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Abstract. In [4], Bor has proved a main theorem dealing with absolute

weighted arithmetic mean summability factors of infinite series by using a
positive non-decreasing sequence. In this paper, we have extended this re-

sult to absolute matrix summability method by using an almost increasing

sequence in place of a positive non-decreasing sequence. Also, some new and
known results are also obtained.

Let
∑

an be a given infinite series with the sequence of partial sums be denoted
by (sn). We denote by uα

n the nth Cesàro mean of order α, with α > −1, of the
sequence (sn), that is (see [9])

uα
n =

1

Aα
n

n∑
v=0

Aα−1
n−vsv

where

Aα
n =

(α+ 1)(α+ 2)....(α+ n)

n!
= O(nα), Aα

−n = 0 for n > 0.

A series
∑

an is said to be summable |C,α|k, k ≥ 1, if (see [10])

∞∑
n=1

nk−1|uα
n − uα

n−1|k < ∞.

If we take α = 1, then we have the |C, 1|k summability. Let (pn) be a sequence of
positive numbers such that

Pn =

n∑
v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv
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defines the sequence (wn) of the weighted arithmetic mean or simply the
(
N̄ , pn

)
mean of the sequence (sn), generated by the sequence of coefficients (pn) (see [11]).
The series

∑
an is said to be summable |N̄ , pn|k, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn

pn

)k−1

|wn − wn−1|k < ∞.

In the special case when pn = 1 for all n, then |N̄ , pn|k summability is the same as
|C, 1|k summability.
Let A = (anv) be a normal matrix, i.e., a lower triangular matrix with nonzero
diagonal entries. Then A defines a sequence-to-sequence transformation, mapping
of the sequence s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ...

Let (φn) be any sequence of positive real numbers. The series
∑

an is said to be
summable φ− |A, pn|k, k ≥ 1, if (see [15])

∞∑
n=1

φk−1
n |An(s)−An−1(s)|k < ∞.

If we take φn = Pn

pn
, then φ − |A, pn|k summability is reduced to the |A, pn|k

summability (see [17]). If we take φn = Pn

pn
and anv = pv

Pn
, then φ − |A, pn|k

summability is reduced to the |N̄ , pn|k summability. If we take φn = n, anv = pv

Pn

and pn = 1 for all n, then
φ− |A, pn|k summability is the same as |C, 1|k summability.

1. Known Result

A positive sequence (bn) is said to be almost increasing if there exists a positive
increasing sequence (zn) and two positive constants A and B such that Azn ≤ bn ≤
Bzn (see [1]). It is known that every increasing sequences is an almost increasing
sequence but the converse need not be true. The following theorem concerning on
absolute summability factors of infinite series has been obtained.
Theorem 2.1 [4] Let (Xn) be a positive non-decreasing sequence and let (pn) be
a sequence of positive numbers such that

Pn = O(npn), (1.1)

Pn∆pn = O(pnpn+1). (1.2)
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If the sequences (Xn) , (βn), and (λn) satisfy the conditions

|∆λn| ≤ βn, (1.3)

βn → 0 as n → ∞, (1.4)
∞∑

n=1

n|∆βn|Xn < ∞, (1.5)

|λn|Xn = O(1), (1.6)
m∑

n=1

|sn|k

nXk−1
n

= O(Xm) as m → ∞, (1.7)

then the series
∑∞

n=1 an
Pnλn

npn
is summable |N̄ , pn|k, k ≥ 1.

Remark 2.1 It should be noted that, under the conditions on the sequence (λn)
we have that (λn) is bounded and ∆λn = O(1/n) (see [3]).

2. Main Result

The aim of this paper is to generalize Theorem 2.1 by using an almost increaing se-
quence for φ−|A, pn|k summability method, which is more general matrix summa-
bility method than |N̄ , pn|k summability method. Some papers have been done
dealing with absolute summability methods (see [5]-[8], [18]-[24]).
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv)

and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, .. (2.1)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (2.2)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (2.3)

and

∆̄An(s) =

n∑
v=0

ânvav. (2.4)

Let ω be the class of all matrices A = (anv) satisfying

A is a positive normal matrix, (2.5)

an0 = 1, n = 0, 1, ... (2.6)

an−1,v ≥ anv, n ≥ v + 1. (2.7)
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With this notation we have the following theorem.
Theorem 3.1 Let A ∈ ω satisfying

ann = O(
pn
Pn

), (2.8)

1 = O(nann), (2.9)

n−1∑
v=1

avv|ân,v+1| = O(ann). (2.10)

Let (Xn) be an almost increasing sequence and (φnpn

Pn
) be a non-increasing sequence.

If the sequences (Xn), (βn), (λn), and (pn) satisfy the conditions (1.2)-(1.6) of
Theorem 2.1, and the condition

m∑
n=1

(
φnpn
Pn

)k−1 |sn|k

nXk−1
n

= O(Xm) as m → ∞ (2.11)

are satisfied, then the series
∑∞

n=1 an
Pnλn

npn
is summable φ− |A, pn|k, k ≥ 1.

Remark 3.1 It is noted that by using the conditions (2.8) and (2.9), we have

Pn = O(npn) (2.12)

We need the following lemmas for the proof of Theorem 3.1.
Lemma 3.1 [12] Under the conditions of Theorem 2.1, we have

nXnβn = O(1),
∞∑

n=1

βnXn < ∞.

Lemma 3.2 [14] If the condition (1.2) of Theorem 2.1 and (2.12) are satisfied, then

∆
(

Pn

npn

)
= O

(
1
n

)
.

Lemma 3.3 [16] Let A ∈ ω and by using (2.1) and (2.2), we have that

m+1∑
n=v+1

|ân,v+1| ≤ 1,

and by using ∆v(ânv) = anv − an−1,v, we get

n−1∑
v=1

|∆v(ânv)| ≤ ann,

and
m+1∑

n=v+1

|∆v(ânv)| ≤ avv.

3. Proof of Theorem 3.1

Let (Vn) denotes the A-transform of the series
∑

an
Pnλn

npn
. Then

∆̄Vn =

n∑
v=1

ânvav
Pvλv

vpv
.
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Applying Abel’s transformation to this sum, we have that

∆̄Vn =

n−1∑
v=1

∆v

(
ânvPvλv

vpv

) v∑
r=1

ar +
ânnPnλn

npn

n∑
v=1

av

∆̄Vn =

n−1∑
v=1

∆v

(
ânvPvλv

vpv

)
sv +

ânnPnλn

npn
sn,

by the formula for the difference of products of sequences (see [11]) we have

∆̄Vn =
annPnλn

npn
sn +

n−1∑
v=1

Pvλv

vpv
∆v(ânv)sv +

n−1∑
v=1

ân,v+1λv∆

(
Pv

vpv

)
sv

+

n−1∑
v=1

ân,v+1
Pv+1

(v + 1)pv+1
∆λvsv

∆̄Vn = Vn,1 + Vn,2 + Vn,3 + Vn,4.

To complete the proof of Theorem 3.1, it is sufficient to show that

∞∑
n=1

φk−1
n | Vn,r |k< ∞, for r = 1, 2, 3, 4. (3.1)

Firstly, by using condition (2.8), (2.11) and (2.12) and applying Abel’s transforma-
tion, we have

m∑
n=1

φk−1
n | Vn,1 |k≤

m∑
n=1

φk−1
n aknn

(
Pn

pn

)k

|λn|k
|sn|k

nk

= O(1)

m∑
n=1

φk−1
n

(
pn
Pn

)k (
Pn

pn

)k

|λn|k
|sn|k

nk

= O(1)

m∑
n=1

(
φnpn
Pn

)k−1 (
Pn

pn

)k−1

|λn|k
|sn|k

nk

= O(1)

m∑
n=1

(
φnpn
Pn

)k−1

nk−1|λn|k
|sn|k

nk

= O(1)

m∑
n=1

(
φnpn
Pn

)k−1

|λn|k|sn|k
1

n

= O(1)

m∑
n=1

(
φnpn
Pn

)k−1

|λn|k−1|λn|
|sn|k

n

= O(1)

m∑
n=1

(
φnpn
Pn

)k−1
1

Xk−1
n

|λn|
|sn|k

n
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= O(1)

m−1∑
n=1

∆|λn|
n∑

v=1

(
φvpv
Pv

)k−1 |sv|k

vXk−1
v

+O(1)|λm|
m∑

n=1

(
φnpn
Pn

)k−1 |sn|k

nXk−1
n

= O(1)

m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1)

m−1∑
n=1

βnXn +O(1)|λm|Xm

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.1. By applying Hölder’s
inequality with indices k and k′, where k > 1 and 1

k + 1
k′ = 1, and as in Vn,1, we

have that

m+1∑
n=2

φk−1
n | Vn,2 |k=

m+1∑
n=2

φk−1
n

∣∣∣∣∣
n−1∑
v=1

Pvλv

vpv
∆v(ânv)sv

∣∣∣∣∣
k

= O(1)

m+1∑
n=2

φk−1
n

{
n−1∑
v=1

|∆v(ânv)||λv|k|sv|k
1

vk

(
Pv

pv

)k
}

×

{
n−1∑
v=1

|∆v(ânv)|

}k−1

= O(1)

m+1∑
n=2

(
φnpn
Pn

)k−1 n−1∑
v=1

|∆v(ânv)||λv|k|sv|k
1

vk

(
Pv

pv

)k

= O(1)

m∑
v=1

|λv|k|sv|k
1

vk

(
Pv

pv

)k m+1∑
n=v+1

(
φnpn
Pn

)k−1

|∆v(ânv)|

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

|λv|k|sv|k
1

vk

(
Pv

pv

)k m+1∑
n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

avv|λv|k−1|λv||sv|k
1

vk

(
Pv

pv

)k

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1 (
pv
Pv

)
1

Xk−1
v

|λv||sv|k
1

vk

(
Pv

pv

)k

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1 (
Pv

pv

)k−1
1

Xk−1
v

|λv||sv|k
1

vk

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

vk−1 1

Xk−1
v

|λv||sv|k
1

vk

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1
1

vXk−1
v

|λv||sv|k

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 3.1, Lemma 3.1 and Lemma 3.3. Also, by

using the the fact that ∆
(

Pv

vpv

)
= O

(
1
v

)
and Lemma 3.3, again as in Vn,1, we have
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that

m+1∑
n=2

φk−1
n | Vn,3 |k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣
n−1∑
v=1

ân,v+1∆

(
Pv

vpv

)
λvsv

∣∣∣∣∣
k

= O(1)

m+1∑
n=2

φk−1
n

{
n−1∑
v=1

a1−k
vv |ân,v+1||λv|k|sv|k

1

vk

}
×

{
n−1∑
v=1

avv|ân,v+1|

}k−1

= O(1)

m+1∑
n=2

(
φnpn
Pn

)k−1 n−1∑
v=1

a1−k
vv |ân,v+1||λv|k|sv|k

1

vk

= O(1)

m∑
v=1

a1−k
vv |λv|k|sv|k

1

vk

m+1∑
n=v+1

(
φnpn
Pn

)k−1

|ân,v+1|

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

a1−k
vv |λv|k|sv|k

1

vk

m+1∑
n=v+1

|ân,v+1|

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

a1−k
vv |λv|k|sv|k

1

vk

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

vk−1|λv|k|sv|k
1

vk

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

|λv|k−1|λv||sv|k
1

v

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1
1

vXk−1
v

|λv||sv|k

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 3.1. Finally, by virtue of the hypotheses of
Theorem 3.1, Lemma 3.1, Lemma 3.3 and considering the fact that vβv = O( 1

Xv
),
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we have that

m+1∑
n=2

φk−1
n | Vn,4 |k=

m+1∑
n=2

φk−1
n

∣∣∣∣∣
n−1∑
v=1

ân,v+1
Pv+1

(v + 1)pv+1
∆λvsv

∣∣∣∣∣
k

= O(1)

m+1∑
n=2

φk−1
n

{
n−1∑
v=1

a1−k
vv |ân,v+1|(βv)

k|sv|k
}

×

{
n−1∑
v=1

avv|ân,v+1|

}k−1

= O(1)

m+1∑
n=2

(
φnpn
Pn

)k−1 n−1∑
v=1

a1−k
vv |ân,v+1|(βv)

k|sv|k

= O(1)

m∑
v=1

a1−k
vv (βv)

k|sv|k
m+1∑

n=v+1

(
φnpn
Pn

)k−1

|ân,v+1|

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

a1−k
vv (βv)

k|sv|k
m+1∑

n=v+1

|ân,v+1|

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

a1−k
vv (βv)

k|sv|k

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

(vβv)
k−1βv|sv|k

= O(1)

m∑
v=1

(
φvpv
Pv

)k−1

vβv
|sv|k

vXk−1
v

= O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

(
φrpr
Pr

)k−1 |sr|k

rXk−1
r

+O(1)mβm

m∑
v=1

(
φvpv
Pv

)k−1 |sv|k

vXk−1
v

= O(1)

m−1∑
v=1

|∆(vβv)|Xv +O(1)mβmXm

= O(1)
m−1∑
v=1

|(v + 1)∆βv − βv|Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

v|∆βv|Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm

= O(1) as m → ∞,

This completes the proof of Theorem 3.1.

4. Conclusions

1. If we take (Xn) as a positive non-decreasing sequence, φn = Pn

pn
and anv = pv

Pn
,

then we have Theorem 2.1.
2. If we take (Xn) as a positive non-decreasing sequence, φn = n, anv = pv

Pn
and

pn = 1 for all n, then we obtain a new result concerning the |C, 1|k summability
(see [13]).



A NEW VARIATION ON ABSOLUTE SUMMABILITY 9

3. If we take φn = Pn

pn
, then we have a new result concerning the |A, pn|k summa-

bility.
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