] Theil, H., On the use of incomplete prior information in regression analysis, Journal of American Statistical Association, 58, 401-414, 1963.
[11] Theil, H., Goldberger, A.S., On pure and mixed statistical estimation in economics, International Economic Review, 2, 65-78, 1961.
[12] Özbay, N., Kaçıranlar, S., The Almon two parameter estimator for the distributed lag models, Journal of Statistical Computation and Simulation, 87, 834-843, 2017.
[13] Özbay, N., Kaçıranlar, S., Estimation in a linear regression model with stochastic linear restrictions: a new two parameter-weighted mixed estimator, Journal of Statistical Computation and Simulation, 88, 1669-1683, 2018.
[14] Schaffrin, B., Toutenburg, H., Weighted mixed regression, Zeitschrift fur Angewandte Mathematik und Mechanik, 70, 735-738, 1990.
[15] Tekeli, E., Kaçıranlar, S., Özbay, N., Optimal determination of the parameters of some biased estimators using genetic algorithm, Journal of Statistical Computation and Simulation, 89 (18), 3331-3353, 2019.
[16] Çetinkaya, M.K., Kaçıranlar, S., Improved two parameter estimators for the negative binomial and Poisson regression models, Journal of Statistical Computation and Simulation, 89(14), 2645-2660, 2019.
[17] Gruber, M.H.J., Regression estimators: A comparative study. 2nd ed., John Hopkins University Press, Baltimore, MD; 2010.
[18] Gruber, M.H.J., Liu and ridge estimators- A comparison, Communications in Statistics- Theory and Methods, 41, 3739-3749, 2012.
[19] Mayer, L.S., Willke, T.A., On biased estimation in linear models, Technometrics, 15, 497-508, 1973.
[20] Friedman, D.J., Montgomery, D.C., Evaluation of the predictive performance of biased regression estimators, Journal of Forecasting, 4, 153-163, 1985.
[21] Özbey, F., Kaçıranlar, S., Evaluation of the predictive performance of the Liu estimator, Communications in Statistics-Theory and Methods, 44, 1981-1993, 2015.
[22] Dawoud, I., Kaçıranlar, S., The predictive performance evaluation of biased regression predictors with correlated errors, Journal of Forecasting, 34, 364-378, 2015.
[23] Dawoud, I., Kaçıranlar, S., Evaluation of the predictive performance of the $r$ - $k$ and $r$ d class estimators, Communications in Statistics-Theory and Methods, 46, 4031-4050, 2017.
[24] Dawoud, I., Kaçıranlar, S., Evaluation of the predictive performance of the Liu-type estimator, Communications in Statistics-Simulation and Computation, 46, 2800-2820, 2017.
[25] Liu, K., Using Liu-type estimator to combat collinearity, Communications in Statistics- Theory and Methods, 32, 1009-1020, 2003.
[26] Li, R., Li, F., Huang, J., Evaluation of the predictive performance of the principal component two-parameter estimator, Concurrency and Computation Practice and Experince, 31, e4710, 2019. https://doi.org/10.1002/cpe. 4710 .
[27] Chang, X., Yang, H., Combining two-parameter and principal component regression estimator, Statistical Papers, 53(3), 549-562, 2012.
[28] Kibria, B.M.G., Performance of some new ridge regression estimators, Communications in Statistics-Simulation and Computation, 32, 419-435, 2003.
[29] Khalaf, G., Shukur, G., Choosing ridge parameters for regression problems, Communications in Statistics-Theory and Methods, 34, 1177-1182, 2005.
[30] Muniz, G., Kibria, B.M.G., On some ridge regression estimators: An empirical comparison, Communications in Statistics-Simulation and Computation, 38, 621-630, 2009.

