Some results on paracontact metric (k, μ)-manifolds with respect to the Schouten-van Kampen connection

Selcen Yüksel Perktaş ${ }^{1}$ (D), Uday Chand De^{2} (D) , Ahmet Yıldız ${ }^{* 3}$ (D)
${ }^{1}$ Art and Science Faculty, Department of Mathematics, Adıyaman University, Adıyaman, Turkey
${ }^{2}$ Department of Pure Mathematics, University of Calcutta, India
${ }^{3}$ Education Faculty, Department of Mathematics, Inonu University, Malatya, Turkey

Abstract

In the present paper we study certain symmetry conditions and some types of solitons on paracontact metric (k, μ)-manifolds with respect to the Schouten-van Kampen connection. We prove that a Ricci semisymmetric paracontact metric (k, μ)-manifold with respect to the Schouten-van Kampen connection is an η-Einstein manifold. We investigate paracontact metric (k, μ)-manifolds satisfying $\breve{Q} \cdot \breve{R}_{c u r}=0$ with respect to the Schouten-van Kampen connection. Also, we show that there does not exist an almost Ricci soliton in a $(2 n+1)$-dimensional paracontact metric (k, μ)-manifold with respect to the Schouten-van Kampen connection such that $k>-1$ or $k<-1$. In case of the metric is being an almost gradient Ricci soliton with respect to the Schouten-van Kampen connection, then we state that the manifold is either $N(k)$-paracontact metric manifold or an Einstein manifold. Finally, we present some results related to almost Yamabe solitons in a paracontact metric (k, μ)-manifold equipped with the Schouten-van Kampen connection and construct an example which verifies some of our results.

Mathematics Subject Classification (2020). 53C15, 53C25, 53C50
Keywords. Schouten-van Kampen connection, paracontact metric (k, μ)-manifolds, Ricci semisymmetric, Einstein manifold, η-Einstein manifold, solitons

1. Introduction

Kaneyuki [15] introduced the concept of paracontact metric (for short, pcm) structures in 1985. Recently, pcm manifolds have been studied by many authors, especially after the paper of Zamkovoy [32]. An important class among pcm manifolds is called the (k, μ)manifold, which satisfies the nullity condition [6] given by

$$
\begin{equation*}
R_{c u r}(U, W) \xi=\kappa(\eta(W) U-\eta(U) W)+\mu(\eta(W) h U-\eta(U) h W), \tag{1.1}
\end{equation*}
$$

[^0]for all U, W vector fields on M, where κ and μ are constants and $h=\frac{1}{2} \mathcal{L}_{\xi} \Psi$. This class also includes the para-Sasakian manifolds [15,32], the pcm manifolds satisfying $R_{\text {cur }}(U, W) \xi=$ 0 , for all U, W [33].

Symmetry property is one of the essential tools for investigating the geometry of manifolds. Symmetric Riemannian manifolds, that is Riemannian manifolds admitting $\nabla R_{\text {cur }}=$ 0 , where $R_{\text {cur }}$ is the curvature tensor and ∇ is the Levi-Civita (for short, LC) connection, were introduced locally by Shirokov. In 1927, Cartan presented a comprehensive theory of symmetric Riemannian manifolds. If the curvature tensor $R_{c u r}$ of a manifold satisfies $R_{\text {cur }}(U, W) \cdot R_{\text {cur }}=0$, then it is called a semisymmetric manifold. Here, $R_{\text {cur }}(U, W)$ is viewed as a derivation of the tensor algebra at each point of the manifold for the tangent vectors U, W. A local classification of semisymmetric manifolds were made by Szabó [27]. In addition, a manifold satisfying $R_{c u r}(U, W) \cdot R i c=0$, where Ric denotes the Ricci tensor of type $(0,2)$, is called Ricci semisymmetric. Mirzoyan gave a general classification of manifolds of this type in [17]. For certain curvature conditions on $\mathrm{pcm}(\kappa, \mu)$-spaces we refer [16].

A pcm (κ, μ)-manifold admitting a Ricci tensor satisfying Ric $=\lambda_{1} g$ (resp., Ric $=$ $\lambda_{1} g+\lambda_{2} \eta \otimes \eta$) is called Einstein (resp., η-Einstein) manifold, where λ_{1} and λ_{2} are constants.

Riemannian manifolds with hyperdistributions and the Schouten van-Kampen (for short, S-vK) connection which is one of the most suitable connection adaptable to the hyperdistributions, were studied by Solov'ev [23-26]. Also see [2, 13, 21]. Almost pcm manifolds with the S-vK connection and curvature identities of such manifolds were investigated by Olszak [19]

As a generalization of Einstein manifold, an almost Ricci soliton (M, g, λ) was defined as a Riemannian manifold endowed with a complete vector field V satisfying

$$
\begin{equation*}
\mathcal{L}_{V} g+2 R i c+2 \lambda g=0 \tag{1.2}
\end{equation*}
$$

where \mathcal{L} denotes the Lie derivative, Ric is the Ricci tensor on M and λ is a differentiable function [12]. If λ is negative, zero and positive, then the almost Ricci soliton is called shrinking, steady and expanding, respectively. The concept of the η-Ricci soliton was introduced in [8].

An almost η-Ricci soliton is a Riemannian manifold (M, g, λ, μ) admitting a differentiable vector field V such that the Ricci tensor Ric of M satisfies

$$
\begin{equation*}
\mathcal{L}_{V} g+2 R i c+2 \lambda g+2 \beta \eta \otimes \eta=0 \tag{1.3}
\end{equation*}
$$

where λ and μ are some differentiable functions. In case of the vector field V is being the gradient of a potential function $-f$, the equation (1.2) reduces to

$$
\begin{equation*}
\nabla \nabla f=R i c+\lambda g \tag{1.4}
\end{equation*}
$$

and an almost Ricci soliton is said to be an almost gradient Ricci soliton.
It was proved in $[12,14]$ that, for 2-dimensional and 3-dimensional cases, a Ricci soliton on a compact manifold is of constant curvature (see also [9] and [10]). For further read we refer $[3,4,20,22]$.

For solving the Yamabe problem, the Yamabe flows were firstly introduced in [12]. Yamabe solitons are self-similar solutions for Yamabe flows and they seem to be as singularity models. More clearly, the Yamabe soliton comes from the blow-up procedure along the Yamabe flow, so such solitons have been studied intensively. For further read, we refer $[1,5,7,11,18,28-31]$. As a generalization of Yamabe solitons, an almost Yamabe soliton is a Riemannian manifold (M, g) endowed with a vector field V satisfying [1]

$$
\begin{equation*}
\mathcal{L}_{V} g-2(r-\delta) g=0 \tag{1.5}
\end{equation*}
$$

where r is the scalar curvature of M and δ is a differentiable function. An almost Yamabe soliton is called expanding, steady or shrinking, if $\delta<0, \delta=0$ or $\delta>0$, respectively. In case of δ is being a constant, then an almost Yamabe soliton induces to a Yamabe soliton.

Moreover, if the Yamabe soliton is of constant scalar curvature $S c$, then the Riemannian metric g is said to be a Yamabe metric.

In the present paper, we study certain semisymmetry conditions and some types of solitons in $\mathrm{pcm}(\kappa, \mu)$-manifolds. Following the introduction, Section 2 is devoted to some basic concepts that will be need throughout the paper. In Section 3, some properties of pcm (κ, μ)-manifolds endowed with the S -vK connection are presented. In section 4, we prove that Ricci semisymmetric pcm (κ, μ)-manifold with respect to (for short, wrt) the S -vK connection is an η-Einstein manifold. In section 5 , we study $\mathrm{pcm}(\kappa, \mu)$-manifolds satisfying $\breve{Q} \cdot \breve{R}_{\text {cur }}=0$ wrt the S-vK connection. In section 6 , we investigate almost Ricci soliton and almost η-Ricci soliton types on pcm (κ, μ)-manifolds wrt the S-vK connection. We show that there does not exist an almost Ricci soliton in a pcm (κ, μ)-manifold wrt the S -vK connection with $\kappa>-1$ or $\kappa<-1$. Section 7 is devoted to $\mathrm{pcm}(\kappa, \mu)$-manifolds ($\kappa \neq-1$) admitting almost gradient Ricci soliton. In Section 8, we obtain some results related to almost Yamabe solitons in a pcm (κ, μ)-manifold and construct an example which verifies some of our results.

2. Preliminaries

Let M be $(2 n+1)$-dimensional differentiable manifold endowed with a tensor field Ψ of type (1,1), a vector field ξ and a 1 -form η such that

$$
\eta(\xi)=1, \Psi^{2}=I-\eta \otimes \xi,
$$

and Ψ induces an almost paracomplex structure on each fibre of $\operatorname{ker}(\eta)$. From the last equation, we get $\Psi \xi=0, \eta \circ \Psi=0$ and note that the rank of endomorphism Ψ is $2 n$. If an almost paracontact manifold M admits a pseudo-Riemannian metric g such that

$$
\begin{equation*}
g(\Psi U, \Psi W)=-g(U, W)+\eta(U) \eta(W), \tag{2.1}
\end{equation*}
$$

for all $U, W \in \Gamma(T M)$, then the manifold is said to be an almost pcm manifold. The signature of the pseudo-Riemannian metric g is $(n+1, n)$ and an orthogonal basis $\left\{U_{i}, W_{j}, \xi\right\}$, namely a Ψ-basis, satisfying $g\left(U_{i}, U_{j}\right)=\delta_{i j}, g\left(W_{i}, W_{j}\right)=-\delta_{i j}, g\left(U_{i}, W_{j}\right)=0, g\left(\xi, U_{i}\right)=$ $g\left(\xi, W_{j}\right)=0$, and $W_{i}=\Psi U_{i}$, for any $i, j \in\{1, \ldots, n\}$ can always be constructed for an almost pcm manifold.

The fundamental form of the almost pcm manifold is given by $\theta(U, W)=g(U, \Psi W)$. An almost pcm manifold with $d \eta=\theta$ is called a pcm manifold. In a pcm manifold, by help of Lie derivative \mathcal{L}_{ξ} of the fundamental form, a trace-free symmetric operator h can be defined by $h=\frac{1}{2} \mathcal{L}_{\xi} \Psi$. This operator [32] anti-commutes with Ψ and satisfies $h \xi=0$, $\operatorname{trh}=\operatorname{trh} \Psi=0$ and

$$
\begin{gather*}
\nabla_{U} \xi=-\Psi U+\Psi h U \tag{2.2}\\
\left(\nabla_{U} \eta\right) W=g(U, \Psi W)-g(h U, \Psi W) \tag{2.3}
\end{gather*}
$$

where ∇ is the LC connection of the manifold. In addition, $h=0$ if and only if ξ is Killing vector field, which implies that (M, Ψ, ξ, η, g) is said to be a K-paracontact manifold. A normal pcm manifold is said to be a para-Sasakian manifold. Each para-Sasakian manifold is a K-paracontact manifold and but the converse holds only in 3 -dimensional case. We also recall that any para-Sasakian manifold satisfies

$$
R_{\text {cur }}(U, W) \xi=\eta(U) W-\eta(W) U,
$$

where $R_{\text {cur }}$ is Riemannian curvature operator given by

$$
R_{c u r}(U, W) Z=\nabla_{U} \nabla_{W} Z-\nabla_{W} \nabla_{U} Z-\nabla_{[U, W]} Z .
$$

3. $\mathbf{P c m}(k, \mu)$-manifolds with respect to the Schouten-van Kampen connection

A distribution defined by

$$
N(\kappa, \mu): p \rightarrow N_{p}(\kappa, \mu)=\left\{\begin{array}{c}
Z \in T_{p} M \mid \tag{3.1}\\
R_{\text {cur }}(U, W) Z=\kappa(g(W, Z) U-g(U, Z) W) \\
+\mu(g(W, Z) h U-g(U, Z) h W)
\end{array}\right\}
$$

is called the (κ, μ)-nullity distribution of a pcm manifold (M, Ψ, ξ, η, g) for the pair (κ, μ), where κ and μ are some real constants. In case of the characteristic vector field ξ belonging to the (κ, μ)-nullity distribution, from (3.1) we write

$$
R_{c u r}(U, W) \xi=\kappa(\eta(W) U-\eta(U) W)+\mu(\eta(W) h U-\eta(U) h W)
$$

for all $U, W \in \Gamma(T M)$. We refer [6] for basic results of pcm manifolds with the characteristic vector field satisfying the nullity condition (the condition (3.1)), for some real numbers κ and μ.

Lemma 3.1 ([6]). In a $(2 n+1)$-dimensional pcm (κ, μ)-manifold (M, Ψ, ξ, η, g), the followings hold:

$$
\begin{align*}
& h^{2}=(\kappa+1) \Psi^{2}, \tag{3.2}\\
& \left(\nabla_{U} \Psi\right) W=-g(U, W) \xi+g(h U, W) \xi+\eta(W) U-\eta(W) h U, \quad \text { for } \kappa \neq-1, \tag{3.3}\\
& \begin{array}{cc}
\left(\nabla_{U} h\right) W=-\{(1+\kappa) g(U, \Psi W)+g(U, \Psi h W)\} \xi & \text { for } \kappa \neq-1, \\
+\eta(W) \Psi h(h U-U)-\mu \eta(U) \Psi h W,
\end{array} \tag{3.4}\\
& \begin{array}{c}
\left(\nabla_{U} \Psi h\right) W=g\left(h^{2} U-h U, W\right) \xi+\eta(W)\left(h^{2} U-h U\right) \quad \text { for } \kappa>-1, ~ \\
-\mu \eta(U) h W,
\end{array} \tag{3.5}\\
& \begin{array}{c}
\left(\nabla_{U} \Psi h\right) W=(1+\kappa) g(U, W) \xi-g(h U, W) \xi \quad \text { for } \kappa<-1, \\
+\eta(W)\left(h^{2} U-h U\right)-\mu \eta(U) h W,
\end{array} \tag{3.6}\\
& \begin{aligned}
Q W= & (2(1-n)+n \mu) W+(2(n-1)+\mu) h W \quad \text { for } \kappa \neq-1,
\end{aligned} \tag{3.7}\\
& Q \xi=2 n \kappa \xi, \tag{3.8}\\
& \left(\nabla_{U} h\right) W-\left(\nabla_{W} h\right) U=-(1+\kappa)(2 g(U, \Psi W) \xi+\eta(U) \Psi W-\eta(W) \Psi U) \\
& +(1-\mu)(\eta(U) \Psi h W-\eta(W) \Psi h U), \tag{3.9}\\
& \left(\nabla_{U} \Psi h\right) W-\left(\nabla_{W} \Psi h\right) U=(1+\kappa)(\eta(W) U-\eta(U) W) \\
& +(\mu-1)(\eta(W) h U-\eta(U) h W), \tag{3.10}
\end{align*}
$$

for any vector fields U, W on M.
Some important subclasses of $\mathrm{pcm}(\kappa, \mu)$-manifolds are given, regarding (1.1), by paraSasakian manifolds, and pcm manifolds satisfying $R_{c u r}(U, W) \xi=0$. In [33], the authors showed that the pcm manifold $\left(M^{2 n+1}, \Psi, \xi, \eta, g\right)$ with $n>1$ satisfying the last condition is locally isometric to a product of a flat $(n+1)$-dimensional manifold and an n-dimensional manifold of negative constant curvature -4 . From (3.2), note that $h^{2}=0$ on a pcm (κ, μ)-manifold with $\kappa=-1$.

On the other hand we have two naturally defined distributions in the tangent bundle $T M$ of M as follows:

$$
D^{H}=\operatorname{ker} \eta, \quad D^{V}=\operatorname{span}\{\xi\}
$$

Then we have $T M=D^{H} \oplus D^{V}, D^{H} \cap D^{V}=\{0\}$ and $D^{H} \perp D^{V}$. This decomposition allows one to define the S-vK connection $\breve{\nabla}$ over an almost paracontact metric structure.

The S-vK connection $\breve{\nabla}$ on an almost (para) contact metric manifold with respect to LC-connection ∇ is defined by [23]

$$
\begin{equation*}
\breve{\nabla}_{U} W=\nabla_{U} W-\eta(W) \nabla_{U} \xi+\left(\nabla_{U} \eta\right)(W) \xi \tag{3.11}
\end{equation*}
$$

Thus with the help of the S -vK connection given by (3.11), many properties of some geometric objects connected with the distributions D^{H} and D^{V} can be characterized [2325]. For example g, ξ and η are parallel with respect to $\breve{\nabla}$, that is, $\breve{\nabla} \xi=0, \breve{\nabla} g=0, \breve{\nabla} \eta=0$. Also the torsion $T \breve{r} r$ of $\breve{\nabla}$ is defined by

$$
\begin{equation*}
T \breve{o} r(U, W)=\eta(U) \nabla_{W} \xi-\eta(W) \nabla_{U} \xi+2 d \eta(U, W) \xi . \tag{3.12}
\end{equation*}
$$

Now we consider a pcm (κ, μ)-manifold wrt the S-vK connection. Firstly, using (2.2) and (2.3) in (3.11), we get

$$
\begin{equation*}
\breve{\nabla}_{U} W=\nabla_{U} W+\eta(W) \Psi U-\eta(W) \Psi h U+g(U, \Psi W) \xi-g(h U, \Psi W) \xi \tag{3.13}
\end{equation*}
$$

Let $\breve{R}_{c u r}$ be the curvature tensors of the S-vK connection $\breve{\nabla}$ given by $\breve{R}_{\text {cur }}(U, W)=$ $\left[\breve{\nabla}_{U}, \breve{\nabla}_{W}\right]-\breve{\nabla}_{[U, W]}$. Using (3.13) in the definition of $\breve{R}_{c u r}(U, W)$, we have

$$
\begin{align*}
\breve{R}_{c u r}(U, W) Z= & \breve{\nabla}_{U}\left(\nabla_{W} Z+\eta(Z) \Psi W-\eta(Z) \Psi h W\right. \\
& +g(W, \Psi Z) \xi-g(h W, \Psi Z) \xi) \\
& -\breve{\nabla}_{W}\left(\nabla_{U} Z+\eta(Z) \Psi U-\eta(Z) \Psi h U\right. \\
& +g(U, \Psi Z) \xi-g(h U, \Psi Z) \xi) \tag{3.14}\\
& -\left(\nabla_{[U, W]} Z+\eta(Z) \Psi[U, W]-\eta(Z) \Psi h[U, W]\right. \\
& +g([U, W], \Psi Z) \xi-g(h[U, W], \Psi Z) \xi) .
\end{align*}
$$

Using (3.9), (3.10) and (3.3) in (3.14), we have the relation between $R_{\text {cur }}$ and $\breve{R}_{\text {cur }}$ on M

$$
\begin{align*}
\breve{R}_{\text {cur }}(U, W) Z= & R_{\text {cur }}(U, W) Z+g(U, \Psi Z) \Psi W-g(W, \Psi Z) \Psi U+g(h W, \Psi Z) \Psi U \\
& -g(h U, \Psi Z) \Psi W+g(W, \Psi Z) \Psi h U-g(U, \Psi Z) \Psi h W \\
& +g(h U, \Psi Z) \Psi h W-g(h W, \Psi Z) \Psi h U \\
& +\kappa\{g(U, Z) \eta(W) \xi-g(W, Z) \eta(U) \xi \tag{3.15}\\
& +\eta(U) \eta(Z) W-\eta(W) \eta(Z) U\} \\
& +\mu\{g(h U, Z) \eta(W) \xi-g(h W, Z) \eta(U) \xi \\
& +\eta(U) \eta(Z) h W-\eta(W) \eta(Z) h U\}
\end{align*}
$$

Now from (3.15), we get

$$
\begin{align*}
g\left(\breve{R}_{\text {cur }}(U, W) Z, T\right)= & g\left(R_{\text {cur }}(U, W) Z, T\right)+g(U, \Psi Z) g(\Psi W, T)-g(W, \Psi Z) g(\Psi U, T) \\
& +g(h W, \Psi Z) g(\Psi U, T)-g(h U, \Psi Z) g(\Psi W, T) \\
& +g(W, \Psi Z) g(\Psi h U, T)-g(U, \Psi Z) g(\Psi h W, T) \\
& +g(h U, \Psi Z) g(\Psi h W, T)-g(h W, \Psi Z) g(\Psi h U, T) \tag{3.16}\\
& +\kappa\{g(U, Z) \eta(W) \eta(T)-g(W, Z) \eta(U) \eta(T) \\
& +g(W, T) \eta(U) \eta(Z)-g(U, T) \eta(W) \eta(Z)\} \\
& +\mu\{g(h U, Z) \eta(W) \eta(T)-g(h W, Z) \eta(U) \eta(T) \\
& +g(h W, T) \eta(U) \eta(Z)-g(h U, T) \eta(W) \eta(Z)\} .
\end{align*}
$$

If we take $U=T=e_{i},\{i=1, \ldots, 2 n+1\}$, in (3.16), where $\{e i\}$ is an orthonormal basis of $\chi(M)$, we get

$$
\begin{equation*}
\breve{R} i c(W, Z)=\operatorname{Ric}(W, Z)-2 n \kappa \eta(W) \eta(Z)-\mu g(h W, Z), \tag{3.17}
\end{equation*}
$$

where $\breve{R i c}$ and Ric denote the Ricci tensor of the connections $\breve{\nabla}$ and ∇, respectively. As a consequence of (3.17), we get for the Ricci operator \breve{Q}

$$
\begin{equation*}
\breve{Q} W=Q W-2 n \kappa \eta(W) \xi-\mu h W . \tag{3.18}
\end{equation*}
$$

Also if we take $W=Z=e_{i},\{i=1, \ldots, 2 n+1\}$, in (3.18), we get

$$
\begin{equation*}
\breve{r}=r-2 n \kappa \text {, } \tag{3.19}
\end{equation*}
$$

where \breve{r} and r denote the scalar curvatures of the connections $\breve{\nabla}$ and ∇, respectively.

4. Ricci semisymmetric pcm (κ, μ)-manifolds with respect to the Schoutenvan Kampen connection

In this section we study Ricci semisymmetric pcm (κ, μ)-manifolds wrt the S -vK connection. Firstly we give the following:

Definition 4.1. A semi-Riemannian manifold $\left(M^{2 n+1}, g\right), n>1$, is said to be Ricci semisymmetric if we have

$$
R_{\text {cur }}(U, W) \cdot R i c=0,
$$

holds on M for all $U, W \in \chi(M)$.
Let M be a Ricci semisymmetric pcm (κ, μ)-manifold with $(\kappa \neq-1)$ wrt the S-vK connection. Then above equation is equivalent to

$$
\left(\breve{R}_{c u r}(U, W) \cdot \breve{R} i c\right)(Z, T)=0,
$$

for any $U, W, Z, T \in \chi(M)$. Thus we have

$$
\begin{equation*}
\breve{\operatorname{Ri}} i c\left(\breve{R}_{c u r}(U, W) Z, T\right)+\breve{R} i c\left(Z, \breve{R}_{c u r}(U, W) T\right)=0, \tag{4.1}
\end{equation*}
$$

Using (3.15) in (4.1), we get

$$
\begin{align*}
& \qquad\left[\begin{array}{c}
\{g(W, Z)-\eta(W) \eta(Z)\} \breve{R} i c(U, T) \\
-\{g(U, Z)-\eta(U) \eta(Z)\} \breve{R} i c(W, T) \\
+\{g(W, T)-\eta(W) \eta(T)\} \breve{R} i c(U, Z) \\
-\{g(U, T)-\eta(U) \eta(T)\} \breve{R} i c(W, Z)
\end{array}\right] \\
& +\mu\left[\begin{array}{c}
\{g(W, Z)-\eta(W) \eta(Z)\} \breve{R} i c(h U, T) \\
-\{g(U, Z)-\eta(U) \eta(Z)\} \breve{R} i c(h W, T) \\
+\{g(W, T)-\eta(W) \eta(T)\} \breve{R} i c(h U, Z) \\
-\{g(U, T)-\eta(U) \eta(T)\} \breve{R} i c(h W, Z)
\end{array}\right] \\
& +g(U, \Psi Z) \breve{R} i c(\Psi W, T)-g(W, \Psi Z) \breve{R} i c(\Psi U, T) \\
& +g(h W, \Psi Z) \breve{R} i c(\Psi U, T)-g(h U, \Psi Z) \breve{R} i c(\Psi W, T) \\
& +g(W, \Psi Z) \breve{R} i c(\Psi h U, T)-g(U, \Psi Z) \breve{R} i c(\Psi h W, T) \\
& +g(h U, \Psi Z) \breve{R} i c(\Psi h W, T)-g(h W, \Psi Z) \breve{R} i c(\Psi h U, T) \tag{4.2}\\
& +g(U, \Psi T) \breve{R} i c(\Psi W, Z)-g(W, \Psi T) \breve{R} i c(\Psi U, Z) \\
& +g(h W, \Psi T) \breve{R} i c(\Psi U, Z)-g(h U, \Psi T) \breve{R} i c(\Psi W, Z) \\
& +g(W, \Psi T) \breve{R} i c(\Psi h U, Z)-g(U, \Psi T) \breve{R} i c(\Psi h W, Z) \\
& +g(h U, \Psi T) \breve{R} i c(\Psi h W, Z)-g(h W, \Psi T) \breve{R} i c(\Psi h U, Z)=0 .
\end{align*}
$$

Putting $U=T=e_{i},\{i=1, \ldots, 2 n+1\}$, in (4.2), we obtain

$$
\begin{equation*}
\kappa \breve{r}\{g(W, Z)-\eta(W) \eta(Z)\}-2 n \kappa \breve{R} i c(W, Z)-2 n \mu \breve{R} i c(h W, Z)=0 . \tag{4.3}
\end{equation*}
$$

Now putting $W=h W$ in (4.3), we have

$$
\begin{equation*}
\kappa \breve{r} g(h W, Z)-2 n \kappa \breve{R} i c(h W, Z)-2 n(\kappa+1) \mu \breve{R} i c(W, Z)=0 . \tag{4.4}
\end{equation*}
$$

Assume that $\kappa \neq-1$ and $\mu \neq 0$. Multiplying with (4.3) by κ and (4.4) by μ, then subtract the results, we obtain

$$
\begin{equation*}
2 n\left[\kappa^{2}-\mu^{2}(\kappa+1)\right] \breve{R} i c(W, Z)=\kappa^{2} \breve{r}\{g(W, Z)-\eta(W) \eta(Z)\}-\kappa \mu \breve{r} g(h W, Z) . \tag{4.5}
\end{equation*}
$$

Using (3.17) in (4.5), we get

$$
\begin{aligned}
& 2 n\left[\kappa^{2}-\mu^{2}(\kappa+1)\right]\{\operatorname{Ric}(W, Z)-2 n \kappa \eta(W) \eta(Z)-\mu g(h W, Z)\} \\
= & \kappa^{2} \breve{r}\{g(W, Z)-\eta(W) \eta(Z)\}+(\mu-\kappa \mu \breve{r}-1) g(h W, Z),
\end{aligned}
$$

i.e.,

$$
\begin{align*}
\operatorname{Ric}(W, Z)= & \frac{\kappa^{2} \breve{r}}{2 n\left(\kappa^{2}-\mu^{2}(\kappa+1)\right.} g(W, Z) \\
& +\left(2 n \kappa-\frac{\kappa^{2} \breve{r}}{2 n\left(\kappa^{2}-\mu^{2}(\kappa+1)\right.}\right) \eta(W) \eta(Z) \tag{4.6}\\
& +\left(\mu-\frac{\kappa^{2} \breve{r}}{2 n\left(\kappa^{2}-\mu^{2}(\kappa+1)\right.}\right) g(h W, Z) .
\end{align*}
$$

Again using (3.7) in (4.6), we have

$$
\begin{equation*}
\operatorname{Ric}(W, Z)=\frac{A_{1}-C_{1} B_{2}}{1-A_{2} C_{1}} g(W, Z)+\frac{B_{1}-C_{1} C_{2}}{1-A_{2} C_{1}} \eta(W) \eta(Z) \tag{4.7}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{1} & =\frac{\kappa^{2} \breve{r}}{2 n\left(\kappa^{2}-\mu^{2}(\kappa+1)\right.}, & & B_{1}=2 n \kappa-\frac{\kappa^{2} \breve{r}}{2 n\left(\kappa^{2}-\mu^{2}(\kappa+1)\right.}, \\
C_{1} & =\mu-\frac{\kappa^{2} \breve{r}}{2 n\left(\kappa^{2}-\mu^{2}(\kappa+1)\right.}, & A_{2} & =\frac{1}{2(n-1)+\mu}, \\
B_{2} & =\frac{2(1-n)+n \mu}{2(n-1)+\mu}, & & C_{2}=\frac{2(n-1)+n(2 \kappa-\mu)}{2(n-1)+\mu} .
\end{aligned}
$$

Therefore, from (4.7) we have the following:
Theorem 4.2. Let M be a $(2 n+1)$-dimensional pcm (κ, μ)-manifold with $\kappa \neq-1$. If M is a Ricci semisymmetric pcm (κ, μ)-manifold wrt the S-vK connection then the manifold M is an η-Einstein manifold wrt the LC connection provided $\mu \neq 2(1-n)$.

5. Pcm (κ, μ)-manifolds satisfying $\breve{Q} \cdot \breve{R}=0$ with respect to the Schoutenvan Kampen connection

In this section we study the condition $\breve{Q} \cdot \breve{R}_{\text {cur }}=0$ on pcm (κ, μ)-manifolds wrt the S-vK connection. Firstly we give the following:
$\left(\breve{Q} \cdot \breve{R}_{c u r}\right)(U, W) Z=\breve{Q} \breve{R}_{c u r}(U, W) Z-\breve{R}_{c u r}(\breve{Q} U, W) Z-\breve{R}_{c u r}(U, \breve{Q} W) Z-\breve{R}_{c u r}(U, W) \breve{Q} Z=0$. Then we write

$$
\begin{align*}
& g\left(\breve{Q}_{\breve{R}_{c u r}}(U, W) Z, T\right)-g\left(\breve{R}_{c u r}(\breve{Q} U, W) Z, T\right) \tag{5.1}\\
& -g\left(\breve{R}_{\text {cur }}(U, \breve{Q} W) Z, T\right)-g\left(\breve{R}_{c u r}(U, W) \breve{Q} Z, T\right)=0,
\end{align*}
$$

which infers

$$
\begin{aligned}
& g\left(\breve{R}_{c u r}(U, W) Z, \breve{Q} T\right)+g\left(\breve{R}_{c u r}(Z, T) W, \breve{Q} U\right) \\
& -g\left(\breve{R}_{c u r}(Z, T) U, \breve{Q} W\right)+g\left(\breve{R}_{c u r}(U, W) T, \breve{Q} Z\right)=0 .
\end{aligned}
$$

So we can write

$$
\begin{align*}
& \breve{\operatorname{Ri}} i c\left(\breve{R}_{c u r}(U, W) Z, T\right)+\breve{\operatorname{Ri}} i c\left(\breve{R}_{c u r}(Z, T) W, U\right) \tag{5.2}\\
& -\breve{\operatorname{Ri}} i c\left(\breve{R}_{c u r}(Z, T) U, W\right)+\breve{\operatorname{Ric}} i c\left(\breve{R}_{c u r}(U, W) T, Z\right)=0 .
\end{align*}
$$

Now using (3.14) in (5.2), we compute

$$
\begin{align*}
& \kappa\left[\begin{array}{c}
\{g(W, T)-\eta(W) \eta(T)\} \breve{R} i c(U, Z) \\
-\{g(U, T)-\eta(U) \eta(T)\} \breve{R} i c(W, Z) \\
+\{g(W, T)-\eta(W) \eta(T)\} \breve{R} i c(U, Z) \\
-\{g(U, T)-\eta(U) \eta(T)\} \breve{R} i c(W, Z)
\end{array}\right] \\
& +\mu\left[\begin{array}{c}
\{g(W, T)-\eta(W) \eta(T)\} \breve{R} i c(h U, Z) \\
-\{g(U, T)-\eta(U) \eta(T)\} \breve{R} i c(h W, Z) \\
+\{g(W, T)-\eta(W) \eta(T)\} \breve{R} i c(h U, Z) \\
-\{g(U, T)-\eta(U) \eta(T)\} \breve{R} i c(h W, Z)
\end{array}\right] \\
& +g(U, \Psi Z) \breve{R} i c(\Psi W, T)-g(W, \Psi Z) \breve{R} i c(\Psi U, T)+g(h W, \Psi Z) \breve{R} i c(\Psi U, T) \\
& -g(h U, \Psi Z) \breve{R} i c(\Psi W, T)+g(W, \Psi Z) \breve{R} i c(\Psi h U, T)-g(U, \Psi Z) \breve{R} i c(\Psi h W, T) \\
& +g(h U, \Psi Z) \breve{R} i c(\Psi h W, T)-g(h W, \Psi Z) \breve{R} i c(\Psi h U, T)+g(U, \Psi T) \breve{R} i c(\Psi W, Z) \\
& -g(W, \Psi T) \breve{R} i c(\Psi U, Z)+g(h W, \Psi T) \breve{R} i c(\Psi U, Z)-g(h U, \Psi T) \breve{R} i c(\Psi W, Z) \\
& +g(W, \Psi T) \breve{R} i c(\Psi h U, Z)-g(U, \Psi T) \breve{R} i c(\Psi h W, Z)+g(h U, \Psi T) \breve{R} i c(\Psi h W, Z) \\
& -g(h W, \Psi T) \breve{R} i c(\Psi h U, Z)+g(\Psi W, Z) \breve{R} i c(U, \Psi T)-g(\Psi W, T) \breve{R} i c(U, \Psi Z) \\
& +g(\Psi W, h T) \breve{R} i c(U, \Psi Z)-g(\Psi W, h Z) \breve{R} i c(U, \Psi T)+g(\Psi W, T) \breve{R} i c(\Psi h Z, U) \\
& -g(Z, \Psi W) \breve{R} i c(\Psi h T, U)+g(h Z, \Psi W) \breve{R} i c(\Psi h T, U)-g(h T, \Psi W) \breve{R} i c(\Psi h Z, U) \\
& -g(\Psi U, Z) \breve{R} i c(W, \Psi T)+g(\Psi U, T) \breve{R} i c(W, \Psi Z)-g(\Psi U, h T) \breve{R} i c(W, \Psi Z) \\
& +g(\Psi U, h Z) \breve{R} i c(W, \Psi T)-g(\Psi U, T) \breve{R} i c(W, \Psi h Z)+g(\Psi U, Z) \breve{R} i c(\Psi h T, W) \\
& -g(h Z, \Psi U) \breve{R} i c(\Psi h T, W)+g(h T, \Psi U) \breve{R} i c(\Psi h Z, W)=0 . \tag{5.3}
\end{align*}
$$

Putting $U=T=e_{i},\{i=1, \ldots, 2 n+1\}$, in (5.3), we have

$$
\kappa(1-2 n) \breve{R} i c(W, Z)+\mu(1-2 n) \breve{R} i c(h W, Z)+(\kappa+1) \breve{R} i c(\Psi W, \Psi Z)+\breve{R} i c(W, Z)=0,
$$

which entails

$$
\begin{equation*}
(2 n \kappa+1) \breve{R} i c(W, Z)+\mu(2 n-1) \breve{R} i c(h W, Z)-2(\kappa+1)(2 n-2+\mu) g(h W, Z)=0 . \tag{5.4}
\end{equation*}
$$

Now putting $W=h W$ in (5.4), we have

$$
\begin{align*}
& (2 n \kappa+1) \breve{R} i c(h W, Z)+\mu(2 n-1)(\kappa+1) \breve{R} i c(W, Z) \tag{5.5}\\
& -2(\kappa+1)(2 n-2+\mu)(\kappa+1)\{g(W, Z)-\eta(W) \eta(Z)\}=0 .
\end{align*}
$$

Multiplying (5.4) by $2 n \kappa+1$ and (5.5) by $\mu(2 n-1)$, we have

$$
\begin{align*}
& (2 n \kappa+1)^{2} \breve{R} i c(W, Z)+\mu(2 n-1)(2 n \kappa+1) \breve{R} i c(h W, Z) \tag{5.6}\\
& -2(\kappa+1)(2 n \kappa+1)(2 n-2+\mu) g(h W, Z)=0
\end{align*}
$$

and

$$
\begin{align*}
& \mu(2 n-1)(2 n \kappa+1) \breve{R} i c(h W, Z)+\mu(2 n-1)^{2}(\kappa+1) \breve{R} i c(W, Z) \tag{5.7}\\
& -2(\kappa+1)(2 n-2+\mu) \mu(2 n-1)(\kappa+1)\{g(W, Z)-\eta(W) \eta(Z)\}=0
\end{align*}
$$

respectively. Subtracting (5.6) from (5.7), we get

$$
\begin{equation*}
\breve{R} i c(W, Z)=\frac{\lambda_{1}}{\gamma} g(h W, Z)-\frac{\lambda_{2}}{\gamma} g(W, Z)+\frac{\lambda_{2}}{\gamma} \eta(W) \eta(Z) \tag{5.8}
\end{equation*}
$$

where

$$
\begin{aligned}
\lambda_{1} & =2(2 n \kappa+1)(\kappa+1)(2 n-2+\mu) \\
\lambda_{2} & =2 \mu(\kappa+1)^{2}(2 n-2+\mu) \\
\gamma & =(2 n \kappa+1)^{2}-(2 n-1)^{2} \mu(\kappa+1)
\end{aligned}
$$

Now using (3.7) in (5.8), we obtain

$$
\left(\frac{\lambda_{1}}{\gamma(B-\mu)}-1\right) \breve{R} i c(W, Z)=\left(\frac{\lambda_{1} A}{\gamma(B-\mu)}+\frac{\lambda_{2}}{\gamma}\right) g(W, Z)+\left(\frac{\lambda_{1}(C-2 n \kappa)}{\gamma(B-\mu)}-\frac{\lambda_{2}}{\gamma}\right) \eta(W) \eta(Z),
$$

where $A=(2(1-n)+n \mu), B=(2(n-1)+\mu, C=2(n-1)+n(2 \kappa-\mu)$. The last equation can be written

$$
\breve{R} i c(W, Z)=\rho g(W, Z)+\sigma \eta(W) \eta(Z),
$$

where

$$
\rho=\frac{\frac{\lambda_{1} A}{\gamma(B-\mu)}+\frac{\lambda_{2}}{\gamma}}{\frac{\lambda_{1}}{\gamma(B-\mu)}-1}, \quad \sigma=\frac{\frac{\lambda_{1}(C-2 n \kappa)}{\gamma(B-\mu)}-\frac{\lambda_{2}}{\gamma}}{\frac{\lambda_{1}}{\gamma(B-\mu)}-1} .
$$

Thus the manifold M is an η-Einstein manifold wrt the S-vK connection. Hence we have the following:
Theorem 5.1. Let M be a $(2 n+1)$-dimensional pcm (κ, μ)-manifold with $\kappa \neq-1$ satisfying the condition $\breve{Q} \cdot \breve{R}_{\text {cur }}=0$ wrt the S-vK connection. Then the manifold M is an η-Einstein manifold wrt the S-vK connection provided $\frac{\lambda_{1}}{\gamma(B-\mu)}-1 \neq 0$.

6. Almost Ricci solitons and almost η-Ricci solitons on $\mathbf{~ p c m}(\kappa, \mu)$-manifolds with respect to the Schouten-van Kampen connection

In this section we study almost Ricci solitons and almost η-Ricci soliton in pcm (κ, μ) manifolds wrt the S -vK connection.

In a pcm (κ, μ)-manifold $(\kappa \neq-1)$ with the S-vK connection, since $\breve{\nabla} g=0$ by using (1.2), we get

$$
\begin{equation*}
\left(\breve{\mathfrak{L}}_{V} g\right)(U, T)=g\left(\nabla_{U} V, T\right)+g\left(U, \nabla_{T} V\right)=\left(\mathcal{L}_{V} g\right)(U, T), \tag{6.1}
\end{equation*}
$$

where $\breve{\mathcal{L}}$ denotes the Lie derivative on manifold wrt the S-vK connection.
Now we consider an almost Ricci soliton on a pcm (κ, μ)-manifold wrt the $\mathrm{S}-\mathrm{vK}$ connection. From (1.2), we can write

$$
\begin{equation*}
\left(\breve{\mathcal{L}}_{V} g+2 \breve{R} i c+2 \breve{\lambda} g\right)(U, T)=0 . \tag{6.2}
\end{equation*}
$$

Using (6.1) in (6.2), we obtain

$$
\left\{\begin{array}{c}
\left(\mathcal{L}_{V} g\right)(U, T)+2 \operatorname{Ric}(U, T)+2 \breve{\lambda} g(U, T) \tag{6.3}\\
-4 n \kappa \eta(U) \eta(T)-2 \mu g(h U, T)
\end{array}=0 .\right.
$$

Thus we have the followings:
Theorem 6.1. $A(2 n+1)$-dimensional pcm (κ, μ)-manifold M bearing an almost Ricci soliton $(V, \breve{\lambda}, g)$ wrt the S-vK connection admits an almost η-Ricci soliton $(V, \breve{\lambda},-2 n \kappa, g)$ wrt the LC connection provided the manifold is a $N(\kappa)$-pcm manifold.
Corollary 6.2. If M is a $(2 n+1)$-dimensional pcm (κ, μ)-manifold bearing an almost Ricci soliton ($V, \breve{\lambda}, g$) wrt the S-vK connection, then M admits an almost Ricci soliton ($V, \breve{\lambda}, g$) wrt the LC connection provided the manifold is locally isometric to a product of a flat $(n+1)$-dimensional manifold and an n-dimensional manifold of negative constant curvature equal to -4 .

Conversely, assume that a $\mathrm{pcm}(\kappa, \mu)$-manifold admits an almost Ricci soliton (V, λ, g) wrt the LC connection. Then, from (1.2) and (3.17), we have

$$
\left\{\begin{array}{c}
\left(\mathcal{L}_{V} g\right)(U, T)+2 \breve{R} i c(U, T)+2 \lambda g(U, T) \\
+4 n \kappa \eta(U) \eta(T)+2 \mu g(h U, T)
\end{array}=0 .\right.
$$

Hence we give the followings:
Theorem 6.3. Let M be a $(2 n+1)$-dimensional pcm (κ, μ)-manifold bearing an almost Ricci soliton (V, λ, g) wrt the LC connection. Then M admits an almost η-Ricci soliton ($V, \lambda, 2 n \kappa, g$) wrt the S-vK connection provided the manifold is a $N(\kappa)$-pcm manifold.

Corollary 6.4. $A(2 n+1)$-dimensional pcm (κ, μ)-manifold bearing an almost Ricci soliton (V, λ, g) wrt the LC connection admits an almost Ricci soliton (V, λ, g) wrt the S $v K$ connection provided the manifold is locally isometric to a product of a flat $(n+1)$ dimensional manifold and an n-dimensional manifold of negative constant curvature equal to -4 .

In case of g is being an almost η-Ricci soliton wrt the LC connection, we have the following:

Theorem 6.5. $A(2 n+1)$-dimensional pcm ($\kappa, \mu)$-manifold bearing an almost η-Ricci soliton (V, λ, β, g) wrt the LC connection admits an almost η-Ricci soliton $(V, \lambda, 2 n \kappa+\beta, g)$ wrt the S-vK connection provided the manifold is a $N(\kappa)$-pcm manifold.
Proof. Assume that M is a $(2 n+1)$-dimensional pcm (κ, μ)-manifold bearing an almost η-Ricci soliton (V, λ, β, g) wrt the LC connection. From (1.2) and (3.17) we write

$$
\begin{gathered}
\left(\mathcal{L}_{V} g\right)(U, T)+2 \breve{R} i c(U, T)+2 \lambda g(U, T) \\
+2(2 n \kappa+\beta) \eta(U) \eta(T)+2 \mu g(h U, T)=0 .
\end{gathered}
$$

This completes the proof.
Now we consider the case of the potential vector field being the structure vector field.
Assume that M is a $(2 n+1)$-dimensional $\mathrm{pcm}(\kappa, \mu)$-manifold bearing an almost Ricci soliton $(\xi, \breve{\lambda}, g)$ wrt the S-vK connection. Using (2.2), (3.17) and (6.1) in (6.2), we write

$$
\begin{equation*}
g(U, \Psi h T)+g(Q U, T)+\breve{\lambda} g(U, T)-2 n \kappa \eta(U) \eta(T)-\mu g(h U, T)=0 . \tag{6.4}
\end{equation*}
$$

From (6.4), we get

$$
\begin{equation*}
\Psi h U+Q U+\breve{\lambda} U-2 n \kappa \eta(U) \xi-\mu h U=0 . \tag{6.5}
\end{equation*}
$$

By taking covariant derivative of (6.5), we have

$$
\begin{gathered}
\left(\nabla_{X} \Psi h\right) U+\Psi h\left(\nabla_{X} U\right)+\left(\nabla_{X} Q\right) U+Q \nabla_{X} U+X(\breve{\lambda}) U+\breve{\lambda} \nabla_{X} U \\
-2 n \kappa\left(g\left(\nabla_{X} U, \xi\right) \xi+g\left(U, \nabla_{X} \xi\right) \xi+\eta(U) \nabla_{X} \xi\right) \\
-\mu\left(\nabla_{X} h\right) U-\mu h \nabla_{X} U=0,
\end{gathered}
$$

which implies that

$$
\begin{gather*}
\left(\nabla_{X} \Psi h\right) U+\left(\nabla_{X} Q\right) U+X(\breve{\lambda}) U \tag{6.6}\\
-2 n \kappa\left(g\left(U, \nabla_{X} \xi\right) \xi+\eta(U) \nabla_{X} \xi\right)-\mu\left(\nabla_{X} h\right) U=0 .
\end{gather*}
$$

We have the following cases:
Case 1. Assume that $\kappa>-1$. By using (3.5), (3.3), (3.4) and (2.2) in (6.6), we have

$$
\begin{gathered}
g\left(h^{2} X-h X, U\right) \xi+\eta(U)\left(h^{2} X-h X\right)-\mu \eta(X) h U \\
-2(n-1)(1+\kappa) g(X, \Psi U) \xi-2(n-1) g(X, \Psi h U) \xi \\
+2(n-1)\left\{\eta(U)\left(\Psi h^{2} X-\Psi h X\right)-\mu \eta(X) \Psi h U\right\}+X(\breve{\lambda}) U \\
+(2(n-1)-n \mu))\{-(g(U, \Psi X)-g(U, \Psi h X)) \xi-\eta(U)(\Psi X+\Psi h X)\}=0,
\end{gathered}
$$

which implies that

$$
\begin{gather*}
(\kappa+1) g(X, U) \xi-2(\kappa+1) \eta(X) \eta(U) \xi-g(h X, U) \xi+(\kappa+1) \eta(U) X-\eta(U) h X \\
+\mu \eta(X) h U-(2 \kappa(n-1)+n \mu) g(X, \Psi U) \xi-n \mu g(X, \Psi h U) \xi \\
+(2 \kappa(n-1)+n \mu) \eta(U) \Psi X-n \mu \eta(U) \Psi h X \tag{6.7}\\
-2 \mu(n-1) \eta(X) \Psi h U+X(\breve{\lambda}) U=0
\end{gather*}
$$

By contracting X in (6.7), we obtain

$$
\begin{equation*}
2 n(\kappa+1) \eta(U)=-U(\breve{\lambda}) \tag{6.8}
\end{equation*}
$$

On the other hand, by taking $U=\xi$ in (6.5), we obtain

$$
\begin{equation*}
\breve{\lambda}=0 \tag{6.9}
\end{equation*}
$$

Using (6.9) in (6.8), we conclude that $\kappa=-1$, which contradicts with the assumption $\kappa>-1$.

Case 2. Assume that $\kappa<-1$. By using (3.6), (3.3), (3.4) and (2.2) in (6.6), we get

$$
\begin{gather*}
(1+\kappa) g(X, U) \xi-g(h X, U) \xi+\eta(U)\left(h^{2} X-h X\right)-\mu \eta(X) h U \\
+(2 \kappa(1-n)-n \mu) g(X, \Psi U) \xi-n \mu g(X, \Psi h U) \xi \\
-(2 \kappa(1-n)-n \mu) \eta(U) \Psi X-n \mu \eta(U) \Psi h X \tag{6.10}\\
-\mu \eta(X) \Psi h U+X(\breve{\lambda}) U=0
\end{gather*}
$$

By contracting X in (6.10), we have

$$
\begin{equation*}
(2 n+1)(\kappa+1) \eta(U)=-U(\breve{\lambda}) \tag{6.11}
\end{equation*}
$$

On the other hand, by taking $U=\xi$ in (6.5), we get

$$
\breve{\lambda}=0
$$

Using the last equation in (6.11), we conclude that $\kappa=-1$, which contradicts with the assumption $\kappa>-1$.

Hence we give the following:
Theorem 6.6. There does not exist an almost Ricci soliton $(\xi, \breve{\lambda}, g)$ in a $(2 n+1)$ dimensional pcm (κ, μ)-manifold (M, g) wrt the S-vK connection with $\kappa>-1$ or $\kappa<-1$.

Now, we consider $\kappa=-1$. In this case we give the following:
Theorem 6.7. If $a(2 n+1)$-dimensional pcm (κ, μ)-manifold (M, g) wrt the S - $v K$ connection admits an almost Ricci soliton $(\xi, \breve{\lambda}, g)$, then the almost Ricci soliton is steady.

Proof. By putting $U=\xi$ in (6.5), we get $Q \xi=2 \kappa n \xi-\breve{\lambda}$. On the other hand, from (3.8) we have $Q \xi=2 \kappa n \xi$. Thefore we obtain $\breve{\lambda}=0$, which completes the proof.
7. Almost gradient Ricci solitons on $\mathbf{p c m}(\kappa, \mu)$-manifolds with respect to the Schouten-van Kampen connection

If the vector field V is the gradient of a potential function $-f$, that is $V=-g r a d f$, then g is called an almost gradient Ricci soliton. In this case equation (1.2) becomes

$$
\begin{equation*}
\nabla g r a d f=R i c+\lambda g \tag{7.1}
\end{equation*}
$$

where ∇ is the LC connection.
Now assume that M is a $(2 n+1)$-dimensional $(n>1) \operatorname{pcm}(\kappa, \mu)$-manifold $(\kappa \neq-1)$ wrt the $S-v K$ connection. If we take $V=-$ gradf in (6.1), we write

$$
\begin{equation*}
\left(\breve{\mathcal{L}}_{\text {gradf }} g\right)(U, T)=\left(\mathcal{L}_{\text {gradf }} g\right)(U, T)=g\left(\nabla_{U} \text { gradf }, T\right)+g\left(U, \nabla_{T} \text { gradf }\right) \tag{7.2}
\end{equation*}
$$

We can easily see that

$$
g\left(\nabla_{U} g r a d f, T\right)=g\left(U, \nabla_{T} g r a d f\right)
$$

which implies that

$$
\begin{equation*}
\breve{\mathcal{L}}_{\text {gradf }} g+2 \breve{R} i c+2 \breve{\lambda} g=0, \tag{7.3}
\end{equation*}
$$

that is

$$
\begin{equation*}
g\left(\nabla_{U} g r a d f, T\right)=\breve{R} i c(U, T)+\breve{\lambda} g(U, T) . \tag{7.4}
\end{equation*}
$$

This reduces to

$$
\begin{equation*}
\nabla_{U} g r a d f=\breve{Q} U+\breve{\lambda} U \tag{7.5}
\end{equation*}
$$

Now from (7.5), we write

$$
\begin{aligned}
R_{c u r}(U, T) \text { gradf }= & \nabla_{U} \nabla_{T} \text { gradf }-\nabla_{U} \nabla_{T} \text { gradf }-\nabla_{[U, T]} \text { gradf } \\
= & \nabla_{U} \breve{Q} T+U(\breve{\lambda}) T-\breve{\lambda} \nabla_{U} T \\
& -\nabla_{T} \breve{Q} U-T(\breve{\lambda}) U-\breve{\lambda} \nabla_{T} U \\
& -\breve{Q}[U, T]-\breve{\lambda}[U, T]
\end{aligned}
$$

which implies that

$$
\begin{align*}
R_{\text {cur }}(U, T) \text { gradf }= & \left(\nabla_{U} Q\right) T-\left(\nabla_{T} Q\right) U-2 n \kappa(2 g(U, \Psi T) \\
& \left.+\eta(T) \nabla_{U} \xi-\eta(U) \nabla_{T} \xi\right) \tag{7.6}\\
& -\mu\left(\left(\nabla_{U} h\right) T+\left(\nabla_{T} h\right) U\right)+U(\breve{\lambda}) T-T(\breve{\lambda}) U
\end{align*}
$$

Taking covariant derivative of Q given by (3.7), we have

$$
\begin{align*}
\left(\nabla_{U} Q\right) T= & (2(n-1)+n(2 \kappa-\mu))\left[\begin{array}{c}
g(U, \Psi T) \xi+g(\Psi h U, T) \xi \\
-\eta(T)(\Psi U-\Psi h U)
\end{array}\right] \tag{7.7}\\
& +(2(n-1)+\mu)\left(\nabla_{U} h\right) T
\end{align*}
$$

Using (7.7) and (2.2) in (7.6), we obtain

$$
\begin{align*}
R_{c u r}(U, T) \text { gradf }= & 2\left(2 \kappa-n^{2}\right) g(U, \Psi T) \xi \\
& +\left(n^{2}+2 \kappa n-2 \kappa\right)(\eta(T) \Psi U-\eta(U) \Psi T) \tag{7.8}\\
& -\left(n^{2}-2 \mu n+2 \mu\right)(\eta(T) \Psi h U-\eta(U) \Psi h T) \\
& +U(\breve{\lambda}) T-T(\breve{\lambda}) U
\end{align*}
$$

which implies that

$$
\begin{equation*}
g\left(R_{c u r}(U, T) \operatorname{gradf}, \xi\right)=2\left(2 \kappa-n^{2}\right) g(U, \Psi T)+U(\breve{\lambda}) \eta(T)-T(\breve{\lambda}) \eta(U) \tag{7.9}
\end{equation*}
$$

If we put $U=\xi$ in the last equation, we get

$$
\begin{equation*}
g\left(R_{c u r}(\xi, T) \operatorname{grad} f, \xi\right)=\xi(\breve{\lambda}) \eta(T)-T(\breve{\lambda}) \tag{7.10}
\end{equation*}
$$

On the other hand, from (1.1) we have

$$
\begin{equation*}
g\left(R_{c u r}(\xi, T) \operatorname{gradf}, \xi\right)=\kappa g(T, \operatorname{gradf}-\xi(f) \xi)+\mu g(h T, \operatorname{grad} f) \tag{7.11}
\end{equation*}
$$

Using (7.10) and (7.11), it follows that

$$
\begin{equation*}
\kappa(\operatorname{gradf})-\kappa \xi(f) \xi+\mu h(\operatorname{gradf})-\xi(\breve{\lambda}) \xi+\operatorname{grad} \breve{\lambda}=0 \tag{7.12}
\end{equation*}
$$

From (7.8), we get

$$
Q(\text { gradf })=-2 n(\text { gradf }),
$$

which infers

$$
\begin{equation*}
2 n \kappa(g r a d f)+2 n \mu h(\operatorname{gradf})=Q(\operatorname{gradf})+2 n(\kappa \xi(f)+\xi(\breve{\lambda})) \xi \tag{7.13}
\end{equation*}
$$

via (7.12). Then, by using (3.8) and taking inner product of the last equation with ξ, we obtain

$$
\kappa \xi(f)+\xi(\breve{\lambda})=0
$$

If we put this equation in (7.13), we get

$$
\begin{equation*}
2 n \kappa(\operatorname{gradf})+2 n \mu h(\operatorname{gradf})=Q(\operatorname{gradf}) \tag{7.14}
\end{equation*}
$$

Taking $U=\xi$ in (7.5) and using (3.18), we obtain

$$
\nabla_{\xi} g r a d f=\breve{\lambda} \xi
$$

By differentiating (7.14) with respect to ξ and using the last equation we have

$$
\mu(\mu(1-2 n)+2(n-1)) h \Psi \operatorname{gradf}=0
$$

which is equal to

$$
\begin{equation*}
\mu(\mu(1-2 n)+2(n-1)) \Psi \operatorname{grad} f=0 \tag{7.15}
\end{equation*}
$$

via (3.2). Also taking ΨU and ΨT instead of U and T, respectively, in (7.9) we write

$$
\begin{equation*}
g\left(R_{c u r}(\Psi U, \Psi T) \operatorname{gradf}, \xi\right)=\left(4 \kappa-2 n^{2}\right) g(\Psi U, T) \tag{7.16}
\end{equation*}
$$

In a $\operatorname{pcm}(\kappa, \mu)$-manifold it is well known that $R_{\text {cur }}(\Psi U, \Psi T) \xi=0$. Then we obtain

$$
\left(4 \kappa-2 n^{2}\right) g(\Psi U, T)=0
$$

Because of $d \eta$ is being non-zero, one gets

$$
\begin{equation*}
\kappa=\frac{n^{2}}{2} \tag{7.17}
\end{equation*}
$$

Hence, considering (7.15) and (7.17) we assume the following three cases:
Case 1. If $\mu=0$, then we can state that that the manifold is a $N(\kappa)-\mathrm{pcm}$ manifold.
Case 2. If Ψ gradf $=0$ and $\mu \neq 0$, then we write

$$
\Psi^{2} g r a d f=\operatorname{gradf}-\eta(\operatorname{grad} f) \xi=0
$$

that is

$$
\begin{equation*}
\operatorname{gradf}=\xi(f) \xi \tag{7.18}
\end{equation*}
$$

By taking covariant derivative of the above equation along U, we have

$$
\begin{equation*}
\nabla_{U} g r a d f=U(\xi(f)) \xi+\xi(f)(-\Psi U+\Psi h U) \tag{7.19}
\end{equation*}
$$

If we replace U with ΨU and take inner product with ΨT in (7.19), we obtain

$$
\begin{equation*}
g\left(\nabla_{\Psi U} g r a d f, \Psi T\right)=-\xi(f)(g(U, \Psi T)+g(h U, \Psi T)) \tag{7.20}
\end{equation*}
$$

which implies

$$
\begin{equation*}
g\left(\nabla_{\Psi T} g r a d f, \Psi U\right)=-\xi(f)(g(T, \Psi U)+g(h T, \Psi U)) \tag{7.21}
\end{equation*}
$$

We know that $d^{2} f=0$ and so, for any vector fields U and T, we have $U T(f)-T U(f)-$ $[U, T] f=0$. It follows that

$$
U g(g r a d f, T)-T g(g r a d f, U)-g(\operatorname{gradf},[U, T])=0
$$

that is

$$
\nabla_{U}(\operatorname{gradf}, T)-g\left(\operatorname{gradf}, \nabla_{U} T\right)-\nabla_{T}(\operatorname{gradf}, U)-g\left(g r a d f, \nabla_{T} U\right)=0
$$

Since g is a metric connection then we have

$$
\begin{equation*}
g\left(\nabla_{U} g r a d f, T\right)=g\left(U, \nabla_{T} g r a d f\right) \tag{7.22}
\end{equation*}
$$

By taking $U=\Psi U$ and $T=\Psi T$ in (7.22), we write

$$
g\left(\nabla_{\Psi U} g r a d f, \Psi T\right)=g\left(\Psi U, \nabla_{\Psi T} g r a d f\right)
$$

Then, from (7.20), (7.21) and the last equation above, we obtain

$$
\xi(f) g(U, \Psi T)=0
$$

which infer $\xi(f)=0$, since $d \eta \neq 0$. From (7.18) we obtain gradf $=0$, that is, f is a constant. Therefore, from (7.5), we get $\breve{R} i c(U, T)=-\breve{\lambda} g(U, T)$, which implies that the
manifold is an Einstein manifold with respect to the the S -vK connection. Furthermore, by using (3.17), we have

$$
\begin{equation*}
\operatorname{Ric}(U, T)=-\breve{\lambda} g(U, T)+2 n \kappa \eta(U) \eta(T)+\mu g(h U, T) . \tag{7.23}
\end{equation*}
$$

By using (3.7) in (7.23), we have

$$
\operatorname{Ric}(U, T)=a g(U, T)+b \eta(U) \eta(T)
$$

where $a=-\frac{\check{\lambda}(2(n-1)+\mu)+\mu(2(1-n)+n \mu)}{2(n-1)}$ and $b=\frac{2 n \kappa(2(n-1)+\mu)-\mu(2(n-1)+n(2 \kappa-n))}{2(n-1)}$, which implies that the manifold is an η-Einstein manifold wrt the LC connection.

Case 3. If $\mu(1-2 n)+2(n-1)=0$, then we obtain

$$
\begin{equation*}
\mu=\frac{2(n-1)}{2 n-1} . \tag{7.24}
\end{equation*}
$$

Using (7.14) and (3.7), we get

$$
\begin{equation*}
(2(1-n)+n \mu-2 n \kappa))(\operatorname{gradf}-\xi(f) \xi)+(2(n-1)+\mu-2 n \mu) h g r a d f=0 . \tag{7.25}
\end{equation*}
$$

Using (7.24) and (7.17) in (7.25), we conclude that gradf $=\xi(f) \xi$. So, we get the similar results given in Case 1.

Hence we give the following:
Theorem 7.1. Let (M, g) be a $(2 n+1)$-dimensional $(n>1)$ pcm (κ, μ)-manifold $(~ \kappa \neq$ -1) bearing an almost gradient Ricci soliton wrt the S-vK connection. Then either the manifold is a $N(\kappa)$-pcm manifold, or it is an Einstein manifold wrt the S-vK connection (equivalently, it is an η-Einstein manifold wrt the LC connection).

8. Almost Yamabe solitons on pcm (κ, μ)-manifolds with respect to the Schouten-van Kampen connection

In this section we study almost Yamabe solitons on a pcm (κ, μ)-manifold $(\kappa \neq-1)$ wrt the S-vK connection. Assume that $(M, V, \breve{\delta}, g)$ is an almost Yamabe soliton on a pcm (κ, μ)-manifold wrt the S-vK connection. Then we write

$$
\begin{equation*}
\frac{1}{2}\left(\mathcal{L}_{V} g\right)(U, T)=(\breve{r}-\breve{\delta}) g(U, T) . \tag{8.1}
\end{equation*}
$$

From (3.19), we write

$$
\begin{equation*}
\frac{1}{2}\left(\mathcal{L}_{V} g\right)(U, T)=(r-2 n \kappa-\breve{\delta}) g(U, T) \tag{8.2}
\end{equation*}
$$

Hence, we state the following:
Theorem 8.1. An almost Yamabe soliton (M, V, δ, g) on a $(2 n+1)$-dimensional pcm (κ, μ)-manifold with $\kappa \neq-1$ is invariant under the S-vK connection if and only if the manifold is a para-Sasakian manifold.

For $V=\xi$ in (8.2), we get

$$
\begin{equation*}
g(U, \Psi h T)=(r-2 n \kappa-\breve{\delta}) g(U, T) . \tag{8.3}
\end{equation*}
$$

So we give the followings:
Theorem 8.2. Let M be a $(2 n+1)$-dimensional pcm (κ, μ)-manifold $(\kappa \neq-1)$ bearing a Yamabe soliton $(\xi, \breve{\delta}, g)$ wrt the S-vK connection. Then, M is of constant scalar curvature $2 n \kappa+\breve{\delta}$ wrt the LC connection.
Corollary 8.3. An almost Yamabe soliton $(\xi, \breve{\delta}, g)$ on a $(2 n+1)$-dimensional pcm (κ, μ) manifold $(\kappa \neq-1)$ wrt the S-vK connection is steady if $r=2 n \kappa$.
We conclude with an example of $\mathrm{pcm}(\kappa, \mu)$-manifold wrt the S -vK connection such that $\kappa<-1$.

Example 8.4. Let g be the Lie algebra endowed with a basis $\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}\right\}$ and non-zero Lie brackets

$$
\begin{array}{llrl}
{\left[E_{1}, E_{5}\right]} & =\alpha \beta E_{1}+\alpha \beta E_{2}, & & {\left[E_{2}, E_{5}\right]=\alpha \beta E_{1}+\alpha \beta E_{2},} \\
{\left[E_{3}, E_{5}\right]} & =-\alpha \beta E_{3}+\alpha \beta E_{4}, & & {\left[E_{4}, E_{5}\right]=\alpha \beta E_{3}-\alpha \beta E_{4},} \\
{\left[E_{1}, E_{2}\right]} & =\alpha E_{1}+\alpha E_{2}, & & {\left[E_{1}, E_{3}\right]=\beta E_{2}+\alpha E_{4}-2 E_{5},} \tag{8.4}\\
{\left[E_{1}, E_{4}\right]} & =\beta E_{2}+\alpha E_{3}, & & {\left[E_{2}, E_{3}\right]=\beta E_{1}-\alpha E_{4},} \\
{\left[E_{2}, E_{4}\right]} & =\beta E_{1}-\alpha E_{3}+2 E_{5}, & & {\left[E_{3}, E_{4}\right]=-\beta E_{3}+\beta E_{4},}
\end{array}
$$

where α, β are non-zero real numbers such that $\alpha \beta>0$. Let G be a Lie group whose Lie algebra is g. Define on G a left invariant pcm structure (Ψ, ξ, η, g) by imposing that, at the identity, $g\left(E_{1}, E_{1}\right)=g\left(E_{4}, E_{4}\right)=-g\left(E_{2}, E_{2}\right)=-g\left(E_{3}, E_{3}\right)=g\left(E_{5}, E_{5}\right)=1, g\left(E_{i}, E_{j}\right)=$ 0 , for any $i \neq j$, and $\Psi E_{1}=E_{3}, \Psi E_{2}=E_{4}, \Psi E_{3}=E_{1}, \Psi E_{4}=E_{2}, \Psi E_{5}=0, \xi=E_{5}$ and $\eta=g\left(\cdot, E_{5}\right)$. A very long but straightforward computation shows that

$$
\begin{align*}
\nabla_{E_{1}} \xi & =\alpha \beta E_{1}-\Psi E_{1}, & \nabla_{E_{2}} \xi=\alpha \beta E_{2}-\Psi E_{2} \\
\nabla_{\Psi E_{1}} \xi & =-E_{1}-\alpha \beta \Psi E_{1}, & \nabla_{\Psi E_{2}} \xi=-E_{2}-\alpha \beta \Psi E_{2} \\
\nabla_{\xi} E_{1} & =-\alpha \beta E_{2}-\Psi E_{1}, & \nabla_{\xi} E_{2}=-\alpha \beta E_{1}-\Psi E_{2} \\
\nabla_{\xi} \Psi E_{1} & =-E_{1}-\alpha \beta \Psi E_{2}, & \nabla_{\xi} \Psi E_{2}=-E_{2}-\alpha \beta \Psi E_{1} \\
\nabla_{E_{1}} E_{1} & =\alpha E_{2}-\alpha \beta E_{5}, & \nabla_{E_{1}} E_{2}=\alpha E_{1}, \\
\nabla_{E_{1} \Psi E_{1}} & =\alpha \Psi E_{2}-E_{5}, & \nabla_{E_{1}} \Psi E_{2}=\alpha \Psi E_{1}, \\
\nabla_{E_{2}} E_{1} & =\alpha E_{2}, & \nabla_{E_{2}} E_{2}=-\alpha E_{1}+\alpha \beta E_{5} \\
\nabla_{E_{2} \Psi E_{1}} & =-\alpha \Psi E_{2}, & \nabla_{E_{2}} \Psi E_{2}=-\alpha \Psi E_{1}+E_{5} \\
\nabla_{\Psi E_{1}} E_{1} & =-\beta E_{2}+E_{5}, & \nabla_{\Psi E_{1}} E_{2}=-\beta E_{1} \\
\nabla_{\Psi E_{1} \Psi E_{1}} & =-\beta \Psi E_{2}-\alpha \beta E_{5}, & \nabla_{\Psi E_{1} \Psi E_{2}=-\beta \Psi E_{1}} \\
\nabla_{\Psi E_{2}} E_{1} & =-\beta E_{2}, & \nabla_{\Psi E_{2}} E_{2}=-\beta E_{1}-E_{5}, \\
\nabla_{\Psi E_{2}} \Psi E_{1} & =-\beta \Psi E_{2}, & \nabla_{\Psi E_{2}} \Psi E_{2}=-\beta \Psi E_{1}+\alpha \beta E_{5}, \tag{8.5}
\end{align*}
$$

where $\lambda=\alpha \beta$ and $\mu=2$. Then one can prove that the curvature tensor field of the LC connection of (G, g) satisfies that (κ, μ)-nullity condition (1.1), with $\kappa=-1-(\alpha \beta)^{2}$ and $\mu=2$, which implies that (G, Ψ, ξ, η, g) is a 5 -dimensional pcm (κ, μ)-manifold [6]. Now we shall construct the S -vK connection on (G, Ψ, ξ, η, g). Using (8.5), we get

$$
\begin{array}{lll}
\breve{\nabla}_{E_{1}} E_{1}=\alpha E_{2}, & \breve{\nabla}_{E_{1}} E_{2}=\alpha E_{1}, & \breve{\nabla}_{E_{1}} E_{3}=\alpha E_{4}, \\
\breve{\nabla}_{E_{1}} E_{4}=\alpha E_{3}, & \breve{\nabla}_{E_{2}} E_{1}=-\alpha E_{2}, & \breve{\nabla}_{E_{2}} E_{2}=-\alpha E_{1}, \\
\breve{\nabla}_{E_{2}} E_{3}=-\alpha E_{4}, & \breve{\nabla}_{E_{2}} E_{4}=-\alpha E_{3}, & \breve{\nabla}_{E_{3}} E_{1}=-\beta E_{2}, \\
\breve{\nabla}_{E_{3}} E_{2}=-\beta E_{1}, & \breve{\nabla}_{E_{3}} E_{3}=-\beta E_{4}, & \breve{\nabla}_{E_{3}} E_{4}=-\beta E_{3}, \tag{8.6}\\
\breve{\nabla}_{E_{4}} E_{1}=-\beta E_{2}, & \breve{\nabla}_{E_{4}} E_{2}=-\beta E_{1}, & \breve{\nabla}_{E_{4}} E_{3}=-\beta E_{4}, \\
\breve{\nabla}_{E_{4}} E_{4}=-\beta E_{3}, & \breve{\nabla}_{E_{5}} E_{1}=-\alpha \beta E_{2}-E_{3}, \\
\breve{\nabla}_{E_{5}} E_{2}=-\alpha \beta E_{1}-E_{4}, \quad \quad \breve{\nabla}_{E_{5}} E_{3}=-E_{1}-\alpha \beta E_{4}, \quad \breve{\nabla}_{E_{5}} E_{4}=-E_{2}-\alpha \beta E_{3} .
\end{array}
$$

Now using (8.6), we can calculate the non-zero components of its curvature tensor wrt the S -vK connection as follows:

$$
\begin{array}{ll}
\breve{R}_{\text {cur }}\left(E_{1}, E_{3}\right) E_{1}=-2 E_{3}, & \\
\breve{R}_{c u r}\left(E_{1}, E_{3}\right) E_{2}=-2 E_{4}, \\
\breve{R}_{\text {cur }}\left(E_{1}, E_{3}\right) E_{3}=-2 E_{1}, & \\
\breve{R}_{\text {cur }}\left(E_{1}, E_{3}\right) E_{4}=-2 E_{2}, \tag{8.7}\\
\breve{R}_{\text {cur }}\left(E_{1}, E_{4}\right) E_{1}=2 \alpha \beta E_{2}, & \\
\breve{R}_{\text {cur }}\left(E_{1}, E_{4}\right) E_{2}=2 \alpha \beta E_{1}, \\
\breve{R}_{\text {cur }}\left(E_{1}, E_{4}\right) E_{3}=2 \alpha \beta E_{4}, & \\
\breve{R}_{\text {cur }}\left(E_{1}, E_{4}\right) E_{4}=2 \alpha \beta E_{3}, \\
\breve{R}_{\text {cur }}\left(E_{2}, E_{3}\right) E_{1}=-2 \alpha \beta E_{2}, & \breve{R}_{\text {cur }}\left(E_{2}, E_{3}\right) E_{2}=-2 \alpha \beta E_{1}, \\
\breve{R}_{\text {cur }}\left(E_{2}, E_{3}\right) E_{3}=-2 \alpha \beta E_{4}, & \\
\breve{R}_{\text {cur }}\left(E_{2}, E_{3}\right) E_{4}-2 \alpha \beta E_{3}, \\
\breve{R}_{\text {cur }}\left(E_{2}, E_{4}\right) E_{1}=2 E_{3}, & \\
\breve{R}_{\text {cur }}\left(E_{2}, E_{4}\right) E_{2}=E_{4}, \\
\breve{R}_{\text {cur }}\left(E_{2}, E_{4}\right) E_{3}=2 E_{1}, & \\
\breve{R}_{\text {cur }}\left(E_{2}, E_{4}\right) E_{4}=2 E_{2},
\end{array}
$$

which imply that the non-zero components of its Ricci tensor wrt the S -vK connection as follows:

$$
\begin{equation*}
\breve{R} i c\left(E_{1}, E_{1}\right)=\breve{R} i c\left(E_{4}, E_{4}\right)=2, \quad \breve{R} i c\left(E_{2}, E_{2}\right)=\breve{R} i c\left(E_{3}, E_{3}\right)=-2 . \tag{8.8}
\end{equation*}
$$

From (8.8), (6.2) and (6.9), one can see that there does not exist an almost Ricci soliton on such a 5 -dimensional $\mathrm{pcm}(\kappa, \mu)$-manifold with $\kappa<-1$.

Furthermore, for $U=u_{1} E_{1}+u_{2} E_{2}+u_{3} E_{3}+u_{4} E_{4}+u_{5} E_{5}, T=t_{1} E_{1}+t_{2} E_{2}+t_{3} E_{3}+$ $t_{4} E_{4}+t_{5} E_{5} \in \chi(G)$, we have

$$
g(U, \Psi h T)=\alpha \beta\left(u_{1} t_{1}-u_{2} t_{2}+u_{3} t_{3}-u_{4} t_{4}\right) .
$$

By using the last equation in (8.3), we say that the 5 -dimensional $\mathrm{pcm}(\kappa, \mu)$-manifold \breve{G} admits a Yamabe soliton $(\xi, 8-\alpha \beta, g)$ wrt the S-vK connection. Such a Yamabe soliton is expanding if $\alpha \beta>8$, steady if $\alpha \beta=8$ and shrinking if $\alpha \beta<8$.

References

[1] E. Barbosa and E. Riberio, On conformal solutions of the Yamabe flow, Arch. Math. 101, 79-89, 2013.
[2] A. Bejancu and H. Faran, Foliations and geometric structures, Math. and Its Appl. 580, Springer, Dordrecht, 2006.
[3] A.M. Blaga and S. Yüksel Perktaş, Remarks on almost η-Ricci solitons in (ε)-para Sasakian manifolds, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2), 16211628, 2019.
[4] A.M. Blaga, S. Yüksel Perktaş, B. Acet and F.E. Erdoğan, η-Ricci solitons in (ε)almost paracontact metric manifolds, Glasnik Matematiki 53 (1), 205-220, 2019.
[5] H.D. Cao, X. Sun and Y. Zhang, On the structure of gradient Yamabe solitons, Math. Res. Lett. 19, 767-774, 2012.
[6] B. Cappelletti-Montano, I. Küpeli Erken and C. Murathan, Nullity conditions in paracontact geometry, Diff. Geom. Appl. 30, 665-693, 2012.
[7] B.Y. Chen and S. Deshmukh, Yamabe and quasi Yamabe solitons on Euclidean submanifolds, Mediterr. J. Math. 15 (5), 194, 1-9, 2018.
[8] J.T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2), 205-212, 2009.
[9] B. Chow and D. Knopf, The Ricci flow: An introduction, Mathematical Surveys and Monographs 110, American Math. Soc., 2004.
[10] A. Derdzinski, Compact Ricci solitons, preprint.
[11] S. Deshmukh and B.Y. Chen, A note on Yamabe solitons, Balkan J. Geom. Appl. 23 (1), 37-43, 2018.
[12] R.S. Hamilton, The Ricci flow on surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988.
[13] S. Ianuş, Some almost product structures on manifolds with linear connection, Kodai Math. Sem. Rep. 23, 305-310, 1971.
[14] T. Ivey, Ricci solitons on compact 3-manifolds, Diff. Geo. Appl. 3, 301-307, 1993.
[15] S. Kaneyuki and F.L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99, 173-187, 1985.
[16] K. Mandal and U.C. De, Paracontact metric (k, μ)-spaces satisfying certain curvature conditions, Kyungpook Math. J. 59 (1), 163-174, 2019.
[17] V.A. Mirzoyan, Structure theorems on Riemannian Ricci semisymmetric spaces, Izv. Uchebn. Zaved. Mat. 6, 80-89, 1992.
[18] B.L. Neto, A note on (anti-)self dual quasi Yamabe gradient solitons, Results Math. 71, 527-533, 2017.
[19] Z. Olszak, The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure, Publ. De L’inst. Math. 94, 31-42, 2013.
[20] G. Perelman, The entopy formula for the Ricci flow and its geometric applications, preprint, http://arxiv.org/abs/math.DG/02111159.
[21] J. Schouten and E. van Kampen, Zur Einbettungs-und Krümmungsthorie nichtholonomer Gebilde, Math. Ann. 103, 752-783, 1930.
[22] R. Sharma, Certain results on K-contact and (k, μ)-contact manifolds, J. Geom. 89, 138-147, 2008.
[23] A.F. Solov'ev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb. 19, 12-23, 1978 (in Russian).
[24] A.F. Solov'ev, The bending of hyperdistributions, Geom. Sb. 20, 101-112, 1979 (in Russian).
[25] A.F. Solov'ev, Second fundamental form of a distribution, Mat. Zametki 35, 139-146, 1982.
[26] A.F. Solov'ev, Curvature of a distribution, Mat. Zametki 35, 111-124, 1984.
[27] Z. Szabo, Structure theorems on Riemannian spaces satisfying $R(X, Y) . R=0$, The local version, J. Differ. Geom. 17, 531-582, 1982.
[28] Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin 23, 345355, 2016.
[29] Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca 67, 979984, 2017.
[30] Y. Wang, Almost Kenmotsu $(k, \mu)^{\prime}$-manifolds with Yamabe solitons, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 115, 14-21, 2021.
[31] Y. Wang and W. Wang, Some results on (k,)-almost Kenmotsu manifolds, Quaest. Math. 41, 469481, 2018.
[32] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom. 36, 37-60, 2009.
[33] S. Zamkovoy and V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire Univ. Sofia Fac. Math. Inform. 100, 27-34, 2011.

[^0]: *Corresponding Author.
 Email addresses: sperktas@adiyaman.edu.tr (S. Y. Perktaş), uc_de@yahoo.com (U. C. De), a.yildiz@inonu.edu.tr (A. Yildiz)

 Received: 24.05.2021; Accepted: 16.09.2021

