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Abstract

In 1923 S. Lefschetz proved the famous �xed point theorem known as the Lefschetz �xed point theorem
(comp. [5], [9], [20], [21]. The multivalued case was considered for the �rst time in 1946 by S. Eilenberg
and D. Montgomery ([10]). They proved the Lefschetz �xed point theorem for acyclic mappings of compact
ANR-spaces (absolute neighbourhood retracts (see [4] or [13]) using Vietoris mapping theorem (see [4], [13],
[16]) as a main tool. In 1970 Eilenberg, Montgomery's result was generalized for acyclic mappings of complete
ANR-s (see [17]). Next, a class of admissible multivalued mappings was introduced ([13] or [16]). Note that
the class of admissible mappings is quite large and contains as a special case not only acyclic mappings but
also �nite compositions of acyclic mappings. For this class of multivalued mappings several versions of the
Lefschetz �xed point theorem was proved (comp. [11], [13]�[15], [18], [19], [27]). In 1982 G. Skordev and
W. Siegberg ([26]) introduced the class of multivalued mappings so-called now (1 − n)-acyclic mappings.
Note that the class (1 − n)-acyclic mappings contains as a special case n-valued mappings considered in
[6], [12], [28]. We recommend [8] for the most important results connected with (1 − n)-acyclic mappings.
Finally, the Lefschetz �xed point theorem was considered for spheric mappings (comp. [3], [2], [7], [23]) and
for random multivalued mappings (comp. [1], [2], [13]). Let us remark that the main classes of spaces for
which the Lefschetz �xed point theorem was formulated are the class of ANR-spaces ([4]) and MANR-spaces
(multi absolute neighbourhood retracts (see [27]). The aim of this paper is to recall the most important
results concerning the Lefschetz �xed point theorem for multivalued mappings and to prove new versions of
this theorem, mainly for AANR-spaces (approximative absolute neighborhood retracts (see [4] or [13]) and
for MANR-s. We believe that this article will be useful for analysts applying topological �xed point theory
for multivalued mappings in nonlinear analysis, especially in di�erential inclusions.
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1. Auxiliary notions

In this paper all topological spaces are assumed to be metric. We shall consider the �ech homology
functor with compact carriers and coe�cients in the �eld of rational numers Q (for details see [13] or [16]).
For a space X by H(X) = {Hn(X); n ≥ 0} we shall denote the �ech homology with compact carriers and
coe�cients in Q of the space X. Then Hn(X) is a linear vector space over Q.

For any continuous map f : X → Y by f∗ = {f∗n; n ≥ 0} : H(X) = {Hn(X); n ≥ 0} → H(Y ) =
{Hn(X); n ≥ 0} we denote the induced linear map, i.e. f∗n : Hn(X) → Hn(Y ) is a linear map, n ≥ 0.

De�nition 1.1. A space X is called of �nite type provided:

(a) the dimension dimHn(X) < +∞ for every n ≥ 0,

(b) Hn(X) = 0 for almost all n.

De�nition 1.2. A space X is called acyclic provided H0(X) = Q and Hn(X) = 0, for every n ≥ 1.

Evidently, any contractible space is acyclic; an acyclic space is of �nite type.

De�nition 1.3. A continuous map p : Y → X is called Vietoris map provvvided:

(a) p is onto,

(b) for every compact set K ⊂ X the counter image p−1(K) is compact,

(c) p−1(x) is acyclic for every x ∈ X.

Theorem 1.4 (Vietoris Mapping Theorem, [4], [13], [16]). If p : Y → X is a Vietoris map, then p∗n : Hn(Y ) →
Hn(X) is a linear isomorphism for every n ≥ 0.

In what follows if p : Y → X is a Vietoris map then shall use the following symbol: p : Y =⇒ X. Let us
consider the following diagram:

X Y
pks q

// X

Then, for every n ≥ 0, we have the following diagram of linear mappings:

Hn(X) Hn(Y )
p∗n
∼
ks q∗n

// Hn(X)

in which p∗n is an isomorphism. So we can de�ne the following linear map:

q∗n ◦ p−1
∗n : Hn(X) → Hn(X) (1.1)

which is called by us the induced by the pair (p, q) linear map, for every n ≥ 0.
Now we are going to de�ne the Lefschetz number. First let assume that E is a linear vector space over

Q and l : E → E a linear endomorphism.
(1) Assume further that dimE < +∞, then by tr(l) we shall denote the trace of l.
(2) Assume that dimE = +∞. Denote by l (n) : E → E the n-th iterate of l and observe that

Ker(l) ⊂ Ker
(
l (2)

)
⊂ . . . ⊂ Ker

(
l (n)

)
⊂ . . .
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We put

N(l) =
+∞⋃
n=1

Ker(l (n)) and Ẽ = E|N(l).

Since N(l) is an invariant subspace of E we can consider the induced endomorphism l̃ : Ẽ → Ẽ. We shall say
that l is a Leray endomorphism provided dimE < +∞. Consequently we are able to de�ne the generalized
trace Tr(l) of l by the formula:

Tr(l) = tr
(
l̃
)
. (1.2)

Consider a continuous mapping f : X → X. We shall say that the Lefschetz number λ(f) of f is well
de�ned provided f∗n is a Leray endomorphism for every n ≥ 0 and Tr(f∗n) = 0 for almost all n. Then we
let:

λ(f) =
+∞∑
n=1

(−1)nTr(f∗n). (1.3)

Evidently, if X is a space of �nite type, then

λ(f) =

+∞∑
n=0

(−1)n tr(f∗n)

is well de�ned. Observe that for given pair (p, q) the above consideration is exactly the same and we have

λ((p, q)) =

+∞∑
n=0

(−1)nTr
(
q∗n ◦ p−1

∗n
)

(1.4)

provided it is well de�ned.
The following proposition is very usefull in what follows:

Proposition 1.5. Assume that the following diagram of linear mappings

E
s //

l
��

E1

l1
��

E s
// E1

s1

``@@@@@@@@

is commutative. Then l is a Leray endomorphism if and only if l1 is a Leray endomorphism and in that case

Tr(l) = Tr(l1).

For the proof of Proposition 1.5 see [13], [16], [20]. Note that Proposition 1.5 can be formulated in the
terms of continuous mappings and the Lefschetz number (see again [13], [16], [20]).

Finally assume that l : E → E is a weakly nilpotent map, i.e. for all x ∈ E there exists nx > 0 suth that
lnx(x) = 0. We have (see [13]):

Proposition 1.6. If l : E → E is a weakly nilpotent endomorphism, then Tr(l) = 0.

2. Multivalued mappings

Let X and Y be two metric spaces. A multivalued map de�ned on X with the values in Y we shall denote
by the symbol φ : X ⊸ Y . In what follows we shall denote multivalued mappings by greek letters. We shall
assume also that, for every x ∈ X the value φ(x) of x under φ is a non empty subset of Y .

Let φ : X ⊸ Y be a multivalued mapping. We associate with φ the graph Γφ by putting:

Γφ = {(x, y) ∈ X × Y ; y ∈ φ(x)}.
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Then we have the following diagram:

X Γφ
pφ
oo

qφ
// Y,

in which pφ(x, y) = x and qφ(x, y) = y for every (x, y) ∈ Γφ.
A multivalued map φ : X ⊸ Y is called upper semicontinuous (u.s.c.) provied for every open set U ⊂ Y

the set
φ−1(U) = {x ∈ X; φ(x) ⊂ U}

is open in X; φ is called lower semicontinuous (l.s.c.) provided for every open set U ⊂ Y the following set:

φ−1
+ (U) = {x ∈ X; φ(x) ∩ U ̸= ∅}

is open in X.
Finally, φ is called continuous if and only if φ is both u.s.c. and l.s.c. A mapping φ : X ⊸ Y is called

compact provided φ(X) =
⋃
x∈X

φ(x) is relatively compact subset of Y .

Remark 2.1. In what follows we shall consider only u.s.c. mappings with compact values.

De�nition 2.2. An u.s.c. mapping φ : X ⊸ Y is called acyclic provided φ(x) is an acyclic set for every
x ∈ X.

The following two remarks are selfevident.

Remark 2.3. If φ : X ⊸ Y is an acyclic map then pφ is a Vietoris map.

Remark 2.4. Moreover, we have φ(x) = qφ
(
p−1
φ (x)

)
, for every x ∈ X; the pair

(
pφ, qφ

)
will be called a

selective pair of φ (written
(
pφ, qφ

)
⊂ φ.

For given two maps: X
φ
⊸ Y

ψ
⊸ Z we de�ne the composition ψ ◦ φ of φ and ψ by the formula:

(ψ ◦ φ)(x) =
⋃

{ψ(y); y ∈ φ(x)},

for every x ∈ X. Observe that the composition of two acyclic maps is not an acyclic map in general.
Now we are going to de�ne the notion of admissible multivalued maps (see [13], [16]).

De�nition 2.5 ([13], [16]). A multivalued map φ : X ⊸ Y is called admissible provided there exists a
diagram

X Z
pks q

// Y

in which p is a Vietoris map and q is continuous such that

φ(x) = q
(
p−1(x)

)
for every x ∈ X.

Evidently, (comp. Remark 2.4) any acyclic map is admissible. Moreover, the following property holds
true.

Property 2.6. Compositions of two admissible mappings is admissible too.

Note that the class of acyclic maps was introduced by S. Eilenberg and D. Montgomery in 1946 (see [10]);
the class of admissible mappings was introduced in 1976 (see [16]).
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3. Appropriate spaces

In this section we recall types of metric spaces essential from the point of view of Lefschetz �xed point
theorem. Let A be a closed subset of the space X. We shall say that A is a retract of X provided there
exists a continuous map r : X → A (called retraction map) such that r(x) = x, for every x ∈ X; the map
rε : X → A is called ε-retraction provided d

(
rε(x), x

)
< ε for every x ∈ A, where d denotes the metric in X.

De�nition 3.1. We shall say that a space X is an absolute retract (X ∈ AR) provided, for every space Y
and for every embedding h : X → Y as aclosed subset, the set h(X) is a retract of Y ; if there exists an open
U ⊂ Y such that A ⊂ U is a retract of U , then X is called an absolute neighbourhood retract (X ∈ ANR).

Note that any metric space X can be embedded as a closed subset into a normed space. Moreover, let
us add that any absolute retract is a contractible space (see [4], [13], [20]).

De�nition 3.2. Amap r : X → Y is calledmulti-retraction provided there exists an admissible map φ : Y ⊸
X such that r(φ(y)) = y, for every y ∈ Y .

De�nition 3.3 ([27]). A space X is called an absolute multiretract (X ∈ AMR) provided there exists
a normed space E and a multi-retraction r : E → X; X is called an absolute neighbourhood multi-retrac

(X ∈ ANMR) provided there exists an open subset of some normed space E and a multi-retraction r : U → X.

The following diagram illustrates the relationship between the introduced spaces:

AR ⊂ ANR
∩ ∩

AMR ⊂ ANMR

Note that all of the above inclusions are proper. Moreover, let us add that every X ∈ AMR is an acyclic
space.

Finally, we shall recall notions of approximative retracts.

De�nition 3.4 ([4], [13], [16]). A space X is called an absolute approximative retract provided for any
embedding h : X → Y of X into a space Y and, for every ε > 0, there exists an ε-retraction rε : Y → h(X)
(written X ∈ AAR); if there exists an open subset U of X such that, for every ε > 0 tehre is an ε-retraction
rε : U → h(X), then X is called an absolute approximative neighbourhood retract (X ∈ AANR).

It s easy to see that
AR ⊂ AAR
∩ ∪

ANR ⊂ AANR

and all inclusions are proper (comp. [13]).

4. The Lefschetz �xed point theorem for admissible mappings

First we remind de�nitions of some types of admissible mappings. We let

K(X) =
{
φ : X ⊸ X; φ is admissible and compact

}
.

De�nition 4.1. Let φ : X ⊸ X be admissible mapping.

(a) φ is called compact absorbing contraction (φ ∈ CAC(X)), if there exists an open subset U of X such
that φ(X) is a compact subset of U and, for every x ∈ X there exists a natural number nX > 0 such
that φnX (x) ⊂ U ;
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(b) φ os called eventually compact if φn ∈ K(X), for some n > 0;

(c) φ is called asymptotically compact provided, for every x ∈ X, the orbit O(x) =
∞⋃
n=1

φn(x) is relatively

compact and the core C(φ) =
⋂
n≥1

φn(X) is nonempty relatively compact (φ ∈ ASC(X));

(d) φ is called compact attraction if there exists a compact subset K ⊂ X such that, for every open
neighbourhood V of K in X such that , for every x ∈ X, there exists nX ≥ 0 for which φnX (x) ⊂ V
(φ ∈ CA(X)).

Note that the notion of CAC-mappings was introduced in [11]. We have:

K(X) ⊂ EC(X) ⊂ ASC(X) ⊂ CA(X) ⊂ CAC(X).

Let us add that all the above inclusions are proper (see [13], [19], [25]).
Let φ : X ⊸ X be an addmissible map and (p, q) ⊂ φ be a selective pair of φ. Then we have the induced

linear maps:
q∗n ◦ p−1

∗n : Hn(X) → Hn(X),

for every n. So we shall say that (p, q) is a Lefschetz pair provided q∗n ◦ p−1
∗n is a Leray endomorphism for

every n ≥ 0 and Tr
(
q∗n ◦ p−1

∗n
)
= 0 for almost all n ≥ 0. Consequently in this case we have well de�ned the

Lefschetz number λ((p, q)) od the pair (p, q) by the formula (1.4).
We shall say that φ is a Lefschetz map provided every selected pair (p, q) ⊂ φ of φ is a Lefschetz pair. In

this case we de�ne the Lefschetz set Λ(φ) of φ by putting:

Λ(φ) = {λ(p, q); (p, q) ⊂ φ}. (4.1)

Note that, if X is of �nite type, then for any admissible map φ the Lefschetz set Λ(φ) of φ is well de�ned.
Observe that, if φ is acyclic map and X is of �nite type, then the Lefschetz set Λ(φ) of φ is a singleton, i.e.
Λ(φ) = {λ(pφ, qφ)}.

Finally, it is easy to see that, if X is an acyclic space, then for every admissible map φ : X ⊸ X is a
Lefschetz map and Λ(φ) = {1}, i.e. for every (p, q) ⊂ φ, we have λ(p, q) = 1. We recommend for the details
[13], [16], [19].

The following theorem is provided in [27].

Theorem 4.2. If X ∈ MANR and φ ∈ K(X), then φ is a Lefschetz map and Λ(φ) ̸= {0} implies that there

exists a �xed point of φ, i.e. there exists x ∈ X such that x ∈ φ(x).

Note that, for X ∈ ANR, Theorem 4.2 was proved in [11] and for X to be compact ANR-space and
φ : X ⊸ X to be acyclic map it was proved in [10].

Now we shall present essential generalization of Theorem 4.2.

Theorem 4.3. If X ∈ MANR and φ ∈ CAC(X), then φ is Lefschetz map and Λ(φ) ̸= {0} implies that φ
has a �xed point.

Proof. Since φ ∈ CAC there exists an open subset U ⊂ X such that φ(X) is a compact subset of U .
Consequently the map φ′ : U ⊸ U , φ′(x) = φ(x) for every x ∈ U is an admissible compact map. Moreover,
(p′, q′) ⊂ φ′, where p′, q′ : p−1(U) → U are de�ned as follows: p′(u) = p(u), q′(u) = q(u) for every u ∈ p−1(U)
and the arbitrary selected pair (p, q) ⊂ φ.

To show that φ is a Lefschetz map it is enough to prove that Λ(p, q) = Λ(p′, q′). In view of Theorem 4.2
we obtain that the Lefschetz number Λ((p′, q′)) is well de�ned. In order to show that Λ((p, q)) = Λ((p′, q′))
we consider pairs (X,U) and (p, q), where p, q : (p−1(X), p−1(U)) → (X,U) are de�ned by

p(u) = p(u), q(u) = q(u), for every u ∈ p−1(X).
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Now we are able to de�ne a linear map l∗n : Hn(X,U) → Hn(X,U) de�ned by the formula

l∗n = q∗n ◦ p−1
∗n for every n ≥ 0.

Since φ ∈ CAC(X) we deduce that l∗n is weakly nilpotent, for every n ≥ 0. Hence Tr(l∗n) = 0 for every
n ≥ 0. Now using homology exact sequence (see [13]) we obtain that

Tr
(
q∗n ◦ p−1

∗n
)
= Tr

(
q′∗n ◦

(
p′∗n

)−1
)

for every n ≥ 0

and hence Λ((p, q)) = Λ((p′, q′)).
Finally, if we assume that Λ((p, q)) ̸= {0}, then Λ((p′, q′)) ̸= 0 and from Theorem 4.2 we obtain that φ′

has a �xed point. But every �xed point of φ′ is also a �xed point of φ and our theorem is proved.

Note that theorem was formulated in [18] but witout the proof. For X ∈ ANR Theorem 4.2 was proved
in [11] (see also [13]).

Corollary 4.4. Assume that X satis�es one of the following three conditions:

(a) X is an acyclic MANR-space,

(b) X ∈ MAR,

(c) ∈ AR.

If φ ∈ CAC(X), then φ has a �xed point.

In the end of this section we shall deal with approximative retracts. First we remind the following fact:

Proposition 4.5 ([16]). If X is a compact AANR-space, then it is of �nite type.

The key in the proof the Lefschetz �xed point theorem is the following:

Proposition 4.6 ([16]). Assume that y is a compact space of �nite type. Then there exists ε > 0 such that

for arbitrary space Y and two conditions maps f, g : Y → Y if d(f(y), g(y)) < ε, for every y ∈ Y , then

f∗n = g∗n, for every n ≥ 0.

Theorem 4.7 ([13], [16]). Let X be a compact AANR-space and φ : X ⊸ X an admissible map. Then

Λ(φ) ̸= 0 implies that φ has a �xed point.

Corollary 4.8. If X is an acyclic AANR or X ∈ AAR, then for every admissible map φ : X ⊸ X there

exists a �xed point.

Open Problem 4.9. Is it possible to prove Theorem 4.7 for arbitrary X ∈ AANR and φ ∈ K(X) or
φ ∈ CAC(X)?

There exists a large literature concerning the Lefschetz �xed point theorem for acyclic and admissible
mappings (comp. [2], [5], [9], [10], [13]�[19], [21], [25], [27]) and references there in.

5. Random admissible operators

A systematic study of random operation was iniciated in the 1950 by Czech mathematicians. We are
interested in the �xed point theory for multivalued random operators. For more details and references sii [1]
or [13] and references there in.

By a measurable space we shall mean the pair (Ω,Σ), where the set Ω is equipped in a σ-algebra Σ of
subsets. We shall use B(X) to denote the Borel σ-algebra on X. The symbol Σ⊗B(X) denotes the smallest
σ-algebra on Ω×X which contains all the sets A×B, where A ∈ Σ and B ∈ B(X).
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De�nition 5.1. Let (Ω,Σ) be a measurable space and Y a separable space. A map φ : Ω ⊸ X with closed
values is called measurable if

φ−1(B) = {ω ∈ Ω; φ(Ω) ⊂ B} ∈ Σ for each open B ⊂ Y .

De�nition 5.2. A multivalued map φ : Ω×X ⊸ X with closed values is called random map provided:

(a) φ is product measurable (measurable in the whole),

(b) the map φ(ω, · ) : X ⊸ X is u.s.c. for every ω ∈ Ω,

(c) if the map φ(ω, · ) : X ⊸ X is admissible, then φ is called random admissible map.

De�nition 5.3. Let φ : Ω × X ⊸ X be a random map. A measurable map (singlevalued) ξ : Ω → X is
called a random �xed point of φ provided:

ξ(ω) ∈ φ(ω, ξ(ω)), for every ω ∈ Ω.

The following proposition is crucial in what follows.

Proposition 5.4 ([1], [13]). Let X be a separable space and φ : Ω ×X ⊸ X a random operator such that

the map φ(ω, · ) : X ⊸ X has a �xed point for every ω ∈ Ω, then φ has a random �xed point.

Now we are able to prove the main result of this section, i.e. the Lefschetz-type �xed point theorem for
random maps.

Theorem 5.5. Assume that X is a separable multi absolute neighbourhood retract (X ∈ MANR). Assume

further that φ : Ω ×X ⊸ X is a random admissible map such that φ(ω, · ) ∈ CAC(X) for every ω ∈ Ω. If

λ(φ(ω, · ) ̸= {0}, for every ω ∈ Ω, then φ has a random �xed point.

Proof. In view of Theorem 4.3 φ(ω, · ) is a Lefschetz map for every ω ∈ Ω. Consequently our assumption
that Λ(φ(ω, · )) ̸= {0} implies that φ(ω, · ) has a �xed point. Hence our theorem follows from Proposition
5.4 and the proof is complete.

Corollary 5.6. Assume that X is a separable and one of the following conditions is satis�ed :

(a) X is acyclic multi absolute neighbourhood retract,

(b) X ∈ AR,

(c) X ∈ ANR and it is acyclic,

then an random admissible map φ : Ω×X ⊸ X such that φ(ω, · ) ∈ CAC(X), for every ω ∈ Omega has a

random �xed point.

The formulation of the respective Lefschetz-type theorem for X to be compact AANR-space is left to the
reader.

6. Spheric maps

In 1947 B. O'Neill [24] constructed an example of a �xed point free map φ : K2 ⊸ K2 which is continuous
with values homotopically equivalent to S1 (even homeomor�c to Sn), where K2 denotes the unit ball in
euclidean space R2 and S1 denotes the unit sphere. The above example was inspiration to introduce the
notion of spheric mappings. For spheric mappings see [3], [7], [13], [23]. In this section all considered
topological spaces are subsets of the euclidean space Rn, n ≥ 1.

Let X be a compact subsets of Rn, n ≥ 2. Then Rn \X consists of two components, namely:
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(1) an unbounded component DX of Rn \X, i.e. x ∈ DX if and only if for every r > 0 there exists a
continuous function f : [0, 1] → Rn \X such that f(0) = x and ∥f(1)∥ > r, since X is compact DX is the
unique unbounded component of Rn \X.

(2) a union of all bounded component BX of (Rn \DX) \X. Moreover, we let

X̃ = BX ∪X = Rn \DX.

Observe that if A is a compact subset of X, then Ã ⊂ X̃; if X is an acyclic set then X = X̃.

De�nition 6.1. Let X be a compact subset of Rn and let φ : X ⊸ X be an u.s.c. map with connected
values. We say that φ is a spheric map provided:

(a) {x ∈ X; x ∈ Bφ(x)} is an open subset of X.

(b) the map φ̃ : X ⊸ X, φ̃(x) = φ(x) ∪Bφ(x) is well de�ned acyclic map.

Of course any acyclic map is spheric. Evidently, if X is an acycylic set or Rn \X is connected, then φ̃ is
well de�ned.

Let φ : X ⊸ X be a spheric map. Then φ̃ : X ⊸ X is acyclic map and consequently the linear map
φ̃∗n : Hn(X) → Hn(X), given by the formula

φ̃∗n(qφ̃)∗n(pφ̃)
−1
∗n , n ≥ 0.

is well de�ned for every q ≥ 0. We de�ne the Lefschetz number λ(φ) of φ by putting: λ(φ) = λ
(
φ̃
)
, provided

λ
(
φ̃
)
is well de�ned. The following proposition is crucial.

Proposition 6.2. If φ : X ⊸ X is a spheric map and φ̃ : X ⊸ X has a �xed point, then φ has a �xed point.

Proof. There are possibilities:

(i) the boundary ∂X of X in Rn is equal to X,

(ii) ∂X ̸= X.

In the case (i) we have φ = φ̃ so our claim is evident.
For the proof of (ii) assume to the contrary that φ has no �xed points. Then the set Fix

(
φ̃
)
=

{
x ∈

X; x ∈ φ̃(x)
}
is closed subset of X and in view of De�nition 6.1 we deduce that Fix

(
φ̃
)
is also an open

subset. To obtain a contradiction it is su�cent to observe that X \ {x ∈ X; x ∈ Bφ(x)} ̸= ∅. Indeed, we
have that ∂X ̸= ∅ (since X is compact) if x ∈ ∂X then x ̸∈ Bφ(x) and hence X \ {x ∈ X; x ∈ Bφ(x)} ≠ ∅
and the proof is completed.

From Proposition 6.2 and Theorems 4.2, 4.7 we obtain

Theorem 6.3. If X is a compact subset of Rn and X ∈ MANR or X ∈ AANR and φ : X ⊸ X is a spheric

map, then λ(φ) ̸= 0 implies that φ has a �xed point.

Corollary 6.4. In particular, if X ∈ MAR or X ∈ AR or X ∈ AAR, then any spheric map φ : X ⊸ X has

a �xed point.

Remark 6.5. Evidently the respective results for random spheric maps are also possible (comp. Section 5).
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7. (1 − n)-acyclic mappings

Observe that both admissible and spheric mappings have connected values. In this section we shall
present a class of mappings with nonconnected values.

De�nition 7.1. A continuous multivalued map φ : X ⊸ X is called (n−1)-acyclic (φ ∈ A(1,n)(X)) provided
for every x ∈ X the value φ(x) consists from one or n compact acycylic components (n is �xed).

In 1957 B. O'Neill claimed the existence of a �nitely-valued continuous �xed point free maps φ : K2 ⊸ K2

but gave not example. In 1982 in [22] there is presented �xed point free map φ : K2 → K2 with 1 or 2 or 3
values. Of course the above φ ̸∈ A(1−3).

Let us remark that the class of (1− n)-acyclic mappings is still quite large, namely:

(i) if φ is continuous and acyclic, then φ ∈ A(1−1)(X),

(ii) if φ is n-valued map, i.e. φ(x) consists from exactly n points, then φ ∈ A(1−n)(X) (see [6], [12]),

(iii) if φ is n-valued split map in the sense of [12], then it is (1− n)-acyclic.

It is possible to de�ne the Lefschetz number of a map φ ∈ A(1−n)(X) by associating to this map a chain
map (chain approximation). For details see [8], [13], [26].

Consequently it is possible to prove the Lefschetz �xed point theorem. Namely, we have:

Theorem 7.2 ([8], [13]). Assume that X ∈ ANR and φ ∈ A(1−n)(X)∩CAC(X). Then the Lefschetz number

λ(φ) ̸= {0} implies that φ has a �xed point.

Corollary 7.3. If X ∈ AR and φ ∈ A(1−n)(X) ∩ CAC(X), then φ has a �xed point.

Open Problems 7.4.

(a) Is it possible to prove Theorem 7.2 for X ∈ MANR?

(b) Is it possible to prove Theorem 7.2 for X ∈ AANR?

Finally, let us add that Theorem 7.2 can be randomized.
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