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Abstract 

A recent systematic review of experimental studies conducted in Turkey between 2010 and 2020 reported that 

small sample sizes had been a significant drawback (Bulus & Koyuncu, 2021). A small chunk of the studies in 

the review were randomized pretest-posttest control-group designs. In contrast, the overwhelming majority of 

them were non-equivalent pretest-posttest control-group designs (no randomization). They had an average 

sample size below 70 for different domains and outcomes. Designing experimental studies with such small 

sample sizes implies a strong (and perhaps an erroneous) assumption about the minimum relevant effect size 

(MRES) of an intervention; that is, a standardized treatment effect of Cohen’s d < 0.50 is not relevant to 
education policy or practice. Thus, an introduction to sample size determination for randomized/non-equivalent 

pretest-posttest control group designs is warranted. This study describes nuts and bolts of sample size 

determination (or power analysis). It also derives expressions for optimal design under differential cost per 

treatment and control units, and implements these expressions in an Excel workbook. Finally, this study 

provides convenient tables to guide sample size decisions for MRES values between 0.20   Cohen’s d   0.50. 

 

Keywords: pretest-posttest, experimental design, random assignment, non-equivalent control-group design, 

sample size, power analysis, optimal design 

Introduction 

One crucial question in education policy and practice is whether a program, product, or service 

produces favorable outcomes. The first step to answering such a research question is to solicit funding from 

stakeholders in a grant proposal to cover research expenses. The description of the research design in the grant 

proposal should convince stakeholders (and peers in the publication process) that the study employs rigorous 

methodological procedures and that the sample is not fundamentally flawed to produce biased or inconclusive 

results.  

In education policy research, experiments are indispensable research designs that can establish a cause-

effect relationship between an independent variable (e.g., receiving a program, product, or service) and an 
outcome variable (e.g., academic achievement) (Campbell & Stanley, 1963; Cook et al., 2002; Mostseller & 

Boruch, 2004). An experiment's main characteristic is that researchers can manipulate the independent variable 

to isolate its effect from unobserved confounders. In the simplest form, this is achieved via randomly assigning 

subjects in the sample into the treatment and control groups. Randomization assures that effects of unobserved 

confounders on the outcome – a significant threat to the internal validity of experiments – are canceled out on 

average (Campbell & Stanley, 1963; Cook et al., 2002; Mostseller & Boruch, 2004). In this case, treatment and 

control groups do not systematically differ (especially in large samples). This type of design is referred to as a 

true experiment.  

However, randomization is not always feasible. For example, in education research, it is common to 

assign entire clusters to treatment and control groups (e.g., classrooms) without randomization. In this case, the 

treatment effect may be contaminated with unobserved confounders. In other words, treatment and control 
groups may systematically differ. This type of design is a non-equivalent design (see Campbell & Stanley, 1963; 

Oakes & Feldman, 2001) and categorized as one of the weak experiments in the literature. Nonetheless, weak 

experiments can be manipulated to mimic true experiments via matching subjects on the pretest or covariates 

(Fraenkel et al., 2011; see also Campbell & Stanley, 1963). This type of design is referred to as a quasi-

experiment.  
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Recent reviews of experiments in Turkey indicated that they had inadequate sample sizes (e.g., Bulus 

& Koyuncu, 2021; Yildirim et al., 2019). Overwhelming majority of the reviewed experiments in Bulus and 

Koyuncu (2021) and Yildirim et al. (2019) were small-scale weak or quasi-experiments. Most of them were 

based on convenience sampling where intact classrooms received the treatment or control protocols (often, one 

classroom in each). Average sample size was 70 for experiments reviewed in Bulus and Koyuncu (2021) and 

was 54 for those reviewed in Yildirim et al. (2019). Such small sample sizes imply a strong (and perhaps an 
erroneous) assumption about an intervention's minimum relevant effect size (MRES) before an experiment is 

undertaken. In other words, a standardized treatment effect of Cohen's d < 0.50 is not relevant to education 

policy or practice. MRES is related to the “What is the minimum treatment effect that is meaningful and 

relevant to education policy and practice?” question, and its value should carefully be justified.  

The result of a small-scale experiment is sometimes "too good to be true." There are several potential 

sources of bias inherent to small-scale experiments. For example, the treatment effect in a small-scale 

experiment could be overestimated due to publication bias (Hedges, 1992; Vevea & Hedges, 1995), small study 

effect (Sterne et al., 2000), overfitting problem where the model picks up noise (Yarkoni, 2017), teaching 

treatment group to perform superior on the researcher developed test, shorter pretest-posttest interval (Slavin, 

2008), baseline incomparability, classroom or school confounding, researcher bias such as choosing the more 

able subjects for the treatment group, or a combination of them. 

Bulus and Koyuncu (2021) reported large treatment effects for 106 experiments targeting cognitive 
outcomes (Cohen's d = 1.02, on average) and for 81 experiments targeting affective outcomes (Cohen's d = 1.01, 

on average). The authors did not adjust effect size estimates for the pretest. Yildirim et al. (2019) also reported 

large treatment effects of learning strategies on academic achievement based on a random-effect meta-analysis 

of 28 experiments (Cohen's d = 1.21, on average). The authors did not explicitly state whether they adjusted 

effect size estimates for the pretest. We do not know whether the effects reported in Bulus and Koyuncu (2021) 

and Yildirim et al. (2019) were artifacts (due to several potential sources of bias mentioned earlier) or actual 

effects. Effects sizes of this magnitude, if considered artifacts, cannot be explained by failure to adjust for the 

pretest alone. If these are actual effects, it begs why these programs are not scaled-up.  

One effective way to decipher this ambiguity and ameliorate potential sources of bias mentioned earlier 

is to conduct an experiment with sufficient sample size. A sufficient sample size would allow the experiment to 

detect a minimum effect relevant to policy and practice with sufficient statistical power (probability to detect an 
effect when there is an effect in the underlying population). This study mainly describes formulas and software 

to determine sample size for randomized pretest-posttest control-group design (true experiment) and non-

equivalent pretest-posttest control-group design (weak experiment). It derives expressions for the optimal design 

of true experiments under differential cost per treatment and control units, and provides a convenient Excel 

workbook for this purpose (Optimal Design: https://osf.io/uerbw/download). Moreover, it provides convenient 

tables to guide sample size decisions for MRES values between 0.20   Cohen’s d    0.50 (Appendix and 

Supplement: https://osf.io/t2as3/download). 

In what follows, first, the approximate standard error of the treatment effect for several types of 

experimental designs will be described. Approximate standard errors are required for power analysis routines. 

Suppose approximate standard errors are formulated in terms of known design parameters such as MRES, 

treatment group allocation rate, and explanatory power or covariates. Then, one can conveniently find the 
minimum required sample size (MRSS) for true and weak experiments given design parameters. Second, 

illustrative examples are provided to find MRSS depending on common design characteristics.  Finally, key 

points are discussed and summarized 

Approximate Standard Error Formulas for Power Analysis 

To answer the crucial question of "At least how many participants are needed in treatment and control 

groups to detect an effect that is relevant to policy and practice?" one will need to have a guestimate for the 
standard error of the treatment effect. Fortunately, there are many important studies in this line of work. Several 

scholars derived expressions for approximate standard errors, which is a function of the known design 

parameters such as total sample size, treatment group allocation rate, and explanatory power of covariates (e.g., 

Bloom, 2006, Dong & Maynard, 2013; Oakes & Feldman, 2001). Expressions for approximate standard errors 

considering true and weak experiments will be described momentarily. 

Approximate standard error expressions presented in this study apply to several experimental designs 

described in Campbell and Stanley (1963) and Fraenkel et al. (2011) when Analysis of Variance (ANOVA) or 

Analysis of Covariance (ANCOVA) model is the method of choice. Randomized posttest-only control-group 

and randomized pretest-posttest control-group designs are categorized as true experiments (Campbell & Stanley, 

1963; Fraenkel et al., 2011). Static-group comparison design (SCD; Campbell & Stanley, 1963) and static-group 

https://osf.io/uerbw/download
https://osf.io/t2as3/download
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pretest-posttest design (SPPD; Fraenkel et al., 2011) are categorized as weak experiments. SCD and SPPD 

designs are also known as non-equivalent designs. There is no guarantee that treatment and control groups are 

comparable at the baseline in non-equivalent designs (see Campbell & Stanley, 1963; Oakes & Feldman, 2001). 

This study adopts the latter naming convention; non-equivalent posttest-only control-group design for SCD and 

non-equivalent pretest-posttest control-group design for SPPD.   

True Experiments 

In a simple true experiment, subjects are randomly assigned into the treatment and control groups. 

While treatment group subjects benefit from a program, product, or service, no procedures are undertaken for 

the control group except for the administration of questionnaires. Information is collected at the baseline (e.g., 

pretest) to control bias resulting from baseline differences (mostly in small-scale weak or quasi-experiments) 

and improve the estimate's precision. In the end, outcomes between the two groups are compared to gauge the 

effectiveness of an intervention.  

Randomized Pretest-posttest Control-group Design   

The diagram of the randomized pretest-posttest control-group design is described below. R refers to the 

randomization process, X refers to the implementation of the treatment protocol, and O refers to the observation 

of the pretest before X or posttest after X.  

Treatment group R O X O 

Control group R O  O 

The following procedures are followed in this type of design; (i) subjects are randomized into the treatment and 

control groups, (ii) a pretest questionnaire is administered before subjects receive treatment and control 

protocols, (iii) treatment and control group protocols are administered, and (iv) a posttest questionnaire is 

administered after subjects receive treatment and control protocols. Control group subjects could receive the 

business-as-usual approach or another intervention different from the treatment group. Data collected from this 

type of design can be analyzed via an ANCOVA model. The approximate standard error for the treatment effect 

takes the form of  

  (  ̂)  √
    

       
 1 

with         degrees of freedom (Bloom, 2006, p. 12; Dong & Maynard, 2013, p. 45). R2 is the 
proportion of variance in the posttest explained by the pretest. p is the treatment group allocation rate 

(proportion of subjects in the treatment group). n is the total sample size in the treatment and control groups. g 

indicates the number of covariates (g = 1 when pretest is the only covariate). To determine MRSS for this type 

of design, one can use PowerUpR (Bulus et al., 2021) R package or PowerUp! (Dong & Maynard, 2021) Excel 

workbook for this purpose. These freeware will be described in the software illustration section momentarily.  

Randomized Posttest-only Control-group Design 

The diagram of the randomized posttest-only control-group design is described below. 

Treatment group R X O 

Control group R  O 

The following procedures are followed in this type of design; (i) subjects are randomized into the 

treatment and control groups, (ii) treatment and control group protocols are administered, and (iii) a posttest 
questionnaire is administered after subjects receive treatment and control protocols. Similarly, control group 

subjects could receive the business-as-usual approach or another intervention different from the treatment group. 

Data collected from this type of design can be analyzed via an ANOVA model. Per G*Power 3.1 guide (p. 49), 

the approximate standard error for the treatment effect takes the form of  

  (  ̂)  √
 

       
 2 

with       degrees of freedom. The remaining parameters are defined earlier. The relevant specification in 

G*Power is "Test family: t-tests" and "Statistical test: Means: Difference between two independent means (two 

groups)." Note that when pretest information is not available in Equation 1 (R2 = 0 & g = 0), it converges to 
Equation 2.  Alternatively, one can use PowerUpR (Bulus et al., 2021) R package or PowerUp! (Dong & 
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Maynard, 2021) Excel workbook for this purpose. Note that in this case R2 = 0 and g = 0 in PowerUpR and 

PowerUp! 

Optimal Design of True Experiments 

Conducting an experiment can be costly. Naturally, costs for the treatment group could be higher than 

costs for the control group. When the cost per subject in treatment and control groups is differential, it is 

desirable to sample less from the group with higher costs. Higher costs associated with the treatment group may 
emerge from new materials, new approaches to learning, hiring experts, and other overhead costs needed to 

develop and implement an intervention. Overhead costs for treatment and control groups can be divided by the 

number of subjects in each group and added to the subject-unique costs. In this case, each subject in the 

treatment and the control groups will be associated with differential costs. Therefore, it is reasonable to sample 

fewer subjects from the treatment group and more subjects from the control group. In what follows, analytic 

expressions are derived to find optimal p and n given total cost or budget.  

Let CTRT and CCTRL be the cost per subject in treatment and control groups, respectively. Let also CTOT be 

the total cost or budget. Total cost is the sum of the costs for treatment and control groups. Costs for the 

treatment and control groups can be expressed as the subject-level cost in each group multiplied by the number 

of subjects in each group. There are    subjects in the treatment and        subjects in the control group. 

 Then, the following equation can be defined as 

                        3 

Re-arranging Equation 3, n can be expressed as 

  
    

                

  4 

Plugging Equation 4 for n in Equation 1, the squared standard error can be expressed as  

  (  ̂)
 
 

    

    

(
                

      
)  5 

In order to find optimal   that minimizes the squared standard error in Equation 5, one needs to take the 

derivative of   (  ̂)
 
 with respect to p as 

   (  ̂)
 

  
 

    

    

(
                  

        
) 6 

Setting Equation 6 to zero and solving for p produces the optimal p as  

  
√     

√     √     

 7 

Equation 7 can be further simplified. Define cost ratio as              , then 

  
 

  √  
 8 

Equations 4 and 8 can be used to devise a randomized pretest-posttest control-group design optimally. First, one 

would need to have information on the cost ratio. Once the cost ratio is known, optimal p can be obtained using 

Equation 8. In the second step, optimal p can be plugged in Equation 4 to get an estimate for n. 

Weak Experiments 

Although weak experiments are presented here, they are not the first choice to produce knowledge for 

evidence-based practices. They should be preferred when randomization is not feasible. They are described 

below for interested readers.  

Non-equivalent Pretest-posttest Control-group Design 

The diagram of the non-equivalent pretest-posttest control-group design is described below. 

Treatment group O X O 

Control group O  O 
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The following procedures are followed in this type of design; (i) a pretest questionnaire is administered 

to subjects in two naturally occurring groups (e.g., classroom) before they receive treatment and control 

protocols, (iii) treatment and control group protocols are administered to these two groups, and (iv) a posttest 

questionnaire is administered after these two groups receive treatment and control protocols, respectively. Note 

that there is no randomization. Data collected from this type of design can also be analyzed via an ANCOVA 

model. The approximate standard error for the treatment effect is adapted from Oakes and Feldman (2001, p. 
15) as 

  (  ̂)  √
    

             
  

 9 

with         degrees of freedom. Unlike earlier designs,    
  is the squared point-biserial correlation 

between the pretest variable and the treatment indicator. It represents the proportion of variance in the pretest 
explained by the treatment indicator.  

Non-equivalent Posttest-only Control-group Design 

The diagram of the non-equivalent posttest-only control-group design is described below. 

Treatment group X O 

Control group  O 

The following procedures are followed in this type of design; (i) treatment and control group protocols 

are administered to two naturally occurring groups, and (ii) a posttest questionnaire is administered after these 

two groups receive treatment and control protocols, respectively. There is no randomization. Data collected 

from this type of design can also be analyzed via an ANOVA model. The approximate standard error for the 

treatment effect can be obtained via re-expressing Equation 9 as 

  (  ̂)  √
 

             
  

 10 

with       degrees of freedom. One could righteously argue that    
  does not apply to this formulation 

because pretest information is not collected. Although pretest information is not collected, differences between 

treatment and control groups at the baseline would affect standard error of the treatment effect. Thus, it would 

be a good practice to have a guesstimate for    
  and determine sample size accordingly. Other parameters are 

defined earlier.  

Sample Size Determination in True Experiments 

In this section, the nuts and bolts of sample size determination in randomized pretest-posttest control-
group design will be described. First, in the software illustrations section, PowerUpR and PowerUp! will be 

used to determine the sample size for a hypothetical intervention. Second, in the optimal design section, a step-

by-step guide will be provided to optimally design a hypothetical intervention, along with the description of the 

Optimal Design Excel workbook accompanying this article. Finally, in the table illustration section, the relevant 

table in the Appendix will be used to determine sample size without using any software packages. 

Software Illustrations 

There are a few points to consider when determining the minimum required sample size (MRSS): 

 Type I error rate can be defined as the probability of finding a treatment effect in the sample when 

there is no effect in the underlying population. It is usually specified as 05%, the default value in 

PowerUpR (alpha = .05).  

 Power rate can be defined as the probability of finding a treatment effect in the sample when there is an 

effect in the underlying population. It is usually defined as 80% in social science, which is the default 

value in PowerUpR (power = .80). 

 Whether the hypothesis test is one-tailed or two-tailed. Generally, a two-tailed hypothesis test is 

performed assuming that the intervention could either be beneficial or detrimental, the default value in 

PowerUpR (two.tailed = TRUE).  

 The minimum relevant effect size (MRES), standardized according to Cohen's d. MRES is usually 

defined as 0.20 or 0.25 in education research, the default value in PowerUpR (es = 0.25). An 

MRES of 0.25 means that a minimum meaningful treatment effect bumps an average student's score by 

ten percentile points.  
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 Treatment group allocation rate (p) is defined as the proportion of subjects in the treatment group. 

Allocating half of the sample into the treatment group produces the smallest variance (or maximum 

power rate), which is the default value in PowerUpR (p = .50). 

 The proportion of variance in the posttest explained by the pretest and other covariates (R2). There is 

not much research in Turkey that provides R2 values for planning experimental designs beyond Bulus 

and Koyuncu (2021). Brunner et al. (2018) analyzed PISA data for 81 countries, including Turkey, and 

provide design parameters for planning cluster-randomized trials. Their results apply to 15 years old 

students. If the interest is the explanatory power of socio-demographic variables for high school 

students, R2 values reported for student-level can possibly be used. Socio-demographic variables 

explain a small amount of variance in academic achievement (Median R2 = .05), affect and motivation 

(Median R2 = .01), and learning strategies (Median R2 = .01) at the student level. R2 should rely on 

earlier literature or some existing data targeting the same outcome. The correlation between the pretest 
and the posttest tends to be higher with affective outcomes because, in comparison to cognitive 

outcomes, they tend to persist over time. This tendency for a stronger relationship manifests itself as 

higher R2 values. In fact, for true experiments, Bulus and Koyuncu (2021, p. 32) reported that average 

values for affective and cognitive outcomes are R2 = .38 and R2 = .22, respectively (r2 = .38 or r2 

= .22).  

MRSS computations can be performed considering the information presented above. For this purpose, 

PowerUpR R package and PowerUp! Excel workbook will be used. These two freeware have the same naming 

conventions and employ the same algorithms to determine MRSS.  Although these statistical packages are 

mainly designed for multilevel randomized experiments, they also include a function for randomized pretest-

posttest control-group design under the "Individual Random Assignment" function or module.  

First, we need to install the PowerUpR package in the R environment and load it into the current 
session using the following code (or any other package installment routine). GitHub code repository has the 

most recent version of the package. Once available, the package can also be downloaded from the CRAN 

repository.  

 

The function that allows MRSS computation in PowerUpR is mrss.ira(). Earlier versions of the PowerUpR 

package available on CRAN uses mrss.ira1r1() name. Considering R2 from Bulus and Koyuncu (2021), 

MRSS for an intervention targeting to improve an affective outcome (e.g. affect and motivation) or a cognitive 

outcome (e.g. achievement) can be computed as:  

 

If one opts for PowerUp! Microsoft Excel workbook, it should be downloaded from 

https://www.causalevaluation.org/uploads/7/3/3/6/73366257/powerup.xlsm. MRSS can be computed for each 

type of outcome using PowerUp! Module IRA with identical specifications (see Figures 1 and 2).  

require(devtools) 

install_github("metinbulus/PowerUpR") 

library(PowerUpR) 

# MRSS for an affective outcome 

mrss.ira(alpha = .05, power = .80, two.tailed = TRUE, 

         es = .25, g = 1, r2 = .38, p = .50) 

# n = 313  

 

# MRSS for a cognitive outcome 

mrss.ira(alpha = .05, power = .80, two.tailed = TRUE, 

         es = .25, g = 1, r2 = .22, p = .50) 

# n = 394  

 

https://www.causalevaluation.org/uploads/7/3/3/6/73366257/powerup.xlsm
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Figure 1. MRSS for an intervention targeting an affective outcome. 

 

 
Figure 2. MRSS for an intervention targeting a cognitive outcome. 

Considering MRSS result for an intervention targeting a cognitive outcome only, for example, one can 

report the power analysis procedure in a paragraph as follows:  

For this randomized pretest-posttest control-group design, we assume that the pretest explains 22% 

of the posttest variance (Bulus and Koyuncu, 2021). We further assume that the hypothesis test is 

two-tailed, the Type I error rate is 5%, and the power rate is 80%. Under these conditions, based on 

PowerUpR (Bulus et al., 2021) or PowerUp! (Dong & Maynard, 2013), a sample of 394 subjects 

equally allocated to treatment and control groups is needed to detect an effect size as small as 0.25.  

Readers are referred to Dong and Maynard (2013) for more complicated randomized experiments. In 

multisite randomized experiments, subjects are randomly assigned into the treatment and control groups within 

sites or blocks (Bloom, 2006; Dong & Maynard, 2013; Hedges & Rhoads, 2010; Raudenbush & Liu, 2000; 

Konstantopoulos, 2008a). In cluster-randomized experiments, entire clusters are randomly assigned into the 

treatment and control groups (Dong & Maynard, 2013; Hedges & Rhoads, 2010; Konstantopoulos, 2008b). 
Finally, in multisite cluster-randomized experiments, entire clusters are randomly assigned into the treatment 

and control groups within sites or blocks (Dong & Maynard, 2013; Hedges & Rhoads, 2010; Konstantopoulos, 

2008a; Schochet, 2008;  Spybrook, 2007). To estimate sample size in such complex experiments, researchers 

can use PowerUpR (also available through https://powerupr.shinyapps.io/index/) or PowerUp!. 

Optimal Design under Differential Costs 

The task of undertaking an experiment can be costly. Expenses can either be covered by the researcher 

or can be solicited from funding agencies. In either case, one can optimally allocate subjects into treatment and 

control groups if costs associated with treatment and control units are available. Optimal Design Excel 

workbook accompanying this article implements optimal design formulas presented in this study. The step-by-

step approach to optimal design of randomized pretest-posttest control-group design is presented in Figures 3 to 

6. The Optimal Design Excel workbook can also be used to optimally devise a randomized posttest-only control 
group design.  

https://powerupr.shinyapps.io/index/
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Assume that the reserved budget is 2000₺, which cannot be increased (fixed budget). Further, assume 

that costs associated with each treatment and control unit are 20₺ and 5₺, respectively. Defining these values in 

the Optimal Design Excel workbook (yellow highlighted cells) produces a sample size of 200 with an allocation 

rate of p = 0.33 (see Step 1 in Figure 3). 

Step 1: Find optimal p and n 

Optimal Design of Randomized Pretest-Posttest Control-group 

Design under Differential Cost 

Parameters Values 

Total cost or budget      2,000₺  

Cost per treatment unit          20₺  

Cost per control unit            5₺  

Treatment group sampling rate (p) 0.33 

Total sample size (n) 200 

Figure 3. Step 1 in Optimal Design Excel workbook. 

 We know this is the best allocation that produces minimum variance (or maximum power) compared 

to alternative allocations under identical budget constraints. However, we still do not know what power rate this 

allocation will produce. The question is: What is the power rate for the optimal allocation rate (p = .33) and the 

sample size (n = 200)? Using PowerUpR, the power rate is computed as 47% (see Step 2 in Figure 4). If the 

total cost or budget is fixed at 2000₺, this the best we can do. 

Step 2: Check the power rate in 

PowerUpR or PowerUp! given 

optimal p and n produced in Step 1. 

Specify other design parameters 

according to your study field. If the 

total cost or budget is fixed stop 

here.  

power.ira(alpha = .05, two.tailed = TRUE, 

          es = .25, g = 1, r2 = .22, 

          p = .33, n = 200)              

# Statistical power:  

# ---------------------------------------  

#  0.465 

# ---------------------------------------  

# Degrees of freedom: 197 

# Standardized standard error: 0.095 

# Type I error rate: 0.05 

# Type II error rate: 0.535 

# Two-tailed test: TRUE 

Figure 4. Step 2 in Optimal Design Excel workbook. 

 Suppose the total cost or budget is flexible. In that case, we can demonstrate that we opted for a cost-

efficient allocation via exploring alternatives. The allocation rate does not change because it depends on per unit 

costs in treatment and control groups. The question is: What is the sample size and the total cost for a power rate 
of 80% given the optimal allocation rate (p = .33)? PowerUpR produces a sample size of 445, which will cost 

4450₺ (see Step 3 in Figure 5). 

Step 3: For the desired power rate 

(80%), find the required sample size 

given optimal p produced in Step 1. 

Then, re-estimate the total cost or 

budget.  

mrss.ira(alpha = .05, power = .80,  

         two.tailed = TRUE, 

         es = .25, g = 1, r2 = .22,  

         p = .33)              

# n = 445 

Total sample size (n) 445 

Treatment group sampling rate (p) 0.33 

Total cost or budget     4,450₺ 

Figure 5. Step 3 in Optimal Design Excel workbook. 

 The next question is: What the sample size would have been for a power rate of 80% had we used a 

balanced allocation (p = .50) and how much would that cost? Had we used a p = .50 allocation rate instead of p 

= .33, we would have needed 394 subjects which would have cost 4925₺ (see Step 4 in Figure 6). 

Step 4: For the desired power rate 
(80%), find the required sample size 

(n) with the balanced allocation rate 

(p = .50). Then, re-estimate the total 

cost or budget.  

mrss.ira(alpha = .05, power = .80,  

         two.tailed = TRUE, 

         es = .25, g = 1, r2 = .22,  

         p = .50)              

# n = 394 
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Total sample size (n) 394 

Treatment group sampling rate (p) 0.50 

Total cost or budget     4,925₺  

 
Save 475₺ 

Figure 6. Step 4 in Optimal Design Excel workbook. 

Using an optimal allocation rate of p = .33, we save 475₺ while preserving a power rate of 80%. 

Researchers can decide whether they should spend the extra 475₺ and go with the more balanced sample. 

Sometimes, severally unbalanced samples produce unstable estimates in the analysis of variance. Readers are 

referred to Bulus & Dong (2021a) for the optimal design of more complicated experimental designs. 

Researchers can use the cosa R package (also available through https://cosa.shinyapps.io/index/; Bulus & Dong, 

2021b) for this purpose.  

Table Illustration 

Tables 1A – 7A in the Appendix tabulate the main factors affecting MRSS. MRSS depends on whether 

the hypothesis test is two-tailed, the Type I error rate ( ), the treatment group allocation rate (p), the explanatory 
power of the pretest (R2), and the minimum relevant effect size (MRES). Tables are reproduced considering 

MRES values ranging from 0.20 to 0.50. There are two rationales for these specifications; an MRSS capable of 

detecting the MRES = 0.20 is an acceptable standard in education research. It is considered the minimum 

meaningful effect according to Cohen's d when there is no theory that guides MRES specification. Besides, 

Bulus and Koyuncu (2021) found that the average sample size for experiments conducted in Turkey between 

2010 and 2020 is insufficient to detect MRES values of 0.50 and below. Type I error rate ( ) specifications are 

based on common reporting guidelines in scholarly work (* p < .05, ** p < .01, and *** p < .001). The 

treatment group allocation rate (p) ranges from .35 to .50 because differential costs may impel researchers to 

draw more subjects from the control group. After all, it is less costly. p = .50 produces the smallest MRSS 

(minimum variance or maximum power) under no cost considerations. R2 can be as high as .70, according to 

values reported in Hedges and Hedberg (2013). Thus, the explanatory power of the pretest (R2) ranges from 0 to 
.70. 

 
Figure 7. Finding MRSS from tables in the Appendix (or Supplemental Excel workbook) based on MRES and 

R2 specifications. 

https://cosa.shinyapps.io/index/
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Let us find the MRSS for an experiment targeting an affective outcome. The default option for linear 

regression or t-test in SPSS and R produces p-values for a two-tailed hypothesis testing. Thus, we look at the 

rows in the "Two-tailed” section (see Figure 7). One could argue that the MRES value of 0.25 is the minimum 

meaningful improvement in education policy and practice. An MRES = 0.25 means that an intervention could 

bump up an average student's score from the 50th percentile to the 60th percentile. Thus, Table 2A in the 

Appendix is chosen. Bulus and Koyuncu (2021) reported that the explanatory power of the pretest for affective 
outcomes is .38 on average, a value between R2 = .35 and R2 = .40 (see Figure 7). It is common to deem a 

program effective if the p-value for the treatment effect is below .05. Thus, the row with   = .05 is chosen (see 

Figure 7). Without any cost considerations, it is ideal to choose a balanced sample (p = .50).  

For R2 = .35 we need 328 subjects whereas for R2 = .40 we need 303 subjects. A difference of .05 in R2 

corresponds to a difference of 25 subjects in MRSS. R2 = .38 is .02 (2/5 of the difference) units away from the 

R2 = .40, so approximately the sample size will be 2/5 of 25 (10 subjects) more. As a result 303 + 10 = 313 

subjects are needed in total. Note that this number is the same as the MRSS found in the software illustration 

section. An MRSS of 313 is the minimum required number. Surely more subjects can be recruited. Finally, one 

could randomly allocate 157 subjects into the treatment group and the remaining 157 subjects into the control 

group.  

One can report the power analysis procedure in a paragraph as follows:  

For this randomized pretest-posttest control-group design, we assume that the pretest explains 38% of 

the posttest variance (Bulus and Koyuncu, 2021). We further assume that the hypothesis test is two-

tailed, the Type I error rate is 5%, and the power rate is 80%. Under these conditions, based on Table 

2A in Bulus (2021), we decided on a sample of 314 subjects equally allocated to treatment and control 

groups to detect an effect size as small as 0.25.  

Sample Size Determination in Weak Experiments 

Table Illustration 

There is no known software to determine MRSS for a non-equivalent pretest-posttest control-group 

design (R2 > 0) and non-equivalent posttest-only control-group designs (R2 = 0) yet. Researchers can use Tables 

S1–S28 in the Supplement for this purpose. Using the same specifications in Figure 7, except that now treatment 

and control groups are not equivalent on the pretest score, we can find the MRSS for a non-equivalent pretest-

posttest control-group design. Assume that the point-biserial correlation between the pretest and treatment 

indicator is 0.243, translating into a standardized pretest difference of 0.50 between treatment and control 

groups. From the INDEX worksheet in Figure 8, one can choose Table S8 for this purpose.  

 

 
Figure 8. Finding the relevant table from the Supplemental Excel workbook based on MRES and pretest 

difference specifications. 

For R2 = .35 we need 349 subjects whereas for R2 = .40 we need 322 subjects (see Figure 9). A 

difference of .05 in R2 corresponds to a difference of 27 subjects in MRSS. R2 = .38 is .02 (2/5 of the difference) 

units away from the R2 = .40, so approximately the sample size will be 2/5 of 27 (~11 subjects) more. As a 
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result, 322 + 11 = 333 subjects are needed in total. Twenty more subjects are needed compared to the earlier 

example with randomized pretest-posttest control-group design due to the pretest differences between treatment 

and control groups.  

 
Figure 9. Finding MRSS from the Supplemental Excel workbook based on MRES, R2, and pretest difference 

specifications. 

 One can report the power analysis procedure in a paragraph as follows:  

This non-equivalent pretest-posttest control-group design assumes that the pretest explains 38% of 

the posttest variance (Bulus and Koyuncu, 2021). We further assume a point-biserial correlation of 

.243 between the pretest and treatment indicator, translating into a standardized pretest difference of 

0.50 between treatment and control groups. We further assume that the hypothesis test is two-tailed, 

the Type I error rate is 5%, and the power rate is 80%. Under these conditions, based on Table 8S in 

Bulus (2021), we decided on a sample of 334 subjects (167 of them in the treatment and 167 of them 

in the control group) to detect an effect size as small as 0.25.  

Discussion 

Researchers can use G*Power for randomized posttest-only control-group designs. They can also use 

PowerUpR or PowerUp! via setting R2 = 0 and g = 0 for this purpose. Collecting pretest information and other 

covariates means that R2 > 0. This reduces the required sample size for an experiment. As for the randomized 

pretest-posttest control-group designs, researchers can use PowerUpR or PowerUp! via setting R2 > 0 and g > 0 

depending on the explanatory power of the pretest and covariates. G*Power and PowerUpR results are 

comparable when the explanatory power pretest or covariates is zero (R2 = 0). PowerUpR allows R2 > 0, whereas 

there is no convenient option in G*Power for pretest adjustment. Results differ by one or two units in some 

cases, possibly due to internal rounding differences used during intermediate computations. It is possible to 

convert G*Power results for R2 = 0 to other scenarios with R2 > 0. If one multiplies G*Power results for R2 = 0 

by the term (1 - R2), they will obtain sample sizes comparable to PowerUpR. For example, to detect MRES = 

0.20 using a two-tailed test with   = .05, p = .50, and R2 = .50, PowerUpR produces an MRSS = 394 (see Table 

1A in the Appendix). G*Power produces an MRSS = 788 with the same specifications. If we multiply the result 

from G*Power by (1 – R2), we get 394, which is the same as the result produced by PowerUpR.  
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Alternatively, one can use Tables 1A through 7A in the Appendix for randomized posttest-only control 

group design (R2 = 0 & g = 0) and randomized pretest-posttest control-group designs (R2 > 0 & g > 0). There are 

some evident trends in MRSS values reported in Tables 1A–7A in the Appendix. Two-tailed hypothesis tests 

require larger sample sizes compared to one-tailed hypothesis tests. The smaller the Type I error rate ( ), the 

larger the sample size requirement. A balanced sample (p = .50) requires a smaller sample size than an 
unbalanced sample (though one may favor unbalanced samples under differential costs). The bigger the value of 

R2, the smaller the sample size requirement. Finally, to detect smaller MRES, larger sample sizes are required.  

There is no known software to find MRSS for non-equivalent posttest-only control-group design (R2 = 

0) and non-equivalent pretest-posttest control group design (R2 > 0). One can use Tables 1S through 28S in the 

Supplemental Excel workbook for this purpose. Trends observed in Tables 1A–7A for true experiments apply to 

Tables 1S–28S for weak experiments. For a small point-biserial correlation between pretest and treatment 

indicator (        ), in other words, for a small standardized difference on the pretest between treatment and 

control groups, MRSS values hardly differ between tables in the Appendix and tables in the Supplement. For a 

moderate to large correlation (        and above), in other words, a moderate standardized difference on the 

pretest between treatment and control groups, differences between Tables in the Appendix, and those in the 
Supplement become noticeable. Weak experiments typically require larger sample sizes.  

Weak experiments could be manipulated before an intervention so that treatment and control groups are 

comparable on the pretest. One such procedure is known as matching. Subjects not only can be matched on the 

pretest but they can also be matched on other relevant covariates. These designs are referred to as quasi-

experimental designs (Fraenkel et al., 2011). The corresponding quasi-experimental designs would be the 

matching-only pretest-posttest control-group and matching-only posttest-only control-group designs (Fraenkel 

et al., 2011). Reserving only matched pairs and discarding remaining subjects will reduce the sample size and 

result in a loss of power. Assuming that the pretest difference between treatment and control groups is negligible 

after matching, one can use Tables 1A–7A to determine MRSS values and plan their sample size accordingly. 

There are other methods to ensure that treatment and control groups are comparable; propensity score matching 

(Rosenbaum & Rubin, 1983), prognostic scores (Hansen, 2006, 2008; Wyss et al., 2015), prognostic propensity 

scores (Leacy & Stuart, 2013), coarsened exact matching (Iacus et al., 2012), inverse probability of treatment 
weighting (Huber, 2014). The description of these methods is beyond the scope of this study. Readers are 

referred to the references. 

Formulas described in this study, software illustrations, and MRSS values in Tables 1A–7A and 1S–

28S assume that observations are independent of each other. This assumption is often violated in practice 

because students are nested within classrooms (or teachers), and classrooms are nested within schools. Students 

in the same classroom or school tend to perform similarly. In other words, their scores are correlated due to 

contextual effects. Design and analysis experiments with nested structure require specialized statistical tools. An 

emerging bulk of studies consider this nested structure in the design of experiments (e.g., Bloom, 2006; Dong & 

Maynard, 2013; Hedges & Rhoads, 2010; Raudenbush & Liu, 2000; Konstantopoulos, 2008a; Konstantopoulos, 

2008b; Schochet, 2008;  Spybrook, 2007 and many others). To find MRSS for such complex experimental 

designs, researchers can use the PowerUpR or PowerUp! 

Conclusion  

This study elaborated on the nuts and bolts of sample size determination (or power analysis) in true 

experiments (randomized pretest-posttest control groups design and randomized posttest-only control-group 

design) and weak experiments (non-equivalent pretest-posttest control-group design and non-equivalent 

posttest-only control group design). In addition, illustrations provided step-by-step guidance on using G*Power, 

PowerUpR, and PowerUp! freeware to determine MRSS for true experiments. Furthermore, the optimal design 

of true experiments is illustrated using the companion Optimal Design Excel workbook. Finally, this study 
provided MRSS values for common scenarios in Tables 1A–7A for true experiments and Tables 1S–28S for 

weak experiments.  

G*Power and PowerUpR produced the same results for randomized posttest-only control-group 

designs. G*Power results can be converted to PowerUpR via multiplying them by (1-R2). PowerUpR and 

PowerUp! cover a broader range of experimental designs. Either of them can be used to design a randomized 

pretest-posttest control-group design. The software illustration section defined relevant design parameters and 

discussed reasonable values for them. One crucial design parameter is the minimum relevant effect size 

(MRES). Effects below the benchmark MRES would not be an interest to education policy and practice. When 

no data or literature is available for benchmark MRES value, 0.20 or 0.25 can be used. The second crucial 

parameter is R2 value defined as the proportion of variance in the posttest explained by the pretest. R2 values 

should rely on earlier studies of a similar kind. When no information is available, researchers can use R2 = .22 
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for cognitive outcomes and R2 = .38 for affective outcomes. These values are based on 155 experimental studies 

reviewed in Bulus and Koyuncu (2021).  

This study also provided optimal design formulas for randomized pretest-posttest control-group designs 

under differential cost assumption. When treatment units are more expensive than control units, and the total 

cost or budget is fixed, researchers can find optimal p and n. Optimal p depends on the cost ratio (cost per 

treatment unit/cost per control unit), and n depends on total cost or budget given p. Suppose the total cost or 
budget is flexible. In this case, the researcher can explore several options described in the illustration. They can 

then compare the total cost with p = .50 and decide whether it is worth pursuing an unbalanced design. Suppose 

the additional cost induced by the balanced design is not that much. In that case, it is probably better to use a 

balanced design. Optimal design formulas are implemented in the Optimal Design Excel workbook 

accompanying this article.  

Finally, MRSS values in Tables 1A–7A allow researchers unfamiliar with R programming and Excel 

workbook to decide on an MRSS for randomized pretest-posttest control groups design and randomized 

posttest-only control-group design. There is no known software for finding MRSS in non-equivalent pretest-

posttest control-group design and non-equivalent posttest-only control group design. Tables 1S–28S in the 

Supplement Excel workbook are helpful in this aspect.  
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Appendix 
Table 1A. 

Minimum Required Sample Size for Randomized Pretest-posttest Control-group Design when MRES = 0.20 

    

Minimum Required Sample Size (n) 

    

G*Power PowerUpR 

Hypothesis 

Test   

Allocation 

Ratio p 
R2=0 R2=0 R2=.30 R2=.35 R2=.40 R2=.45 R2=.50 R2=.55 R2=.60 R2=.65 R2=.70 

O
n

e-
ta

il
ed

 

0.001 1.86 0.35 1704 1703 1194 1109 1024 939 854 769 684 599 514 

0.001 1.50 0.40 1616 1615 1132 1051 971 890 810 729 649 568 487 

0.001 1.22 0.45 1568 1566 1097 1019 941 863 785 707 629 551 473 

0.001 1.00 0.50 1552 1550 1087 1009 932 855 777 700 623 545 468 

0.01 1.86 0.35 1106 1105 775 719 664 609 554 499 444 389 333 

0.01 1.50 0.40 1050 1048 734 682 630 578 525 473 421 368 316 

0.01 1.22 0.45 1018 1016 712 661 611 560 509 459 408 357 307 

0.01 1.00 0.50 1008 1006 705 655 605 555 504 454 404 354 304 

0.05 1.86 0.35 682 681 477 443 409 375 341 307 273 239 205 

0.05 1.50 0.40 646 646 452 420 388 356 324 291 259 227 195 

0.05 1.22 0.45 626 626 439 407 376 345 314 283 251 220 189 

0.05 1.00 0.50 620 620 434 403 372 342 311 280 249 218 187 

T
w

o
-t

ai
le

d
 

0.001 1.86 0.35 1882 1881 1318 1225 1131 1037 943 849 755 662 568 

0.001 1.50 0.40 1786 1784 1250 1161 1072 983 894 805 716 627 539 

0.001 1.22 0.45 1732 1730 1212 1126 1040 954 867 781 695 609 522 

0.001 1.00 0.50 1714 1712 1200 1115 1029 944 859 773 688 603 517 

0.01 1.86 0.35 1288 1286 901 837 773 709 645 581 516 452 388 

0.01 1.50 0.40 1220 1220 855 794 733 672 611 551 490 429 368 

0.01 1.22 0.45 1184 1183 829 770 711 652 593 534 475 416 357 

0.01 1.00 0.50 1172 1171 821 762 704 645 587 529 470 412 353 

0.05 1.86 0.35 866 864 606 563 519 476 433 390 347 304 261 

0.05 1.50 0.40 820 820 574 533 492 452 411 370 329 288 247 

0.05 1.22 0.45 796 795 557 517 478 438 398 359 319 279 240 

0.05 1.00 0.50 788 787 551 512 473 434 394 355 316 277 237 

Note. MRES: Minimum relevant effect size. Statistical power is fixed at 80% for all designs.   is the Type I error rate. The allocation ratio is (1-p) / 

p and is the required input for G*Power. n refers to the total sample size. R2 is the proportion of variance in the posttest explained by the pretest 

variable (and other covariates, if available). If only the pretest is included in the model, R2 can be interpreted as the squared correlation between the 

pretest and posttest. There will be p × n subjects in the treatment group and (1-p) × n subjects in the control group. G*Power specifications: "Test 

family: t-tests" and "Statistical test: Means: Difference between two independent means (two groups)." 

Table 2A. 
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Minimum Required Sample Size for Randomized Pretest-posttest Control-group Design when MRES = 0.25 

    

Minimum Required Sample Size (n) 

    

G*Power PowerUpR 

Hypothesis 

Test   

Allocation 

Ratio p 
R2=0 R2=0 R2=.30 R2=.35 R2=.40 R2=.45 R2=.50 R2=.55 R2=.60 R2=.65 R2=.70 

O
n

e-
ta

il
ed

 

0.001 1.86 0.35 1094 1092 765 711 657 602 548 494 439 385 331 

0.001 1.50 0.40 1036 1035 726 674 623 571 520 468 417 365 314 

0.001 1.22 0.45 1006 1004 704 654 604 554 504 454 404 354 304 

0.001 1.00 0.50 996 994 697 647 598 549 499 450 400 351 301 

0.01 1.86 0.35 710 708 497 461 426 391 355 320 285 250 214 

0.01 1.50 0.40 672 672 471 437 404 371 337 304 270 237 203 

0.01 1.22 0.45 652 651 457 424 392 359 327 295 262 230 197 

0.01 1.00 0.50 646 645 452 420 388 356 324 292 260 227 195 

0.05 1.86 0.35 438 436 306 284 262 241 219 197 175 154 132 

0.05 1.50 0.40 414 414 290 269 249 228 208 187 166 146 125 

0.05 1.22 0.45 402 401 281 261 241 221 201 181 161 141 121 

0.05 1.00 0.50 398 397 278 259 239 219 199 180 160 140 120 

T
w

o
-t

ai
le

d
 

0.001 1.86 0.35 1208 1206 846 785 725 665 605 545 485 425 365 

0.001 1.50 0.40 1144 1143 802 745 688 631 574 517 460 403 346 

0.001 1.22 0.45 1110 1109 778 722 667 612 557 502 446 391 336 

0.001 1.00 0.50 1100 1098 770 715 661 606 551 497 442 387 333 

0.01 1.86 0.35 826 824 578 537 496 455 414 373 332 291 249 

0.01 1.50 0.40 782 782 548 509 470 431 392 353 315 276 237 

0.01 1.22 0.45 760 758 532 494 456 418 381 343 305 267 230 

0.01 1.00 0.50 752 751 526 489 452 414 377 339 302 265 227 

0.05 1.86 0.35 554 554 388 361 333 306 278 250 223 195 168 

0.05 1.50 0.40 526 525 368 342 316 290 264 237 211 185 159 

0.05 1.22 0.45 510 509 357 332 306 281 256 230 205 180 154 

0.05 1.00 0.50 506 504 354 328 303 278 253 228 203 178 153 

Note. MRES: Minimum relevant effect size. Statistical power is fixed at 80% for all designs.   is the Type I error rate. The allocation ratio is (1-p) / 

p and is the required input for G*Power. n refers to the total sample size. R2 is the proportion of variance in the posttest explained by the pretest 

variable (and other covariates, if available). If only pretest is included in the model, R2 can be interpreted as the squared correlation between the 
pretest and posttest. There will be p × n subjects in the treatment group and (1-p) × n subjects in the control group. G*Power specifications: "Test 

family: t-tests" and "Statistical test: Means: Difference between two independent means (two groups)." 
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Table 3A. 

Minimum Required Sample Size for Randomized Pretest-posttest Control-group Design when MRES = 0.30 

    

Minimum Required Sample Size (n) 

    

G*Power PowerUpR 

Hypothesis 

Test   

Allocation 

Ratio p 
R2=0 R2=0 R2=.30 R2=.35 R2=.40 R2=.45 R2=.50 R2=.55 R2=.60 R2=.65 R2=.70 

O
n

e-
ta

il
ed

 

0.001 1.86 0.35 760 759 533 495 457 420 382 344 306 269 231 

0.001 1.50 0.40 722 720 505 470 434 398 362 326 291 255 219 

0.001 1.22 0.45 700 698 490 456 421 386 351 317 282 247 213 

0.001 1.00 0.50 692 691 485 451 417 382 348 314 279 245 211 

0.01 1.86 0.35 494 493 346 321 297 272 248 223 199 174 150 

0.01 1.50 0.40 468 467 328 305 281 258 235 212 188 165 142 

0.01 1.22 0.45 454 453 318 295 273 250 228 205 183 160 138 

0.01 1.00 0.50 450 449 315 293 270 248 226 203 181 159 136 

0.05 1.86 0.35 304 303 213 198 183 168 152 137 122 107 92 

0.05 1.50 0.40 288 288 202 188 173 159 145 130 116 102 87 

0.05 1.22 0.45 280 279 196 182 168 154 140 126 113 99 85 

0.05 1.00 0.50 278 276 194 180 166 153 139 125 111 98 84 

T
w

o
-t

ai
le

d
 

0.001 1.86 0.35 840 839 589 547 505 464 422 380 339 297 255 

0.001 1.50 0.40 796 795 558 519 479 440 400 361 321 282 242 

0.001 1.22 0.45 772 771 542 503 465 427 388 350 312 273 235 

0.001 1.00 0.50 766 764 536 498 460 422 384 346 309 271 233 

0.01 1.86 0.35 574 573 402 374 345 317 288 260 231 203 174 

0.01 1.50 0.40 546 544 382 355 327 300 273 246 219 192 165 

0.01 1.22 0.45 528 527 370 344 318 291 265 239 213 187 160 

0.01 1.00 0.50 524 522 366 340 315 289 263 237 211 185 159 

0.05 1.86 0.35 386 385 270 251 232 213 194 174 155 136 117 

0.05 1.50 0.40 366 365 256 238 220 202 184 165 147 129 111 

0.05 1.22 0.45 356 354 249 231 213 196 178 161 143 125 108 

0.05 1.00 0.50 352 351 246 229 211 194 176 159 141 124 107 

Note. MRES: Minimum relevant effect size. Statistical power is fixed at 80% for all designs.   is the Type I error rate. The allocation ratio is (1-p) / 

p and is the required input for G*Power. n refers to the total sample size. R2 is the proportion of variance in the posttest explained by the pretest 
variable (and other covariates, if available). If only pretest is included in the model, R2 can be interpreted as the squared correlation between the 

pretest and posttest. There will be p × n subjects in the treatment group and (1-p) × n subjects in the control group. G*Power specifications: "Test 

family: t-tests" and "Statistical test: Means: Difference between two independent means (two groups)." 
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Table 4A. 

Minimum Required Sample Size for Randomized Pretest-posttest Control-group Design when MRES = 0.35 

    

Minimum Required Sample Size (n) 

    

G*Power PowerUpR 

Hypothesis 

Test   

Allocation 

Ratio p 
R2=0 R2=0 R2=.30 R2=.35 R2=.40 R2=.45 R2=.50 R2=.55 R2=.60 R2=.65 R2=.70 

O
n

e-
ta

il
ed

 

0.001 1.86 0.35 560 559 393 365 337 309 282 254 226 199 171 

0.001 1.50 0.40 532 530 372 346 320 294 267 241 215 188 162 

0.001 1.22 0.45 516 514 361 336 310 285 259 234 208 183 157 

0.001 1.00 0.50 510 509 358 333 307 282 257 232 206 181 156 

0.01 1.86 0.35 364 363 255 237 219 201 183 165 147 129 111 

0.01 1.50 0.40 346 344 242 224 207 190 173 156 139 122 105 

0.01 1.22 0.45 334 334 234 218 201 185 168 152 135 118 102 

0.01 1.00 0.50 332 330 232 216 199 183 166 150 134 117 101 

0.05 1.86 0.35 224 223 157 146 135 124 112 101 90 79 68 

0.05 1.50 0.40 212 212 149 138 128 117 107 96 86 75 65 

0.05 1.22 0.45 206 205 144 134 124 114 103 93 83 73 63 

0.05 1.00 0.50 204 203 143 133 123 113 102 92 82 72 62 

T
w

o
-t

ai
le

d
 

0.001 1.86 0.35 620 618 434 403 373 342 311 281 250 219 189 

0.001 1.50 0.40 588 586 411 382 353 324 295 266 237 208 179 

0.001 1.22 0.45 570 568 399 371 343 315 287 258 230 202 174 

0.001 1.00 0.50 564 562 395 367 339 312 284 256 228 200 172 

0.01 1.86 0.35 424 422 296 275 255 234 213 192 171 150 129 

0.01 1.50 0.40 402 400 281 261 241 222 202 182 162 142 122 

0.01 1.22 0.45 390 388 273 253 234 215 196 176 157 138 119 

0.01 1.00 0.50 386 384 270 251 232 213 194 175 156 137 118 

0.05 1.86 0.35 284 284 199 185 171 157 143 129 115 101 86 

0.05 1.50 0.40 270 269 189 175 162 149 135 122 109 95 82 

0.05 1.22 0.45 262 261 183 170 157 144 131 118 106 93 80 

0.05 1.00 0.50 260 258 181 169 156 143 130 117 104 92 79 

Note. MRES: Minimum relevant effect size. Statistical power is fixed at 80% for all designs.   is the Type I error rate. The allocation ratio is (1-p) / 

p and is the required input for G*Power. n refers to the total sample size. R2 is the proportion of variance in the posttest explained by the pretest 
variable (and other covariates, if available). If only pretest is included in the model, R2 can be interpreted as the squared correlation between the 

pretest and posttest. There will be p × n subjects in the treatment group and (1-p) × n subjects in the control group. G*Power specifications: "Test 

family: t-tests" and "Statistical test: Means: Difference between two independent means (two groups)." 
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Table 5A. 

Minimum Required Sample Size for Randomized Pretest-posttest Control-group Design when MRES = 0.40 

    

Minimum Required Sample Size (n) 

    

G*Power PowerUpR 

Hypothesis 

Test    

Allocation 

Ratio p 
R2=0 R2=0 R2=.30 R2=.35 R2=.40 R2=.45 R2=.50 R2=.55 R2=.60 R2=.65 R2=.70 

O
n

e-
ta

il
ed

 

0.001 1.86 0.35 430 429 302 280 259 238 217 196 174 153 132 

0.001 1.50 0.40 408 407 286 266 246 226 206 186 165 145 125 

0.001 1.22 0.45 396 395 278 258 239 219 200 180 161 141 122 

0.001 1.00 0.50 392 391 275 256 236 217 198 178 159 140 120 

0.01 1.86 0.35 280 278 196 182 168 154 140 127 113 99 85 

0.01 1.50 0.40 266 264 186 172 159 146 133 120 107 94 81 

0.01 1.22 0.45 258 256 180 167 155 142 129 117 104 91 79 

0.01 1.00 0.50 254 253 178 166 153 141 128 116 103 90 78 

0.05 1.86 0.35 172 171 120 112 103 95 86 78 69 61 53 

0.05 1.50 0.40 164 163 114 106 98 90 82 74 66 58 50 

0.05 1.22 0.45 158 158 111 103 95 87 80 72 64 56 48 

0.05 1.00 0.50 156 156 110 102 94 87 79 71 63 56 48 

T
w

o
-t

ai
le

d
 

0.001 1.86 0.35 476 474 333 310 286 263 239 216 193 169 146 

0.001 1.50 0.40 452 450 316 294 272 250 227 205 183 161 138 

0.001 1.22 0.45 438 436 307 285 264 242 221 199 177 156 134 

0.001 1.00 0.50 434 432 304 282 261 240 218 197 176 154 133 

0.01 1.86 0.35 326 324 228 212 196 180 164 147 131 115 99 

0.01 1.50 0.40 308 307 216 201 186 170 155 140 125 110 94 

0.01 1.22 0.45 300 298 210 195 180 165 151 136 121 106 92 

0.01 1.00 0.50 296 295 207 193 178 164 149 134 120 105 91 

0.05 1.86 0.35 218 218 153 142 131 121 110 99 88 77 67 

0.05 1.50 0.40 208 206 145 135 125 114 104 94 84 74 63 

0.05 1.22 0.45 202 200 141 131 121 111 101 91 81 71 61 

0.05 1.00 0.50 200 198 139 130 120 110 100 90 80 71 61 

Note. MRES: Minimum relevant effect size. Statistical power is fixed at 80% for all designs.   is the Type I error rate. The allocation ratio is (1-p) / 

p and is the required input for G*Power. n refers to the total sample size. R2 is the proportion of variance in the posttest explained by the pretest 
variable (and other covariates, if available). If only pretest is included in the model, R2 can be interpreted as the squared correlation between the 

pretest and posttest. There will be p × n subjects in the treatment group and (1-p) × n subjects in the control group. G*Power specifications: "Test 

family: t-tests" and "Statistical test: Means: Difference between two independent means (two groups)." 
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Table 6A. 

Minimum Required Sample Size for Randomized Pretest-posttest Control-group Design when MRES = 0.45 

    

Minimum Required Sample Size (n) 

    

G*Power PowerUpR 

Hypothesis 

Test   

Allocation 

Ratio p 
R2=0 R2=0 R2=.30 R2=.35 R2=.40 R2=.45 R2=.50 R2=.55 R2=.60 R2=.65 R2=.70 

O
n

e-
ta

il
ed

 

0.001 1.86 0.35 342 340 239 223 206 189 172 155 139 122 105 

0.001 1.50 0.40 324 322 227 211 195 179 163 148 132 116 100 

0.001 1.22 0.45 314 313 220 205 189 174 159 143 128 112 97 

0.001 1.00 0.50 312 310 218 203 188 172 157 142 127 111 96 

0.01 1.86 0.35 222 220 155 144 133 122 112 101 90 79 68 

0.01 1.50 0.40 210 209 147 137 126 116 106 96 85 75 65 

0.01 1.22 0.45 204 203 143 133 123 113 103 93 83 73 63 

0.01 1.00 0.50 202 201 141 131 122 112 102 92 82 72 62 

0.05 1.86 0.35 136 136 95 89 82 75 69 62 55 49 42 

0.05 1.50 0.40 130 129 91 84 78 72 65 59 52 46 40 

0.05 1.22 0.45 126 125 88 82 76 69 63 57 51 45 39 

0.05 1.00 0.50 124 124 87 81 75 69 63 57 50 44 38 

T
w

o
-t

ai
le

d
 

0.001 1.86 0.35 376 376 264 246 227 209 190 172 153 135 116 

0.001 1.50 0.40 358 356 251 233 216 198 181 163 146 128 110 

0.001 1.22 0.45 348 346 243 226 209 192 175 158 141 124 107 

0.001 1.00 0.50 344 342 241 224 207 190 174 157 140 123 106 

0.01 1.86 0.35 258 257 181 168 155 143 130 117 105 92 79 

0.01 1.50 0.40 244 243 171 159 147 135 123 111 99 87 75 

0.01 1.22 0.45 238 236 166 155 143 131 120 108 96 85 73 

0.01 1.00 0.50 236 234 165 153 142 130 118 107 95 84 72 

0.05 1.86 0.35 174 172 121 113 104 96 87 79 70 62 53 

0.05 1.50 0.40 164 163 115 107 99 91 83 75 67 59 50 

0.05 1.22 0.45 160 159 112 104 96 88 80 72 65 57 49 

0.05 1.00 0.50 158 157 110 103 95 87 80 72 64 56 49 

Note. MRES: Minimum relevant effect size. Statistical power is fixed at 80% for all designs.   is the Type I error rate. The allocation ratio is (1-p) / 

p and is the required input for G*Power. n refers to the total sample size. R2 is the proportion of variance in the posttest explained by the pretest 
variable (and other covariates, if available). If only pretest is included in the model, R2 can be interpreted as the squared correlation between the 

pretest and posttest. There will be p × n subjects in the treatment group and (1-p) × n subjects in the control group. G*Power specifications: "Test 

family: t-tests" and "Statistical test: Means: Difference between two independent means (two groups)." 
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Table 7A.  

Minimum Required Sample Size for Randomized Pretest-posttest Control-group Design when MRES = 0.50 

    

Minimum Required Sample Size (n) 

    

G*Power PowerUpR 

Hypothesis 

Test   

Allocation 

Ratio p 
R2=0 R2=0 R2=.30 R2=.35 R2=.40 R2=.45 R2=.50 R2=.55 R2=.60 R2=.65 R2=.70 

O
n

e-
ta

il
ed

 

0.001 1.86 0.35 278 276 195 181 167 154 140 127 113 100 86 

0.001 1.50 0.40 264 262 185 172 159 146 133 120 108 95 82 

0.001 1.22 0.45 256 254 179 167 154 142 129 117 104 92 79 

0.001 1.00 0.50 254 252 178 165 153 140 128 116 103 91 79 

0.01 1.86 0.35 180 179 126 117 108 100 91 82 73 64 56 

0.01 1.50 0.40 170 170 120 111 103 95 86 78 70 61 53 

0.01 1.22 0.45 166 165 116 108 100 92 84 76 68 59 51 

0.01 1.00 0.50 164 163 115 107 99 91 83 75 67 59 51 

0.05 1.86 0.35 112 110 78 72 67 61 56 50 45 40 34 

0.05 1.50 0.40 106 105 74 69 63 58 53 48 43 38 33 

0.05 1.22 0.45 102 101 71 66 62 57 52 47 42 37 32 

0.05 1.00 0.50 102 100 71 66 61 56 51 46 41 36 31 

T
w

o
-t

ai
le

d
 

0.001 1.86 0.35 306 305 215 200 185 170 155 140 125 110 95 

0.001 1.50 0.40 292 290 204 190 176 161 147 133 119 105 90 

0.001 1.22 0.45 282 281 198 184 171 157 143 129 115 102 88 

0.001 1.00 0.50 280 278 196 183 169 155 142 128 114 101 87 

0.01 1.86 0.35 210 208 147 137 126 116 106 96 85 75 65 

0.01 1.50 0.40 198 198 139 130 120 110 100 91 81 71 62 

0.01 1.22 0.45 194 192 135 126 116 107 97 88 79 69 60 

0.01 1.00 0.50 192 190 134 125 115 106 97 87 78 69 59 

0.05 1.86 0.35 140 140 99 92 85 78 71 64 57 50 43 

0.05 1.50 0.40 134 133 94 87 80 74 67 61 54 48 41 

0.05 1.22 0.45 130 129 91 84 78 72 65 59 53 46 40 

0.05 1.00 0.50 128 128 90 84 77 71 65 59 52 46 40 

Note. MRES: Minimum relevant effect size. Statistical power is fixed at 80% for all designs.   is the Type I error rate. The allocation ratio is (1-p) / 

p and is the required input for G*Power. n refers to the total sample size. R2 is the proportion of variance in the posttest explained by the pretest 
variable (and other covariates, if available). If only pretest is included in the model, R2 can be interpreted as the squared correlation between the 

pretest and posttest. There will be p × n subjects in the treatment group and (1-p) × n subjects in the control group. G*Power specifications: "Test 

family: t-tests" and "Statistical test: Means: Difference between two independent means (two groups)." 

 


