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Abstract
In the present paper we study certain symmetry conditions and some types of solitons on
paracontact metric (k, µ)-manifolds with respect to the Schouten-van Kampen connection.
We prove that a Ricci semisymmetric paracontact metric (k, µ)-manifold with respect to
the Schouten-van Kampen connection is an η-Einstein manifold. We investigate para-
contact metric (k, µ)-manifolds satisfying Q̆ · R̆cur = 0 with respect to the Schouten-van
Kampen connection. Also, we show that there does not exist an almost Ricci soliton in a
(2n + 1)-dimensional paracontact metric (k, µ)-manifold with respect to the Schouten-van
Kampen connection such that k > −1 or k < −1. In case of the metric is being an al-
most gradient Ricci soliton with respect to the Schouten-van Kampen connection, then we
state that the manifold is either N(k)-paracontact metric manifold or an Einstein mani-
fold. Finally, we present some results related to almost Yamabe solitons in a paracontact
metric (k, µ)-manifold equipped with the Schouten-van Kampen connection and construct
an example which verifies some of our results.
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1. Introduction
Kaneyuki [15] introduced the concept of paracontact metric (for short, pcm) structures

in 1985. Recently, pcm manifolds have been studied by many authors, especially after the
paper of Zamkovoy [32]. An important class among pcm manifolds is called the (k, µ)-
manifold, which satisfies the nullity condition [6] given by

Rcur(U, W )ξ = κ(η(W )U − η(U)W ) + µ(η(W )hU − η(U)hW ), (1.1)
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for all U, W vector fields on M , where κ and µ are constants and h = 1
2LξΨ. This class also

includes the para-Sasakian manifolds [15,32], the pcm manifolds satisfying Rcur(U, W )ξ =
0, for all U, W [33].

Symmetry property is one of the essential tools for investigating the geometry of mani-
folds. Symmetric Riemannian manifolds, that is Riemannian manifolds admitting ∇Rcur =
0, where Rcur is the curvature tensor and ∇ is the Levi-Civita (for short, LC) connection,
were introduced locally by Shirokov. In 1927, Cartan presented a comprehensive theory
of symmetric Riemannian manifolds. If the curvature tensor Rcur of a manifold satisfies
Rcur(U, W ) · Rcur = 0, then it is called a semisymmetric manifold. Here, Rcur(U, W ) is
viewed as a derivation of the tensor algebra at each point of the manifold for the tangent
vectors U, W . A local classification of semisymmetric manifolds were made by Szabó [27].
In addition, a manifold satisfying Rcur(U, W ) · Ric = 0, where Ric denotes the Ricci ten-
sor of type (0, 2), is called Ricci semisymmetric. Mirzoyan gave a general classification of
manifolds of this type in [17]. For certain curvature conditions on pcm (κ, µ)-spaces we
refer [16].

A pcm (κ, µ)-manifold admitting a Ricci tensor satisfying Ric = λ1g (resp., Ric =
λ1g+λ2η⊗η) is called Einstein (resp., η-Einstein) manifold, where λ1 and λ2 are constants.

Riemannian manifolds with hyperdistributions and the Schouten van-Kampen (for short,
S-vK) connection which is one of the most suitable connection adaptable to the hyperdis-
tributions, were studied by Solov’ev [23–26]. Also see [2, 13, 21]. Almost pcm manifolds
with the S-vK connection and curvature identities of such manifolds were investigated by
Olszak [19]

As a generalization of Einstein manifold, an almost Ricci soliton (M, g, λ) was defined
as a Riemannian manifold endowed with a complete vector field V satisfying

LV g + 2Ric + 2λg = 0, (1.2)
where L denotes the Lie derivative, Ric is the Ricci tensor on M and λ is a differentiable
function [12]. If λ is negative, zero and positive, then the almost Ricci soliton is called
shrinking, steady and expanding, respectively. The concept of the η-Ricci soliton was
introduced in [8].

An almost η-Ricci soliton is a Riemannian manifold (M, g, λ, µ) admitting a differen-
tiable vector field V such that the Ricci tensor Ric of M satisfies

LV g + 2Ric + 2λg + 2βη ⊗ η = 0, (1.3)
where λ and µ are some differentiable functions. In case of the vector field V is being the
gradient of a potential function −f , the equation (1.2) reduces to

∇∇f = Ric + λg, (1.4)
and an almost Ricci soliton is said to be an almost gradient Ricci soliton.

It was proved in [12,14] that, for 2-dimensional and 3-dimensional cases, a Ricci soliton
on a compact manifold is of constant curvature (see also [9] and [10]). For further read
we refer [3, 4, 20,22].

For solving the Yamabe problem, the Yamabe flows were firstly introduced in [12]. Yam-
abe solitons are self-similar solutions for Yamabe flows and they seem to be as singularity
models. More clearly, the Yamabe soliton comes from the blow-up procedure along the
Yamabe flow, so such solitons have been studied intensively. For further read, we refer
[1,5,7,11,18,28–31]. As a generalization of Yamabe solitons, an almost Yamabe soliton is
a Riemannian manifold (M, g) endowed with a vector field V satisfying [1]

LV g − 2 (r − δ) g = 0, (1.5)
where r is the scalar curvature of M and δ is a differentiable function. An almost Yamabe
soliton is called expanding, steady or shrinking, if δ < 0, δ = 0 or δ > 0, respectively. In
case of δ is being a constant, then an almost Yamabe soliton induces to a Yamabe soliton.
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Moreover, if the Yamabe soliton is of constant scalar curvature Sc, then the Riemannian
metric g is said to be a Yamabe metric.

In the present paper, we study certain semisymmetry conditions and some types of
solitons in pcm (κ, µ)-manifolds. Following the introduction, Section 2 is devoted to some
basic concepts that will be need throughout the paper. In Section 3, some properties of
pcm (κ, µ)-manifolds endowed with the S-vK connection are presented. In section 4, we
prove that Ricci semisymmetric pcm (κ, µ)-manifold with respect to (for short, wrt) the
S-vK connection is an η-Einstein manifold. In section 5, we study pcm (κ, µ)-manifolds
satisfying Q̆ · R̆cur = 0 wrt the S-vK connection. In section 6, we investigate almost Ricci
soliton and almost η-Ricci soliton types on pcm (κ, µ)-manifolds wrt the S-vK connection.
We show that there does not exist an almost Ricci soliton in a pcm (κ, µ)-manifold wrt
the S-vK connection with κ > −1 or κ < −1. Section 7 is devoted to pcm (κ, µ)-manifolds
(κ ̸= −1) admitting almost gradient Ricci soliton. In Section 8, we obtain some results
related to almost Yamabe solitons in a pcm (κ, µ)-manifold and construct an example
which verifies some of our results.

2. Preliminaries
Let M be (2n + 1)-dimensional differentiable manifold endowed with a tensor field Ψ of

type (1, 1), a vector field ξ and a 1-form η such that

η(ξ) = 1, Ψ2 = I − η ⊗ ξ,

and Ψ induces an almost paracomplex structure on each fibre of ker(η). From the last
equation, we get Ψξ = 0, η ◦ Ψ = 0 and note that the rank of endomorphism Ψ is 2n. If
an almost paracontact manifold M admits a pseudo-Riemannian metric g such that

g(ΨU, ΨW ) = −g(U, W ) + η(U)η(W ), (2.1)

for all U, W ∈ Γ(TM), then the manifold is said to be an almost pcm manifold. The signa-
ture of the pseudo-Riemannian metric g is (n + 1, n) and an orthogonal basis {Ui, Wj , ξ},
namely a Ψ-basis, satisfying g(Ui, Uj) = δij , g(Wi, Wj) = −δij , g(Ui, Wj) = 0, g(ξ, Ui) =
g(ξ, Wj) = 0, and Wi = ΨUi, for any i, j ∈ {1, . . . , n} can always be constructed for an
almost pcm manifold.

The fundamental form of the almost pcm manifold is given by θ(U, W ) = g(U, ΨW ).
An almost pcm manifold with dη = θ is called a pcm manifold. In a pcm manifold, by
help of Lie derivative Lξ of the fundamental form, a trace-free symmetric operator h can
be defined by h = 1

2LξΨ. This operator [32] anti-commutes with Ψ and satisfies hξ = 0,
trh = trhΨ = 0 and

∇U ξ = −ΨU + ΨhU, (2.2)

(∇U η)W = g(U, ΨW ) − g(hU, ΨW ), (2.3)

where ∇ is the LC connection of the manifold. In addition, h = 0 if and only if ξ is Killing
vector field, which implies that (M, Ψ, ξ, η, g) is said to be a K-paracontact manifold. A
normal pcm manifold is said to be a para-Sasakian manifold. Each para-Sasakian manifold
is a K-paracontact manifold and but the converse holds only in 3-dimensional case. We
also recall that any para-Sasakian manifold satisfies

Rcur(U, W )ξ = η(U)W − η(W )U,

where Rcur is Riemannian curvature operator given by

Rcur(U, W )Z = ∇U ∇W Z − ∇W ∇U Z − ∇[U,W ]Z.
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3. Pcm (k, µ)-manifolds with respect to the Schouten-van Kampen con-
nection

A distribution defined by

N(κ, µ) : p → Np(κ, µ) =
{

Z ∈ TpM | Rcur(U, W )Z = κ(g(W, Z)U − g(U, Z)W )
+µ(g(W, Z)hU − g(U, Z)hW )

}
,

(3.1)
is called the (κ, µ)-nullity distribution of a pcm manifold (M, Ψ, ξ, η, g) for the pair (κ, µ),
where κ and µ are some real constants. In case of the characteristic vector field ξ belonging
to the (κ, µ)-nullity distribution, from (3.1) we write

Rcur(U, W )ξ = κ(η(W )U − η(U)W ) + µ(η(W )hU − η(U)hW ),

for all U, W ∈ Γ(TM). We refer [6] for basic results of pcm manifolds with the characteris-
tic vector field satisfying the nullity condition (the condition (3.1)), for some real numbers
κ and µ.

Lemma 3.1 ([6]). In a (2n + 1)-dimensional pcm (κ, µ)-manifold (M, Ψ, ξ, η, g), the fol-
lowings hold:

h2 = (κ + 1)Ψ2, (3.2)
(∇U Ψ)W = −g(U, W )ξ + g(hU, W )ξ + η(W )U − η(W )hU, for κ ̸= −1, (3.3)

(∇U h)W = − {(1 + κ)g(U, ΨW ) + g(U, ΨhW )} ξ
+η(W )Ψh(hU − U) − µη(U)ΨhW,

for κ ̸= −1, (3.4)

(∇U Ψh)W = g(h2U − hU, W )ξ + η(W )(h2U − hU)
−µη(U)hW,

for κ > −1, (3.5)

(∇U Ψh)W = (1 + κ)g(U, W )ξ − g(hU, W )ξ
+η(W )(h2U − hU) − µη(U)hW,

for κ < −1, (3.6)

QW = (2(1 − n) + nµ)W + (2(n − 1) + µ)hW
+(2(n − 1) + n(2κ − µ))η(W )ξ,

for κ ̸= −1, (3.7)

Qξ = 2nκξ, (3.8)

(∇U h)W − (∇W h)U = −(1 + κ)(2g(U, ΨW )ξ + η(U)ΨW − η(W )ΨU)
+(1 − µ)(η(U)ΨhW − η(W )ΨhU), (3.9)

(∇U Ψh)W − (∇W Ψh)U =(1 + κ)(η(W )U − η(U)W )
+ (µ − 1)(η(W )hU − η(U)hW ), (3.10)

for any vector fields U , W on M .
Some important subclasses of pcm (κ, µ)-manifolds are given, regarding (1.1), by para-

Sasakian manifolds, and pcm manifolds satisfying Rcur(U, W )ξ = 0. In [33], the authors
showed that the pcm manifold (M2n+1, Ψ, ξ, η, g) with n > 1 satisfying the last condition is
locally isometric to a product of a flat (n + 1)-dimensional manifold and an n-dimensional
manifold of negative constant curvature −4. From (3.2), note that h2 = 0 on a pcm
(κ, µ)-manifold with κ = −1.

On the other hand we have two naturally defined distributions in the tangent bundle
TM of M as follows:

DH = ker η, DV = span{ξ}.

Then we have TM = DH ⊕ DV , DH ∩ DV = {0} and DH ⊥ DV . This decomposition
allows one to define the S-vK connection ∇̆ over an almost paracontact metric structure.
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The S-vK connection ∇̆ on an almost (para) contact metric manifold with respect to
LC-connection ∇ is defined by [23]

∇̆U W = ∇U W − η(W )∇U ξ + (∇U η)(W )ξ. (3.11)

Thus with the help of the S-vK connection given by (3.11), many properties of some
geometric objects connected with the distributions DH and DV can be characterized [23–
25]. For example g, ξ and η are parallel with respect to ∇̆, that is, ∇̆ξ = 0,∇̆g = 0,∇̆η = 0.
Also the torsion T ŏr of ∇̆ is defined by

T ŏr(U, W ) = η(U)∇W ξ − η(W )∇U ξ + 2dη(U, W )ξ. (3.12)

Now we consider a pcm (κ, µ)-manifold wrt the S-vK connection. Firstly, using (2.2) and
(2.3) in (3.11), we get

∇̆U W = ∇U W + η(W )ΨU − η(W )ΨhU + g(U, ΨW )ξ − g(hU, ΨW )ξ. (3.13)

Let R̆cur be the curvature tensors of the S-vK connection ∇̆ given by R̆cur(U, W ) =
[∇̆U , ∇̆W ] − ∇̆[U,W ]. Using (3.13) in the definition of R̆cur(U, W ), we have

R̆cur(U, W )Z = ∇̆U (∇W Z + η(Z)ΨW − η(Z)ΨhW

+g(W, ΨZ)ξ − g(hW, ΨZ)ξ)
−∇̆W (∇U Z + η(Z)ΨU − η(Z)ΨhU

+g(U, ΨZ)ξ − g(hU, ΨZ)ξ) (3.14)
−(∇[U,W ]Z + η(Z)Ψ[U, W ] − η(Z)Ψh[U, W ]
+g([U, W ], ΨZ)ξ − g(h[U, W ], ΨZ)ξ).

Using (3.9), (3.10) and (3.3) in (3.14), we have the relation between Rcur and R̆cur on M

R̆cur(U, W )Z = Rcur(U, W )Z + g(U, ΨZ)ΨW − g(W, ΨZ)ΨU + g(hW, ΨZ)ΨU

−g(hU, ΨZ)ΨW + g(W, ΨZ)ΨhU − g(U, ΨZ)ΨhW

+g(hU, ΨZ)ΨhW − g(hW, ΨZ)ΨhU

+κ{g(U, Z)η(W )ξ − g(W, Z)η(U)ξ (3.15)
+η(U)η(Z)W − η(W )η(Z)U}
+µ{g(hU, Z)η(W )ξ − g(hW, Z)η(U)ξ
+η(U)η(Z)hW − η(W )η(Z)hU}

Now from (3.15), we get

g(R̆cur(U, W )Z, T ) = g(Rcur(U, W )Z, T ) + g(U, ΨZ)g(ΨW, T ) − g(W, ΨZ)g(ΨU, T )
+g(hW, ΨZ)g(ΨU, T ) − g(hU, ΨZ)g(ΨW, T )
+g(W, ΨZ)g(ΨhU, T ) − g(U, ΨZ)g(ΨhW, T )
+g(hU, ΨZ)g(ΨhW, T ) − g(hW, ΨZ)g(ΨhU, T ) (3.16)
+κ{g(U, Z)η(W )η(T ) − g(W, Z)η(U)η(T )
+g(W, T )η(U)η(Z) − g(U, T )η(W )η(Z)}
+µ{g(hU, Z)η(W )η(T ) − g(hW, Z)η(U)η(T )
+g(hW, T )η(U)η(Z) − g(hU, T )η(W )η(Z)}.

If we take U = T = ei, {i = 1, ..., 2n + 1}, in (3.16), where {ei} is an orthonormal basis of
χ(M), we get

R̆ic(W, Z) = Ric(W, Z) − 2nκη(W )η(Z) − µg(hW, Z), (3.17)
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where R̆ic and Ric denote the Ricci tensor of the connections ∇̆ and ∇, respectively. As
a consequence of (3.17), we get for the Ricci operator Q̆

Q̆W = QW − 2nκη(W )ξ − µhW. (3.18)
Also if we take W = Z = ei, {i = 1, ..., 2n + 1}, in (3.18), we get

r̆ = r − 2nκ, (3.19)

where r̆ and r denote the scalar curvatures of the connections ∇̆ and ∇, respectively.

4. Ricci semisymmetric pcm (κ, µ) -manifolds with respect to the Schouten-
van Kampen connection

In this section we study Ricci semisymmetric pcm (κ, µ)-manifolds wrt the S-vK con-
nection. Firstly we give the following:

Definition 4.1. A semi-Riemannian manifold (M2n+1, g), n > 1, is said to be Ricci
semisymmetric if we have

Rcur(U, W ) · Ric = 0,

holds on M for all U, W ∈ χ(M).

Let M be a Ricci semisymmetric pcm (κ, µ)-manifold with (κ ̸= −1) wrt the S-vK
connection. Then above equation is equivalent to

(R̆cur(U, W ) · R̆ic)(Z, T ) = 0,

for any U, W, Z, T ∈ χ(M). Thus we have

R̆ic(R̆cur(U, W )Z, T ) + R̆ic(Z, R̆cur(U, W )T ) = 0, (4.1)
Using (3.15) in (4.1), we get

κ


{g(W, Z) − η(W )η(Z)}R̆ic(U, T )
−{g(U, Z) − η(U)η(Z)}R̆ic(W, T )
+{g(W, T ) − η(W )η(T )}R̆ic(U, Z)
−{g(U, T ) − η(U)η(T )}R̆ic(W, Z)



+µ


{g(W, Z) − η(W )η(Z)}R̆ic(hU, T )
−{g(U, Z) − η(U)η(Z)}R̆ic(hW, T )
+{g(W, T ) − η(W )η(T )}R̆ic(hU, Z)
−{g(U, T ) − η(U)η(T )}R̆ic(hW, Z)


+g(U, ΨZ)R̆ic(ΨW, T ) − g(W, ΨZ)R̆ic(ΨU, T )
+g(hW, ΨZ)R̆ic(ΨU, T ) − g(hU, ΨZ)R̆ic(ΨW, T )
+g(W, ΨZ)R̆ic(ΨhU, T ) − g(U, ΨZ)R̆ic(ΨhW, T )
+g(hU, ΨZ)R̆ic(ΨhW, T ) − g(hW, ΨZ)R̆ic(ΨhU, T ) (4.2)
+g(U, ΨT )R̆ic(ΨW, Z) − g(W, ΨT )R̆ic(ΨU, Z)
+g(hW, ΨT )R̆ic(ΨU, Z) − g(hU, ΨT )R̆ic(ΨW, Z)
+g(W, ΨT )R̆ic(ΨhU, Z) − g(U, ΨT )R̆ic(ΨhW, Z)
+g(hU, ΨT )R̆ic(ΨhW, Z) − g(hW, ΨT )R̆ic(ΨhU, Z) = 0.

Putting U = T = ei, {i = 1, ..., 2n + 1}, in (4.2), we obtain

κr̆{g(W, Z) − η(W )η(Z)} − 2nκR̆ic(W, Z) − 2nµR̆ic(hW, Z) = 0. (4.3)
Now putting W = hW in (4.3), we have

κr̆g(hW, Z) − 2nκR̆ic(hW, Z) − 2n(κ + 1)µR̆ic(W, Z) = 0. (4.4)
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Assume that κ ̸= −1 and µ ̸= 0. Multiplying with (4.3) by κ and (4.4) by µ, then subtract
the results, we obtain

2n[κ2 − µ2(κ + 1)]R̆ic(W, Z) = κ2r̆{g(W, Z) − η(W )η(Z)} − κµr̆g(hW, Z). (4.5)
Using (3.17) in (4.5), we get

2n[κ2 − µ2(κ + 1)]{Ric(W, Z) − 2nκη(W )η(Z) − µg(hW, Z)}
= κ2r̆{g(W, Z) − η(W )η(Z)} + (µ − κµr̆ − 1)g(hW, Z),

i.e.,

Ric(W, Z) = κ2r̆

2n(κ2 − µ2(κ + 1)
g(W, Z)

+(2nκ − κ2r̆

2n(κ2 − µ2(κ + 1)
)η(W )η(Z) (4.6)

+(µ − κ2r̆

2n(κ2 − µ2(κ + 1)
)g(hW, Z).

Again using (3.7) in (4.6), we have

Ric(W, Z) = A1 − C1B2
1 − A2C1

g(W, Z) + B1 − C1C2
1 − A2C1

η(W )η(Z), (4.7)

where

A1 = κ2r̆

2n(κ2 − µ2(κ + 1)
, B1 = 2nκ − κ2r̆

2n(κ2 − µ2(κ + 1)
,

C1 = µ − κ2r̆

2n(κ2 − µ2(κ + 1)
, A2 = 1

2(n − 1) + µ
,

B2 = 2(1 − n) + nµ

2(n − 1) + µ
, C2 = 2(n − 1) + n(2κ − µ)

2(n − 1) + µ
.

Therefore, from (4.7) we have the following:

Theorem 4.2. Let M be a (2n + 1)-dimensional pcm (κ, µ)-manifold with κ ̸= −1. If M
is a Ricci semisymmetric pcm (κ, µ)-manifold wrt the S-vK connection then the manifold
M is an η-Einstein manifold wrt the LC connection provided µ ̸= 2(1 − n).

5. Pcm (κ, µ)-manifolds satisfying Q̆ · R̆ = 0 with respect to the Schouten-
van Kampen connection

In this section we study the condition Q̆ · R̆cur = 0 on pcm (κ, µ)-manifolds wrt the
S-vK connection. Firstly we give the following:
(Q̆·R̆cur)(U, W )Z = Q̆R̆cur(U, W )Z−R̆cur(Q̆U, W )Z−R̆cur(U, Q̆W )Z−R̆cur(U, W )Q̆Z = 0.

Then we write
g(Q̆R̆cur(U, W )Z, T ) − g(R̆cur(Q̆U, W )Z, T ) (5.1)
−g(R̆cur(U, Q̆W )Z, T ) − g(R̆cur(U, W )Q̆Z, T ) = 0,

which infers
g(R̆cur(U, W )Z, Q̆T ) + g(R̆cur(Z, T )W, Q̆U)
−g(R̆cur(Z, T )U, Q̆W ) + g(R̆cur(U, W )T, Q̆Z) = 0.

So we can write
R̆ic(R̆cur(U, W )Z, T ) + R̆ic(R̆cur(Z, T )W, U) (5.2)
−R̆ic(R̆cur(Z, T )U, W ) + R̆ic(R̆cur(U, W )T, Z) = 0.
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Now using (3.14) in (5.2), we compute

κ


{g(W, T ) − η(W )η(T )}R̆ic(U, Z)
−{g(U, T ) − η(U)η(T )}R̆ic(W, Z)
+{g(W, T ) − η(W )η(T )}R̆ic(U, Z)
−{g(U, T ) − η(U)η(T )}R̆ic(W, Z)



+ µ


{g(W, T ) − η(W )η(T )}R̆ic(hU, Z)
−{g(U, T ) − η(U)η(T )}R̆ic(hW, Z)
+{g(W, T ) − η(W )η(T )}R̆ic(hU, Z)
−{g(U, T ) − η(U)η(T )}R̆ic(hW, Z)


+ g(U, ΨZ)R̆ic(ΨW, T ) − g(W, ΨZ)R̆ic(ΨU, T ) + g(hW, ΨZ)R̆ic(ΨU, T )

− g(hU, ΨZ)R̆ic(ΨW, T ) + g(W, ΨZ)R̆ic(ΨhU, T ) − g(U, ΨZ)R̆ic(ΨhW, T )

+ g(hU, ΨZ)R̆ic(ΨhW, T ) − g(hW, ΨZ)R̆ic(ΨhU, T ) + g(U, ΨT )R̆ic(ΨW, Z)

− g(W, ΨT )R̆ic(ΨU, Z) + g(hW, ΨT )R̆ic(ΨU, Z) − g(hU, ΨT )R̆ic(ΨW, Z)

+ g(W, ΨT )R̆ic(ΨhU, Z) − g(U, ΨT )R̆ic(ΨhW, Z) + g(hU, ΨT )R̆ic(ΨhW, Z)

− g(hW, ΨT )R̆ic(ΨhU, Z) + g(ΨW, Z)R̆ic(U, ΨT ) − g(ΨW, T )R̆ic(U, ΨZ)

+ g(ΨW, hT )R̆ic(U, ΨZ) − g(ΨW, hZ)R̆ic(U, ΨT ) + g(ΨW, T )R̆ic(ΨhZ, U)

− g(Z, ΨW )R̆ic(ΨhT, U) + g(hZ, ΨW )R̆ic(ΨhT, U) − g(hT, ΨW )R̆ic(ΨhZ, U)

− g(ΨU, Z)R̆ic(W, ΨT ) + g(ΨU, T )R̆ic(W, ΨZ) − g(ΨU, hT )R̆ic(W, ΨZ)

+ g(ΨU, hZ)R̆ic(W, ΨT ) − g(ΨU, T )R̆ic(W, ΨhZ) + g(ΨU, Z)R̆ic(ΨhT, W )

− g(hZ, ΨU)R̆ic(ΨhT, W ) + g(hT, ΨU)R̆ic(ΨhZ, W ) = 0. (5.3)

Putting U = T = ei, {i = 1, ..., 2n + 1}, in (5.3), we have

κ(1 − 2n)R̆ic(W, Z) + µ(1 − 2n)R̆ic(hW, Z) + (κ + 1)R̆ic(ΨW, ΨZ) + R̆ic(W, Z) = 0,

which entails

(2nκ + 1)R̆ic(W, Z) + µ(2n − 1)R̆ic(hW, Z) − 2(κ + 1)(2n − 2 + µ)g(hW, Z) = 0. (5.4)

Now putting W = hW in (5.4), we have

(2nκ + 1)R̆ic(hW, Z) + µ(2n − 1)(κ + 1)R̆ic(W, Z) (5.5)
−2(κ + 1)(2n − 2 + µ)(κ + 1){g(W, Z) − η(W )η(Z)} = 0.

Multiplying (5.4) by 2nκ + 1 and (5.5) by µ(2n − 1), we have

(2nκ + 1)2R̆ic(W, Z) + µ(2n − 1)(2nκ + 1)R̆ic(hW, Z) (5.6)
−2(κ + 1)(2nκ + 1)(2n − 2 + µ)g(hW, Z) = 0,

and

µ(2n − 1)(2nκ + 1)R̆ic(hW, Z) + µ(2n − 1)2(κ + 1)R̆ic(W, Z) (5.7)
−2(κ + 1)(2n − 2 + µ)µ(2n − 1)(κ + 1){g(W, Z) − η(W )η(Z)} = 0,

respectively. Subtracting (5.6) from (5.7), we get

R̆ic(W, Z) = λ1
γ

g(hW, Z) − λ2
γ

g(W, Z) + λ2
γ

η(W )η(Z), (5.8)



474 S.Y. Perktaş, U.C. De, A. Yıldız

where

λ1 = 2(2nκ + 1)(κ + 1)(2n − 2 + µ),
λ2 = 2µ(κ + 1)2(2n − 2 + µ),
γ = (2nκ + 1)2 − (2n − 1)2µ(κ + 1).

Now using (3.7) in (5.8), we obtain

( λ1
γ(B − µ)

− 1)R̆ic(W, Z) = ( λ1A

γ(B − µ)
+ λ2

γ
)g(W, Z) + (λ1(C − 2nκ)

γ(B − µ)
− λ2

γ
)η(W )η(Z),

where A = (2(1 −n)+ nµ), B = (2(n−1)+ µ, C = 2(n−1)+ n(2κ−µ). The last equation
can be written

R̆ic(W, Z) = ρg(W, Z) + ση(W )η(Z),
where

ρ =
λ1A

γ(B−µ) + λ2
γ

λ1
γ(B−µ) − 1

, σ =
λ1(C−2nκ)

γ(B−µ) − λ2
γ

λ1
γ(B−µ) − 1

.

Thus the manifold M is an η-Einstein manifold wrt the S-vK connection. Hence we have
the following:

Theorem 5.1. Let M be a (2n + 1)-dimensional pcm (κ, µ)-manifold with κ ̸= −1 sat-
isfying the condition Q̆ · R̆cur = 0 wrt the S-vK connection. Then the manifold M is an
η-Einstein manifold wrt the S-vK connection provided λ1

γ(B−µ) − 1 ̸= 0.

6. Almost Ricci solitons and almost η-Ricci solitons on pcm (κ, µ)-manifolds
with respect to the Schouten-van Kampen connection

In this section we study almost Ricci solitons and almost η-Ricci soliton in pcm (κ, µ)-
manifolds wrt the S-vK connection.

In a pcm (κ, µ)-manifold (κ ̸= −1) with the S-vK connection, since ∇̆g = 0 by using
(1.2), we get

(L̆V g)(U, T ) = g(∇U V, T ) + g(U, ∇T V ) = (LV g)(U, T ), (6.1)
where L̆ denotes the Lie derivative on manifold wrt the S-vK connection.

Now we consider an almost Ricci soliton on a pcm (κ, µ)-manifold wrt the S-vK con-
nection. From (1.2), we can write

(L̆V g + 2R̆ic + 2λ̆g)(U, T ) = 0. (6.2)

Using (6.1) in (6.2), we obtain{
(LV g)(U, T ) + 2Ric(U, T ) + 2λ̆g(U, T )

−4nκη(U)η(T ) − 2µg(hU, T ) = 0. (6.3)

Thus we have the followings:

Theorem 6.1. A (2n + 1)-dimensional pcm (κ, µ)-manifold M bearing an almost Ricci
soliton (V, λ̆, g) wrt the S-vK connection admits an almost η-Ricci soliton (V, λ̆, −2nκ, g)
wrt the LC connection provided the manifold is a N(κ)-pcm manifold.

Corollary 6.2. If M is a (2n + 1)-dimensional pcm (κ, µ)-manifold bearing an almost
Ricci soliton (V, λ̆, g) wrt the S-vK connection, then M admits an almost Ricci soliton
(V, λ̆, g) wrt the LC connection provided the manifold is locally isometric to a product of
a flat (n + 1)-dimensional manifold and an n-dimensional manifold of negative constant
curvature equal to −4.
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Conversely, assume that a pcm (κ, µ)-manifold admits an almost Ricci soliton (V, λ, g)
wrt the LC connection. Then, from (1.2) and (3.17), we have{

(LV g)(U, T ) + 2R̆ic(U, T ) + 2λg(U, T )
+4nκη(U)η(T ) + 2µg(hU, T ) = 0.

Hence we give the followings:

Theorem 6.3. Let M be a (2n + 1)-dimensional pcm (κ, µ)-manifold bearing an almost
Ricci soliton (V, λ, g) wrt the LC connection. Then M admits an almost η-Ricci soliton
(V, λ, 2nκ, g) wrt the S-vK connection provided the manifold is a N(κ)-pcm manifold.

Corollary 6.4. A (2n + 1)-dimensional pcm (κ, µ)-manifold bearing an almost Ricci soli-
ton (V, λ, g) wrt the LC connection admits an almost Ricci soliton (V, λ, g) wrt the S-
vK connection provided the manifold is locally isometric to a product of a flat (n + 1)-
dimensional manifold and an n-dimensional manifold of negative constant curvature equal
to −4.

In case of g is being an almost η-Ricci soliton wrt the LC connection, we have the
following:

Theorem 6.5. A (2n+1)-dimensional pcm (κ, µ)-manifold bearing an almost η-Ricci soli-
ton (V, λ, β, g) wrt the LC connection admits an almost η-Ricci soliton (V, λ, 2nκ + β, g)
wrt the S-vK connection provided the manifold is a N(κ)-pcm manifold.

Proof. Assume that M is a (2n + 1)-dimensional pcm (κ, µ)-manifold bearing an almost
η-Ricci soliton (V, λ, β, g) wrt the LC connection. From (1.2) and (3.17) we write

(LV g)(U, T ) + 2R̆ic(U, T ) + 2λg(U, T )
+2(2nκ + β)η(U)η(T ) + 2µg(hU, T ) = 0.

This completes the proof. �
Now we consider the case of the potential vector field being the structure vector field.
Assume that M is a (2n + 1)-dimensional pcm (κ, µ)-manifold bearing an almost Ricci

soliton (ξ, λ̆, g) wrt the S-vK connection. Using (2.2), (3.17) and (6.1) in (6.2), we write

g(U, ΨhT ) + g(QU, T ) + λ̆g(U, T ) − 2nκη(U)η(T ) − µg(hU, T ) = 0. (6.4)
From (6.4), we get

ΨhU + QU + λ̆U − 2nκη(U)ξ − µhU = 0. (6.5)
By taking covariant derivative of (6.5), we have

(∇XΨh) U + Ψh(∇XU) + (∇XQ) U + Q∇XU + X(λ̆)U + λ̆∇XU
−2nκ (g(∇XU, ξ)ξ + g(U, ∇Xξ)ξ + η(U)∇Xξ)

−µ (∇Xh) U − µh∇XU = 0,

which implies that

(∇XΨh) U + (∇XQ) U + X(λ̆)U
−2nκ (g(U, ∇Xξ)ξ + η(U)∇Xξ) − µ (∇Xh) U = 0.

(6.6)

We have the following cases:
Case 1. Assume that κ > −1. By using (3.5), (3.3), (3.4) and (2.2) in (6.6), we have

g(h2X − hX, U)ξ + η(U)
(
h2X − hX

)
− µη(X)hU

−2(n − 1)(1 + κ)g(X, ΨU)ξ − 2(n − 1)g(X, ΨhU)ξ
+2(n − 1)

{
η(U)

(
Ψh2X − ΨhX

)
− µη(X)ΨhU

}
+ X(λ̆)U

+ (2(n − 1) − nµ)) {− (g(U, ΨX) − g(U, ΨhX)) ξ − η(U) (ΨX + ΨhX)} = 0,

which implies that
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(κ + 1)g(X, U)ξ − 2(κ + 1)η(X)η(U)ξ − g(hX, U)ξ + (κ + 1)η(U)X − η(U)hX
+µη(X)hU − (2κ(n − 1) + nµ)g(X, ΨU)ξ − nµg(X, ΨhU)ξ

+(2κ(n − 1) + nµ)η(U)ΨX − nµη(U)ΨhX

−2µ(n − 1)η(X)ΨhU + X(λ̆)U = 0.

(6.7)

By contracting X in (6.7), we obtain

2n (κ + 1) η(U) = −U(λ̆) (6.8)
On the other hand, by taking U = ξ in (6.5), we obtain

λ̆ = 0. (6.9)
Using (6.9) in (6.8), we conclude that κ = −1, which contradicts with the assumption
κ > −1.

Case 2. Assume that κ < −1. By using (3.6), (3.3), (3.4) and (2.2) in (6.6), we get

(1 + κ)g(X, U)ξ − g(hX, U)ξ + η(U)(h2X − hX) − µη(X)hU
+ (2κ(1 − n) − nµ) g(X, ΨU)ξ − nµg(X, ΨhU)ξ

− (2κ(1 − n) − nµ) η(U)ΨX − nµη(U)ΨhX

−µη(X)ΨhU + X(λ̆)U = 0.

(6.10)

By contracting X in (6.10), we have

(2n + 1) (κ + 1)η(U) = −U(λ̆). (6.11)
On the other hand, by taking U = ξ in (6.5), we get

λ̆ = 0.

Using the last equation in (6.11), we conclude that κ = −1, which contradicts with the
assumption κ > −1.

Hence we give the following:

Theorem 6.6. There does not exist an almost Ricci soliton (ξ, λ̆, g) in a (2n + 1)-
dimensional pcm (κ, µ)-manifold (M, g) wrt the S-vK connection with κ > −1 or κ < −1.

Now, we consider κ = −1. In this case we give the following:

Theorem 6.7. If a (2n + 1)-dimensional pcm (κ, µ)-manifold (M, g) wrt the S-vK con-
nection admits an almost Ricci soliton (ξ, λ̆, g), then the almost Ricci soliton is steady.

Proof. By putting U = ξ in (6.5), we get Qξ = 2κnξ − λ̆. On the other hand, from (3.8)
we have Qξ = 2κnξ. Thefore we obtain λ̆ = 0, which completes the proof. �

7. Almost gradient Ricci solitons on pcm (κ, µ)-manifolds with respect to
the Schouten-van Kampen connection

If the vector field V is the gradient of a potential function −f , that is V = −gradf ,
then g is called an almost gradient Ricci soliton. In this case equation (1.2) becomes

∇gradf = Ric + λg, (7.1)
where ∇ is the LC connection.

Now assume that M is a (2n + 1)-dimensional (n > 1) pcm (κ, µ)-manifold (κ ̸= −1)
wrt the S-vK connection. If we take V = −gradf in (6.1), we write

(L̆gradf g)(U, T ) = (Lgradf g)(U, T ) = g(∇U gradf, T ) + g(U, ∇T gradf). (7.2)
We can easily see that

g(∇U gradf, T ) = g(U, ∇T gradf),
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which implies that
L̆gradf g + 2R̆ic + 2λ̆g = 0, (7.3)

that is
g(∇U gradf, T ) = R̆ic(U, T ) + λ̆g(U, T ). (7.4)

This reduces to
∇U gradf = Q̆U + λ̆U. (7.5)

Now from (7.5), we write
Rcur(U, T )gradf = ∇U ∇T gradf − ∇U ∇T gradf − ∇[U,T ]gradf

= ∇U Q̆T + U(λ̆)T − λ̆∇U T

−∇T Q̆U − T (λ̆)U − λ̆∇T U

−Q̆[U, T ] − λ̆[U, T ]
which implies that

Rcur(U, T )gradf = (∇U Q)T − (∇T Q)U − 2nκ(2g(U, ΨT )
+η(T )∇U ξ − η(U)∇T ξ) (7.6)
−µ((∇U h)T + (∇T h)U) + U(λ̆)T − T (λ̆)U.

Taking covariant derivative of Q given by (3.7), we have

(∇U Q) T = (2(n − 1) + n(2κ − µ))
[

g(U, ΨT )ξ + g(ΨhU, T )ξ
−η(T ) (ΨU − ΨhU)

]
(7.7)

+(2(n − 1) + µ)(∇U h)T.

Using (7.7) and (2.2) in (7.6), we obtain
Rcur(U, T )gradf = 2(2κ − n2)g(U, ΨT )ξ

+(n2 + 2κn − 2κ)(η(T )ΨU − η(U)ΨT ) (7.8)
−(n2 − 2µn + 2µ)(η(T )ΨhU − η(U)ΨhT )
+U(λ̆)T − T (λ̆)U,

which implies that
g(Rcur(U, T )gradf, ξ) = 2(2κ − n2)g(U, ΨT ) + U(λ̆)η(T ) − T (λ̆)η(U). (7.9)

If we put U = ξ in the last equation, we get
g(Rcur(ξ, T )gradf, ξ) = ξ(λ̆)η(T ) − T (λ̆). (7.10)

On the other hand, from (1.1) we have
g(Rcur(ξ, T )gradf, ξ) = κg(T, gradf − ξ(f)ξ) + µg(hT, gradf). (7.11)

Using (7.10) and (7.11), it follows that

κ(gradf) − κξ(f)ξ + µh(gradf) − ξ(λ̆)ξ + gradλ̆ = 0. (7.12)
From (7.8), we get

Q(gradf) = −2n(gradf),
which infers

2nκ(gradf) + 2nµh(gradf) = Q(gradf) + 2n
(
κξ(f) + ξ(λ̆)

)
ξ, (7.13)

via (7.12). Then, by using (3.8) and taking inner product of the last equation with ξ, we
obtain

κξ(f) + ξ(λ̆) = 0.

If we put this equation in (7.13), we get
2nκ(gradf) + 2nµh(gradf) = Q(gradf). (7.14)
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Taking U = ξ in (7.5) and using (3.18), we obtain

∇ξgradf = λ̆ξ.

By differentiating (7.14) with respect to ξ and using the last equation we have

µ (µ (1 − 2n) + 2(n − 1)) hΨgradf = 0,

which is equal to

µ (µ (1 − 2n) + 2(n − 1)) Ψgradf = 0, (7.15)
via (3.2). Also taking ΨU and ΨT instead of U and T , respectively, in (7.9) we write

g(Rcur(ΨU, ΨT )gradf, ξ) = (4κ − 2n2)g(ΨU, T ). (7.16)

In a pcm (κ, µ)-manifold it is well known thatRcur(ΨU, ΨT )ξ = 0. Then we obtain

(4κ − 2n2)g(ΨU, T ) = 0.

Because of dη is being non-zero, one gets

κ = n2

2
. (7.17)

Hence, considering (7.15) and (7.17) we assume the following three cases:
Case 1. If µ = 0, then we can state that that the manifold is a N(κ)-pcm manifold.
Case 2. If Ψgradf = 0 and µ ̸= 0, then we write

Ψ2gradf = gradf − η(gradf)ξ = 0,

that is
gradf = ξ(f)ξ. (7.18)

By taking covariant derivative of the above equation along U , we have

∇U gradf = U(ξ(f))ξ + ξ(f) (−ΨU + ΨhU) . (7.19)

If we replace U with ΨU and take inner product with ΨT in (7.19), we obtain

g(∇ΨU gradf, ΨT ) = −ξ(f) (g(U, ΨT ) + g(hU, ΨT )), (7.20)

which implies
g(∇ΨT gradf, ΨU) = −ξ(f) (g(T, ΨU) + g(hT, ΨU)). (7.21)

We know that d2f = 0 and so, for any vector fields U and T , we have UT (f) − TU(f) −
[U, T ]f = 0. It follows that

Ug(gradf, T ) − Tg(gradf, U) − g(gradf, [U, T ]) = 0,

that is

∇U (gradf, T ) − g(gradf, ∇U T ) − ∇T (gradf, U) − g(gradf, ∇T U) = 0.

Since g is a metric connection then we have

g(∇U gradf, T ) = g(U, ∇T gradf). (7.22)

By taking U = ΨU and T = ΨT in (7.22), we write

g(∇ΨU gradf, ΨT ) = g(ΨU, ∇ΨT gradf).

Then, from (7.20), (7.21) and the last equation above, we obtain

ξ(f)g(U, ΨT ) = 0,

which infer ξ(f) = 0, since dη ̸= 0. From (7.18) we obtain gradf = 0, that is, f is a
constant. Therefore, from (7.5), we get R̆ic(U, T ) = −λ̆g(U, T ), which implies that the
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manifold is an Einstein manifold with respect to the the S-vK connection. Furthermore,
by using (3.17), we have

Ric(U, T ) = −λ̆g(U, T ) + 2nκη(U)η(T ) + µg(hU, T ). (7.23)
By using (3.7) in (7.23), we have

Ric(U, T ) = ag(U, T ) + bη(U)η(T ),

where a = − λ̆(2(n−1)+µ)+µ(2(1−n)+nµ)
2(n−1) and b = 2nκ(2(n−1)+µ)−µ(2(n−1)+n(2κ−n))

2(n−1) , which im-
plies that the manifold is an η-Einstein manifold wrt the LC connection.

Case 3. If µ (1 − 2n) + 2(n − 1) = 0, then we obtain

µ = 2(n − 1)
2n − 1

. (7.24)

Using (7.14) and (3.7), we get
(2(1 − n) + nµ − 2nκ)) (gradf − ξ(f)ξ) + (2(n − 1) + µ − 2nµ)hgradf = 0. (7.25)

Using (7.24) and (7.17) in (7.25), we conclude that gradf = ξ(f)ξ. So, we get the similar
results given in Case 1.

Hence we give the following:

Theorem 7.1. Let (M, g) be a (2n + 1)-dimensional (n > 1) pcm (κ, µ)-manifold (κ ̸=
−1) bearing an almost gradient Ricci soliton wrt the S-vK connection. Then either the
manifold is a N(κ)-pcm manifold, or it is an Einstein manifold wrt the S-vK connection
(equivalently, it is an η-Einstein manifold wrt the LC connection).

8. Almost Yamabe solitons on pcm (κ, µ)-manifolds with respect to the
Schouten-van Kampen connection

In this section we study almost Yamabe solitons on a pcm (κ, µ)-manifold (κ ̸= −1)
wrt the S-vK connection. Assume that (M, V, δ̆, g) is an almost Yamabe soliton on a pcm
(κ, µ)-manifold wrt the S-vK connection. Then we write

1
2

(LV g)(U, T ) = (r̆ − δ̆)g(U, T ). (8.1)

From (3.19), we write
1
2

(LV g)(U, T ) = (r − 2nκ − δ̆)g(U, T ). (8.2)

Hence, we state the following:

Theorem 8.1. An almost Yamabe soliton (M, V, δ, g) on a (2n + 1)-dimensional pcm
(κ, µ)-manifold with κ ̸= −1 is invariant under the S-vK connection if and only if the
manifold is a para-Sasakian manifold.

For V = ξ in (8.2), we get

g(U, ΨhT ) = (r − 2nκ − δ̆)g(U, T ). (8.3)
So we give the followings:

Theorem 8.2. Let M be a (2n + 1)-dimensional pcm (κ, µ)-manifold (κ ̸= −1) bearing a
Yamabe soliton (ξ, δ̆, g) wrt the S-vK connection. Then, M is of constant scalar curvature
2nκ + δ̆ wrt the LC connection.

Corollary 8.3. An almost Yamabe soliton (ξ, δ̆, g) on a (2n + 1)-dimensional pcm (κ, µ)-
manifold (κ ̸= −1) wrt the S-vK connection is steady if r = 2nκ.

We conclude with an example of pcm (κ, µ)-manifold wrt the S-vK connection such
that κ < −1.
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Example 8.4. Let g be the Lie algebra endowed with a basis {E1, E2, E3, E4, E5} and
non-zero Lie brackets

[E1, E5] = αβE1 + αβE2, [E2, E5] = αβE1 + αβE2,

[E3, E5] = −αβE3 + αβE4, [E4, E5] = αβE3 − αβE4,

[E1, E2] = αE1 + αE2, [E1, E3] = βE2 + αE4 − 2E5, (8.4)
[E1, E4] = βE2 + αE3, [E2, E3] = βE1 − αE4,

[E2, E4] = βE1 − αE3 + 2E5, [E3, E4] = −βE3 + βE4,

where α, β are non-zero real numbers such that αβ > 0. Let G be a Lie group whose Lie
algebra is g. Define on G a left invariant pcm structure (Ψ, ξ, η, g) by imposing that, at the
identity, g(E1, E1) = g(E4, E4) = −g(E2, E2) = −g(E3, E3) = g(E5, E5) = 1, g(Ei, Ej) =
0, for any i ̸= j, and ΨE1 = E3, ΨE2 = E4, ΨE3 = E1, ΨE4 = E2, ΨE5 = 0, ξ = E5 and
η = g(·, E5). A very long but straightforward computation shows that

∇E1ξ = αβE1 − ΨE1, ∇E2ξ = αβE2 − ΨE2,

∇ΨE1ξ = −E1 − αβΨE1, ∇ΨE2ξ = −E2 − αβΨE2,

∇ξE1 = −αβE2 − ΨE1, ∇ξE2 = −αβE1 − ΨE2,

∇ξΨE1 = −E1 − αβΨE2, ∇ξΨE2 = −E2 − αβΨE1,

∇E1E1 = αE2 − αβE5, ∇E1E2 = αE1,

∇E1ΨE1 = αΨE2 − E5, ∇E1ΨE2 = αΨE1, (8.5)
∇E2E1 = αE2, ∇E2E2 = −αE1 + αβE5,

∇E2ΨE1 = −αΨE2, ∇E2ΨE2 = −αΨE1 + E5,

∇ΨE1E1 = −βE2 + E5, ∇ΨE1E2 = −βE1,

∇ΨE1ΨE1 = −βΨE2 − αβE5, ∇ΨE1ΨE2 = −βΨE1,

∇ΨE2E1 = −βE2, ∇ΨE2E2 = −βE1 − E5,

∇ΨE2ΨE1 = −βΨE2, ∇ΨE2ΨE2 = −βΨE1 + αβE5,

where λ = αβ and µ = 2. Then one can prove that the curvature tensor field of the LC
connection of (G, g) satisfies that (κ, µ)-nullity condition (1.1), with κ = −1 − (αβ)2 and
µ = 2, which implies that (G, Ψ, ξ, η, g) is a 5-dimensional pcm (κ, µ)-manifold [6]. Now
we shall construct the S-vK connection on (G, Ψ, ξ, η, g). Using (8.5), we get

∇̆E1E1 = αE2, ∇̆E1E2 = αE1, ∇̆E1E3 = αE4,

∇̆E1E4 = αE3, ∇̆E2E1 = −αE2, ∇̆E2E2 = −αE1,

∇̆E2E3 = −αE4, ∇̆E2E4 = −αE3, ∇̆E3E1 = −βE2,

∇̆E3E2 = −βE1, ∇̆E3E3 = −βE4, ∇̆E3E4 = −βE3, (8.6)
∇̆E4E1 = −βE2, ∇̆E4E2 = −βE1, ∇̆E4E3 = −βE4,

∇̆E4E4 = −βE3, ∇̆E5E1 = −αβE2 − E3,

∇̆E5E2 = −αβE1 − E4, ∇̆E5E3 = −E1 − αβE4, ∇̆E5E4 = −E2 − αβE3.
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Now using (8.6), we can calculate the non-zero components of its curvature tensor wrt the
S-vK connection as follows:

R̆cur(E1, E3)E1 = −2E3, R̆cur(E1, E3)E2 = −2E4,

R̆cur(E1, E3)E3 = −2E1, R̆cur(E1, E3)E4 = −2E2,

R̆cur(E1, E4)E1 = 2αβE2, R̆cur(E1, E4)E2 = 2αβE1,

R̆cur(E1, E4)E3 = 2αβE4, R̆cur(E1, E4)E4 = 2αβE3, (8.7)
R̆cur(E2, E3)E1 = −2αβE2, R̆cur(E2, E3)E2 = −2αβE1,

R̆cur(E2, E3)E3 = −2αβE4, R̆cur(E2, E3)E4 = −2αβE3,

R̆cur(E2, E4)E1 = 2E3, R̆cur(E2, E4)E2 = 2E4,

R̆cur(E2, E4)E3 = 2E1, R̆cur(E2, E4)E4 = 2E2,

which imply that the non-zero components of its Ricci tensor wrt the S-vK connection as
follows:

R̆ic(E1, E1) = R̆ic(E4, E4) = 2, R̆ic(E2, E2) = R̆ic(E3, E3) = −2. (8.8)
From (8.8), (6.2) and (6.9), one can see that there does not exist an almost Ricci soliton
on such a 5-dimensional pcm (κ, µ)-manifold with κ < −1.

Furthermore, for U = u1E1 + u2E2 + u3E3 + u4E4 + u5E5, T = t1E1 + t2E2 + t3E3 +
t4E4 + t5E5 ∈ χ(G), we have

g(U, ΨhT ) = αβ(u1t1 − u2t2 + u3t3 − u4t4).

By using the last equation in (8.3), we say that the 5-dimensional pcm (κ, µ)-manifold Ğ
admits a Yamabe soliton (ξ, 8 − αβ, g) wrt the S-vK connection. Such a Yamabe soliton
is expanding if αβ > 8, steady if αβ = 8 and shrinking if αβ < 8.
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