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Abstract

In the present paper we study certain symmetry conditions and some types of solitons on
paracontact metric (k, u)-manifolds with respect to the Schouten-van Kampen connection.
We prove that a Ricci semisymmetric paracontact metric (k, p)-manifold with respect to
the Schouten-van Kampen connection is an n-Einstein manifold. We investigate para-
contact metric (k, u)-manifolds satisfying C} - Rewr = 0 with respect to the Schouten-van
Kampen connection. Also, we show that there does not exist an almost Ricci soliton in a
(2n + 1)-dimensional paracontact metric (k, u)-manifold with respect to the Schouten-van
Kampen connection such that £ > —1 or k£ < —1. In case of the metric is being an al-
most gradient Ricci soliton with respect to the Schouten-van Kampen connection, then we
state that the manifold is either N (k)-paracontact metric manifold or an Einstein mani-
fold. Finally, we present some results related to almost Yamabe solitons in a paracontact
metric (k, p)-manifold equipped with the Schouten-van Kampen connection and construct
an example which verifies some of our results.
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1. Introduction

Kaneyuki [15] introduced the concept of paracontact metric (for short, pcm) structures
in 1985. Recently, pcm manifolds have been studied by many authors, especially after the
paper of Zamkovoy [32]. An important class among pcm manifolds is called the (k, u)-
manifold, which satisfies the nullity condition [6] given by

Rewr (U, W)E = 6(n(W)U —n(U)W) + p(n(W)hU —n(U)RW), (1.1)
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for all U, W vector fields on M, where s and p are constants and h = %L ¢V. This class also
includes the para-Sasakian manifolds [15,32], the pcm manifolds satisfying R, (U, W)& =
0, for all U, W [33].

Symmetry property is one of the essential tools for investigating the geometry of mani-
folds. Symmetric Riemannian manifolds, that is Riemannian manifolds admitting V R¢y, =
0, where Ry, is the curvature tensor and V is the Levi-Civita (for short, LC) connection,
were introduced locally by Shirokov. In 1927, Cartan presented a comprehensive theory
of symmetric Riemannian manifolds. If the curvature tensor R, of a manifold satisfies
Reyr (U, W) - Reyr = 0, then it is called a semisymmetric manifold. Here, Ry, (U, W) is
viewed as a derivation of the tensor algebra at each point of the manifold for the tangent
vectors U, W. A local classification of semisymmetric manifolds were made by Szabé [27].
In addition, a manifold satisfying Ry, (U, W) - Ric = 0, where Ric denotes the Ricci ten-
sor of type (0,2), is called Ricci semisymmetric. Mirzoyan gave a general classification of
manifolds of this type in [17]. For certain curvature conditions on pcm (k, p1)-spaces we
refer [16].

A pem (K, p)-manifold admitting a Ricci tensor satisfying Ric = A1g (resp., Ric =
A1g+Aan®@n) is called Einstein (resp., n- Einstein) manifold, where A1 and A9 are constants.

Riemannian manifolds with hyperdistributions and the Schouten van-Kampen (for short,
S-vK) connection which is one of the most suitable connection adaptable to the hyperdis-
tributions, were studied by Solov’ev [23-26]. Also see [2,13,21]. Almost pcm manifolds
with the S-vK connection and curvature identities of such manifolds were investigated by
Olszak [19]

As a generalization of Einstein manifold, an almost Ricci soliton (M, g, \) was defined
as a Riemannian manifold endowed with a complete vector field V satisfying

Lyg+2Ric+2\g =0, (1.2)

where £ denotes the Lie derivative, Ric is the Ricci tensor on M and A is a differentiable
function [12]. If X is negative, zero and positive, then the almost Ricci soliton is called
shrinking, steady and expanding, respectively. The concept of the n-Ricci soliton was
introduced in [8].

An almost n-Ricci soliton is a Riemannian manifold (M, g, A, 1) admitting a differen-
tiable vector field V' such that the Ricci tensor Ric of M satisfies

Lyg+2Ric+ 2 \g+2n®@n =0, (1.3)

where A and p are some differentiable functions. In case of the vector field V' is being the
gradient of a potential function —f , the equation (1.2) reduces to

VV f = Ric+ Ag, (1.4)

and an almost Ricci soliton is said to be an almost gradient Ricci soliton.

It was proved in [12,14] that, for 2-dimensional and 3-dimensional cases, a Ricci soliton
on a compact manifold is of constant curvature (see also [9] and [10]). For further read
we refer [3,4,20,22].

For solving the Yamabe problem, the Yamabe flows were firstly introduced in [12]. Yam-
abe solitons are self-similar solutions for Yamabe flows and they seem to be as singularity
models. More clearly, the Yamabe soliton comes from the blow-up procedure along the
Yamabe flow, so such solitons have been studied intensively. For further read, we refer
[1,5,7,11,18,28-31]. As a generalization of Yamabe solitons, an almost Yamabe soliton is
a Riemannian manifold (M, g) endowed with a vector field V satisfying [1]

Lyg—2(r—46)g=0, (1.5)

where r is the scalar curvature of M and ¢ is a differentiable function. An almost Yamabe
soliton is called expanding, steady or shrinking, if § < 0, § = 0 or § > 0, respectively. In
case of J is being a constant, then an almost Yamabe soliton induces to a Yamabe soliton.
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Moreover, if the Yamabe soliton is of constant scalar curvature Sc, then the Riemannian
metric ¢ is said to be a Yamabe metric.

In the present paper, we study certain semisymmetry conditions and some types of
solitons in pcm (&, u)-manifolds. Following the introduction, Section 2 is devoted to some
basic concepts that will be need throughout the paper. In Section 3, some properties of
pem (k, p)-manifolds endowed with the S-vK connection are presented. In section 4, we
prove that Ricci semisymmetric pcm (&, p)-manifold with respect to (for short, wrt) the
S-vK connection is an 7-Einstein manifold. In section 5, we study pcm (k, u)-manifolds
satisfying Q - Rewr = 0 wrt the S-vK connection. In section 6, we investigate almost Ricci
soliton and almost n-Ricci soliton types on pem (., p1)-manifolds wrt the S-vK connection.
We show that there does not exist an almost Ricci soliton in a pcm (s, u)-manifold wrt
the S-vK connection with k > —1 or k < —1. Section 7 is devoted to pcm (&, u)-manifolds
(k # —1) admitting almost gradient Ricci soliton. In Section 8, we obtain some results
related to almost Yamabe solitons in a pem (k, p)-manifold and construct an example
which verifies some of our results.

2. Preliminaries

Let M be (2n+ 1)-dimensional differentiable manifold endowed with a tensor field ¥ of
type (1,1), a vector field £ and a 1-form 7 such that

7](5):1) \112:-[_7]@57

and ¥ induces an almost paracomplex structure on each fibre of ker(n). From the last
equation, we get ¥¢ = 0, n o ¥ = 0 and note that the rank of endomorphism W is 2n. If
an almost paracontact manifold M admits a pseudo-Riemannian metric g such that

g(WU, W) = —g(U, W) + n(U)n(W), (2.1)

for all U,W € I'(T'M), then the manifold is said to be an almost pcm manifold. The signa-
ture of the pseudo-Riemannian metric ¢ is (n + 1,n) and an orthogonal basis {U;, W}, ¢},
namely a W-basis, satisfying g(U;, U;) = 0i5, g(Wi, W;) = —6s5, g(U;, W;) =0, g(§,U;) =
g(&,W;) = 0, and W; = WU;, for any 4,5 € {1,...,n} can always be constructed for an
almost pcm manifold.

The fundamental form of the almost pcm manifold is given by (U, W) = g(U, YW).
An almost pcm manifold with dn = 0 is called a pcm manifold. In a pcm manifold, by
help of Lie derivative L¢ of the fundamental form, a trace-free symmetric operator h can
be defined by h = %Lglll. This operator [32] anti-commutes with ¥ and satisfies h{ = 0,
trh = trh¥ = 0 and

Vyé = —WU + WhU, (2.2)

(VoW = g(U, W) — g(hU, ¥W), (2.3)

where V is the LC connection of the manifold. In addition, h = 0 if and only if £ is Killing
vector field, which implies that (M, ¥, £, n,g) is said to be a K-paracontact manifold. A
normal pcm manifold is said to be a para-Sasakian manifold. Each para-Sasakian manifold
is a K-paracontact manifold and but the converse holds only in 3-dimensional case. We
also recall that any para-Sasakian manifold satisfies

RC’LLT(U7 W)f - U(U)W - W(W)U7
where Ry, is Riemannian curvature operator given by

Rewr(U,W)Z = VN Z — VwVuZ — Vigw 2-
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3. Pcm (k, p)-manifolds with respect to the Schouten-van Kampen con-
nection

A distribution defined by

. _ [ Z2e€T,M | Rew(UW)Z = k(g(W, Z)U — g(U, Z)W) }
N> Nyl = | ulo(W, Z)hU — g(U, Z)hV) |
(3.1)
is called the (k, p)-nullity distribution of a pcm manifold (M, ¥, &, n, g) for the pair (k, i),
where k and p are some real constants. In case of the characteristic vector field £ belonging
to the (k, u)-nullity distribution, from (3.1) we write

Reur (U, W)E = 6(n(W)U —n(U)W) + u(n(W)hU —n(U)hW),

for all U, W € I'(T'M). We refer [6] for basic results of pcm manifolds with the characteris-
tic vector field satisfying the nullity condition (the condition (3.1)), for some real numbers
x and p.

Lemma 3.1 ([6]). In a (2n + 1)-dimensional pcm (k, p)-manifold (M, ¥, &, n, g), the fol-
lowings hold:

h? = (k + 1), (3.2)
(Vo)W = —g(U,W)¢ + g(hUW)E+n(W)U —n(W)hU, — for k # —1,  (3.3)
(Vuh)W = —{(1 + r)g(U, ¥W) + g(U, WhW)} &

n(WYh(AU — U) — (U ) UAW, forr -1, (3.4)
(VoUW = g(h2U — hU, W)E + (W) (h2U — hU)
v g (U)W, " for K > —1, (3.5)
(VoUW = (1+ #)g(U, W) — g(hU, W)&
v (W) (R2U — gU) B ,tm(U)ghW, for k < —1, (3.6)
QW = 2(1 —n)+nu)W + (2(n — 1) + p)hW
(2(n — 1)+ n(2k — ) (W, for w7 1, (3.7)
Q& = 2nké, (3.8)
(Vo)W — (Vwh)U = —(1+ k)(2g(U, $W)§ + n(U)¥W —n(W)WU)
+(1 = @) (n(U)¥RW — n(W)TRU), (3.9)

(VoW — (Vw¥h)U =(1 4 &) (n(W)U = n(U)W)
+ (p =D ((W)AU — n(U)hW), (3.10)

for any vector fields U, W on M.

Some important subclasses of pcm (k, 1)-manifolds are given, regarding (1.1), by para-
Sasakian manifolds, and pcm manifolds satisfying Ry, (U, W)§ = 0. In [33], the authors
showed that the pcm manifold (M2 W, ¢, 7, g) with n > 1 satisfying the last condition is
locally isometric to a product of a flat (n + 1)-dimensional manifold and an n-dimensional
manifold of negative constant curvature —4. From (3.2), note that h?> = 0 on a pcm
(k, p)-manifold with kK = —1.

On the other hand we have two naturally defined distributions in the tangent bundle
TM of M as follows:

DH = kern, DV = span{¢}.
Then we have TM = D" ¢ DV, D¥ n DY = {0} and D¥ L DV. This decomposition
allows one to define the S-vK connection V over an almost paracontact metric structure.
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The S-vK connection V on an almost (para) contact metric manifold with respect to
LC-connection V is defined by [23]

VW = VuW — n(W)Vu& + (Vun)(W)E. (3.11)

Thus with the help of the S-vK connection given by (3.11), many properties of some
geometric objects connected with the distributions D and DV can be characterized [23—
25]. For example g, £ and 7 are parallel with respect to V that is, 65 = 0,?9 = O,vn =0.
Also the torsion Tor of V is defined by

Tor(U,W) =nU)Vw§ —n(W)Vy + 2dn(U, W)E. (3.12)
Now we consider a pcm (k, p)-manifold wrt the S-vK connection. Firstly, using (2.2) and
(2.3) in (3.11), we get
VW = VW + n(W)QU — n(W)UhU + g(U, W) — g(hU, UW)E. (3.13)
Let Reu be the curvature tensors of the S-vK connection V given by }?CW(M W) =
[Vu, V] = Vigw)- Using (3.13) in the definition of Rey,(U, W), we have
Rew(U.W)Z = Su(VwZ +n(Z2)UW — n(Z)UhW
+g(W, ¥ Z)§ — g(hW, ¥ Z)§)
—VW(VUZ +n(Z2)VU —n(Z)VhU
+9(U,¥Z)¢ — g(hU, ¥ Z)E)
~(Viow)Z +n(2)V[U, W] —n(Z)¥h[U, W]
+g([Ua W]a \IJZ)g - g(h[Ua W]7 \I’Z)f)

Using (3.9), (3.10) and (3.3) in (3.14), we have the relation between R, and Reyr o0 M

(3.14)

Rew(U,W)Z = Rewr(U,W)Z + g(U, ¥ Z)UW — g(W, U Z2)QU + g(hW, VZ)UU
—g(hU, U Z)UW + g(W, U Z)UhU — g(U, VZ)UhW
+g(hU, O Z)UhW — g(hW, U Z)UhU

+/~”v{g(U Z)n(W)E — g(W, Z)n(U)¢ (3.15)
+n(U)n(Z2)W —n(W)n(Z)U}

+M{9(hU Z2)nW)E — g(hW, Z)n(U)§
+n(U)n(Z2)hW —n(W)n(Z)hU}

Now from (3.15), we get

g(écw(Uv W)Z7 T) = g(Rcur(U7 W)Za T) + g(U, \I/Z)g(\I/VV, T) - g(VV, ‘I/Z)g(\I/U, T)
+g(hW, ¥ Z)g(VU, T) — g(hU, ¥ Z)g(IW, T)
+g(W, U 2)g(¥hU, T) — (U, ¥ Z)g(¥hW, T)
+g(hU, ¥ Z)g(VhW,T) — g(hW, ¥ Z)g(VhU, T) (3.16)
+r{g(U, Z)n(W)n(T) — g(W, Z)n(U)n(T)
+g(W, T)n(U)n(Z) — g(U, T)n(W)n(2)}
+u{g(hU, Z)n(W)n(T) — g(hW, Z)n(U)n(T)

+g(hW, T)n(U)n(Z) — g(hU, T)n(W)n(Z)}.

If wetake U =T =¢;, {i =1,...,2n+ 1}, in (3.16), where {ei} is an orthonormal basis of
X(M), we get

Ric(W, Z) = Ric(W, Z) — 2nkn(W)n(Z) — ug(hW, Z), (3.17)
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where Ric and Ric denote the Ricci tensor of the connections V and V, respectively. As

%

a consequence of (3.17), we get for the Ricci operator @

QW = QW — 2nkn(W)E — uhW. (3.18)
Also if we take W = Z =¢;, {i =1,...,2n + 1}, in (3.18), we get
¥ =1 —2nkK, (3.19)

where # and r denote the scalar curvatures of the connections V and V, respectively.

4. Ricci semisymmetric pcm (k, 1) -manifolds with respect to the Schouten-
van Kampen connection

In this section we study Ricci semisymmetric pcm (k, 1)-manifolds wrt the S-vK con-
nection. Firstly we give the following:

Definition 4.1. A semi-Riemannian manifold (M?"*! g),n > 1, is said to be Ricci
semisymmetric if we have

Rewr (U, W) - Ric =0,
holds on M for all U, W € x(M).

Let M be a Ricci semisymmetric pcm (k, p)-manifold with (k # —1) wrt the S-vK
connection. Then above equation is equivalent to

(Rewr (U, W) - Ric)(Z,T) = 0,
for any U, W, Z,T € x(M). Thus we have
Ric(Rewr (U, W)Z,T) + Ric(Z, Rewr (U, W)T) = 0, (4.1)
Using (3.15) in (4.1), we get

. ( vzc(W, T)
HgW,T) —n(W)n(T)} Ric(U, Z)
—{9(U,T) = n(U)n(T)} Ric(W, Z)

{g(W, Z) = n(W)n(Z)} Ric(hU,T)

| ~1U2) = n(U)n(2) } Ric(hW, T)

HgW,T) = n(W)n(T)} Ric(hU, Z)

(
—{g(U,T) = n(U)n(T)} Ric(hW, Z)
+9(U, 9 Z)Ric(IW,T) — g(W, W Z)Ric(PU, T)
+9(hW, W Z)Ric(WU,T) — g(hU, WZ)Ric(YW, T)
+9(W, W Z)Ric(YhU,T) — g(U, W Z)Ric(ThW, T)
+g(hU, ¥ Z)Ric(WhW, T) — g(hW, O Z) Ric(VhU, T) (4.2)
g(U, OT)Ric(IW, Z) — g(W, UT)Ric(VU, Z)
+9(hW, OT)Ric(VU, Z) — g(hU, OT)Ric(IW, Z)
+g(W, YT Ric(VhU, Z) — g(U, OT) Ric(YhW, Z)
+g(hU, YT\ Ric(VhW, Z) — g(hW, OT) Ric(¥hU, Z) = 0.

Putting U =T =¢;, {i =1,...,2n + 1}, in (4.2), we obtain

kit {g(W, Z) = n(W)n(Z2)} — 2nkRic(W, Z) — 2nuRic(hW, Z) = 0. (4.3)
Now putting W = hW in (4.3), we have

Kitg(WW, Z) — 2nkRic(hW, Z) — 2n(k + 1) uRic(W, Z) = 0. (4.4)

+
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Assume that k # —1 and p # 0. Multiplying with (4.3) by x and (4.4) by u, then subtract
the results, we obtain

2n[K” — 1 (5 + | Ric(W, Z) = &*H{g(W, Z) =n(W)n(2)} — kpitg(hW, Z).  (4.5)
Using (3.17) in (4.5), we get
2n[r* — 12 (ks + D){ Ric(W, Z) — 2nkn(W)n(Z) — ug(hW, Z)}
= K HgW, 2) =n(W)n(Z)} + (n — kit = 1)g(hW, Z),

ie.,
K27
Ric(W,Z) = W, Z
ZC( ) ) 2”(/?2—,1L2(I£+1 g( ) )
+(2nk — L wn(2) (4.6)
2n(k? — p2(k +1) M ’
K27
— hWV.Z).
+(u O — 2t 1))g( ,Z)
Again using (3.7) in (4.6), we have
: A1 — C1By By — €10y
)= ——7— )+ ——— 7 4.
Rie(W, 2) = 1= 022 g, 2) + B0y 2), (@.7)
where
k2T k2T
Ay = B = 2nk —
! 2n(k? — p?(k+ 1)’ L= 2n(k? — p?(k+ 1)
K27 1
= - Ay =
= a 2n(k? — p?(k+ 1)’ 2T oan—1)+u
2(1 —n) +np 2(n—1)4+n(2k — p)
By = ——H5F—, Cy =
2(n—1)+p 2(n—1)+p

Therefore, from (4.7) we have the following:

Theorem 4.2. Let M be a (2n + 1)-dimensional pcm (k, p)-manifold with k # —1. If M
is a Ricci semisymmetric pcm (k, p)-manifold wrt the S-vK connection then the manifold
M is an n-FEinstein manifold wrt the LC connection provided p # 2(1 — n).

5. Pcm (k, u)-manifolds satisfying Q ‘R =0 with respect to the Schouten-
van Kampen connection

In this section we study the condition Q - Rewr = 0 on pem (K, p)-manifolds wrt the
S-vK connection. Firstly we give the following:
(QRewr) (U, W) Z = QReur (U, W) Z= R (QU, W) Z = Ry (U, QW) Z = R (U, W)QZ = 0.
Then we write
W(UW)Z,T) = g(Rewr(QU, W) Z,T) (5.1)
+(U.QW)Z,T) = g(Reur (U W)QZ.T) = 0,

9(QRey
(Rew
which infers
9(Reur (U, W) Z,QT) + g(Reur (2, T)W, QU)
~9(Reur(Z,T)U, QW) + g(Rewr (U, W)T,QZ) = 0.
So we can write
Ric(Reyr (U, W) Z,T) + Ric(Rew (Z, T)W,U) (5.2)
—Ric(Reur (Z,T)U, W) + Ric(Reur (U, W)T, Z) = 0.
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Now using (3.14) in (5.2), we compute

{gW,T) = n(W)n(T)}Ric(U, Z)
—{9(U,T) = n(U)n(T)} Ric(W, Z)
+HgW,T) = n(W)n(T)} Ric(U, Z)
—{9(U,T) = n(U)n(T)} Ric(W, Z)

{gW,T) = n(W)n(T)} Ric(hU, Z)
—{9(U,T) = n(U)n(T)} Ric(hW, Z)
+HgW,T) = n(W)n(T)} Ric(hU, Z)
—{9(U,T) = n(U)n(T)} Ric(hW, Z)

+ g(U, Y Z)Ric(YW,T) — g(W, U Z)Ric(VU, T) + g(hW, ¥ Z) Ric(WU, T)

— g(hU, Y Z)Ric(YW,T) + g(W, U Z)Ric(VhU,T) — g(U, U Z)Ric(VhW, T)
+ g(hU, O Z)Ric(VhW, T) — g(hW, W Z)Ric(¥hU, T) + g(U, ¥T)Ric(YW, Z)
— g(W,OT)Ric(WU, Z) + g(hW, UT)Ric(VU, Z) — g(hU, YT\ Ric(VW, Z)

+ g(W, OT)Ric(VhU, Z) — g(U, OT)Ric(VhW, Z) + g(hU, ¥T)Ric(YhW, Z)
—g(
+g(
—g(
—g(
+g(

+

AW, OT)Ric(YhU, Z) + g(¥W, Z) Ric(U, ¥T) — g(YW, T) Ric(U, U Z)
UW, hT)Ric(U, W Z) — g(VW, hZ)Ric(U, ¥T) + g(¥W, T) Ric(¥hZ,U)
Z, 9W)Ric(YhT,U) + g(hZ, W) Ric(YhT,U) — g(hT, YW)Ric(VhZ,U)
WU, Z)Ric(W, OT) 4 g(VU, T)Ric(W, ¥ Z) — g(¥U, hT) Ric(W, U Z)
WU, hZ)Rie(W,OT) — g(VU, T)Ric(W, OhZ) + g(WU, Z) Ric(¥hT, W)
— g(hZ, WU)Ric(YhT, W) + g(hT, $U)Ric(¥hZ, W) = 0. (5.3)
Putting U =T =¢;, {i =1,...,2n+ 1}, in (5.3), we have
k(1 — 2n)Ric(W, Z) + u(1 — 2n)Ric(hW, Z) + (k + 1) Ric(IW, U Z) + Ric(W, Z) = 0,
which entails
(2nk + 1) Ric(W, Z) 4+ u(2n — 1) Ric(hW, Z) — 2(k +1)(2n — 2 + n)g(hW, Z) = 0. (5.4)
Now putting W = hW in (5.4), we have
(2nk + 1) Ric(hW, Z) + u(2n — 1)(k 4+ 1) Ric(W, Z) (5.5)
=2(k+1)(2n = 24 p)(k + 1){g(W, Z) = n(W)n(Z)} = 0.
Multiplying (5.4) by 2nk + 1 and (5.5) by p(2n — 1), we have
(2nk + 1)?Ric(W, Z) + p(2n — 1)(2nk + 1) Ric(hW, Z) (5.6)
—2(k+1)(2nk +1)(2n — 2+ p)g(hW, Z) = 0,
and
u(2n —1)(2nk + V) Ric(hW, Z) + u(2n — 1)(k + 1) Ric(W, Z) (5.7)
—2(k+1)(2n = 2+ p)p(2n — 1)(k + D{g(W, Z) = n(W)n(Z)} =0,
respectively. Subtracting (5.6) from (5.7), we get

Ric(W, 2) = fgmw, 7) - fjng, 7)+ Ajn<vv>n<z>, (5.8)
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where
Al = 22ne+ 1) (k+1)(2n -2+ p),
Ay = 2u(k+1)%(2n—2+p),
yo= (2nr+1)% = (2n —1)%u(k + 1).
Now using (3.7) in (5.8), we obtain
)\1 B V’L'C _ )\1A é )\1(0 — 271/1) o &
(77(3 — 1) Ric(W, Z) (77(3 5 )9(W, Z) + (77(3 s R )n(Wn(Z),

where A = (2(1—n)+np), B=(2(n—1)+pu,C =2(n—1)+n(2k — ). The last equation
can be written

Ric(W, Z) = pg(W, Z) + on(W)n(Z),

where
MA 4 Ay A(C=2nk) Ay
_ (B-p) v __(B-u) Y
M PV T
¥(B—p) v(B—p)

Thus the manifold M is an n-Einstein manifold wrt the S-vK connection. Hence we have
the following;:

Theorem 5.1. Let M be a (2n + 1)-dimensional pcm (k, )-manifold with k # —1 sat-
isfying the condition Q) - Reyr = 0 wrt the S-vK connectwn Then the manifold M is an
n-Einstein manifold wrt the S-vK connection provided v(B m) —1#0.

6. Almost Ricci solitons and almost 7-Ricci solitons on pcm (k, y)-manifolds
with respect to the Schouten-van Kampen connection

In this section we study almost Ricci solitons and almost n-Ricci soliton in pem (&, p)-
manifolds wrt the S-vK connection. 5
In a pem (k, p)-manifold (k # —1) with the S-vK connection, since Vg = 0 by using
(1.2), we get
(Lvg)(U,T) =g(VuV,T) + g(U,VrV) = (Lvg)(U,T), (6.1)

where £ denotes the Lie derivative on manifold wrt the S-vK connection.
Now we consider an almost Ricci soliton on a pcm (k, 1)-manifold wrt the S-vK con-
nection. From (1.2), we can write

(Ly g+ 2Ric + 2\g)(U,T) = 0. (6.2)
Using (6.1) in (6.2), we obtain

=0. (6.3)

{ (Lyg)(U,T) + 2Ric(U,T) + 2Xg(U, T)
—4nkn(U)n(T) — 2pg(hU,T)

Thus we have the followings:

Theorem 6.1. A (2n + 1)-dimensional pcm (k, p)-manifold M bearing an almost Ricci
soliton (V, X, g) wrt the S-vK connection admits an almost n-Ricci soliton (V, A\, —2nk, g)
wrt the LC connection provided the manifold is a N(k)-pcm manifold.

Corollary 6.2. If M is a (2n + 1)-dimensional pcm (k, p)-manifold bearing an almost
Ricci soliton (V, S\,g) wrt the S-vK connection, then M admits an almost Ricci soliton
(V, ;\,g) wrt the LC connection provided the manifold is locally isometric to a product of
a flat (n + 1)-dimensional manifold and an n-dimensional manifold of negative constant
curvature equal to —4.
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Conversely, assume that a pcm (k, p)-manifold admits an almost Ricci soliton (V) A, g)
wrt the LC connection. Then, from (1.2) and (3.17), we have

(Lvg)(U,T) + 2Ric(U,T) + 2\g(U, T)
+aAnkn(U)n(T) + 2ug(hU,T)

Hence we give the followings:

Theorem 6.3. Let M be a (2n + 1)-dimensional pcm (k, pu)-manifold bearing an almost
Ricci soliton (V, A, g) wrt the LC connection. Then M admits an almost n-Ricci soliton
(V, A\, 2nk, g) wrt the S-vK connection provided the manifold is a N(k)-pcm manifold.

Corollary 6.4. A (2n+ 1)-dimensional pcm (K, p)-manifold bearing an almost Ricci soli-
ton (V,\,g) wrt the LC connection admits an almost Ricci soliton (V,\,g) wrt the S-
vK connection provided the manifold is locally isometric to a product of a flat (n + 1)-
dimensional manifold and an n-dimensional manifold of negative constant curvature equal
to —4.

In case of g is being an almost n-Ricci soliton wrt the LC connection, we have the
following;:

Theorem 6.5. A (2n+1)-dimensional pcm (k, pv)-manifold bearing an almost n-Ricci soli-
ton (V, A\, B,g) wrt the LC connection admits an almost n-Ricci soliton (V, X, 2nk + 3, 9)
wrt the S-vK connection provided the manifold is a N(k)-pcm manifold.

Proof. Assume that M is a (2n + 1)-dimensional pcm (&, )-manifold bearing an almost
n-Ricci soliton (V, A, B, g) wrt the LC connection. From (1.2) and (3.17) we write
(Lvg)(U,T) + 2Ric(U,T) + 2Ag(U, T)
+2(2nk + B)n(U)n(T) + 2pg(hU,T) = 0.
This completes the proof. ]

Now we consider the case of the potential vector field being the structure vector field.
Assume that M is a (2n + 1)-dimensional pcm (&, p)-manifold bearing an almost Ricci
soliton (&, A, g) wrt the S-vK connection. Using (2.2), (3.17) and (6.1) in (6.2), we write

9(U, hT) + g(QU,T) + Ag(U,T) — 2nkn(U)n(T) — pg(hU,T) = 0. (6.4)
From (6.4), we get
UhU 4 QU 4+ AU — 2nkn(U)E — phU = 0. (6.5)
By taking covariant derivative of (6.5), we have

(VxWh)U + Th(VxU) + (VxQ) U + QVxU + X (AU + AVxU
—2nk (9(VxU, &€ + g(U, Vx§E+n(U)VxE)
—H (Vxh) U - ,uhVXU =0,
which implies that

v

(Vx¥h) U + (VxQ)U + X(\U
=20 (9(U, VxE)E +n(U)VxE) — n(Vxh) U = 0.
We have the following cases:
Case 1. Assume that x > —1. By using (3.5), (3.3), (3.4) and (2.2) in (6.6), we have

g(h?X — hX,U)¢+n(U) (h2X — hX) — un(X)hU
—2(n— 1)1+ r)g(X,YU)¢ —2(n — 1)g(X, \Ith)gv
+2(n — 1) {n(U) (¥h?*X — VhX) — un(X)VRU} + X (A\)U
+(2(n—1) —=np) {— (9(U, ¥X) — g(U, ¥hX)) £ — n(U) (¥ X + VhX)} =0,
which implies that

(6.6)
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(k+1g(X,U)§ = 2(k + Dn(X)n(U)€ — g(hX,U)§ + (k4 1)n(U) X — n(U)hX
+un(X)hU — (26(n — 1) + np)g(X, VU)E — nug(X, VAU)E

+(2r(n — 1) + na)g(U)UX — nym(U) UhX (6.7)
—2u(n — 1)n(X)PhU + X(A\)U = 0.
By contracting X in (6.7), we obtain
on (k+1)nU) = —=U(N) (6.8)
On the other hand, by taking U = ¢ in (6.5), we obtain
A=0. (6.9)

Using (6.9) in (6.8), we conclude that x = —1, which contradicts with the assumption
k> —1.
Case 2. Assume that k < —1. By using (3.6), (3.3), (3.4) and (2.2) in (6.6), we get

(1+r)g(X,U)€ = g(hX,U)E +n(U)(R*X — hX) — pun(X)hU
+(26(1 — n) — npp) g(X, VU)E — npg(X, VhU)E
—(26(1 =n) —np) n(U)¥X —nun(U)¥hX

—un(X)¥hU + X(A\U = 0.
By contracting X in (6.10), we have

(2n+1) (k + D)n(U) = =U(N). (6.11)
On the other hand, by taking U = £ in (6.5), we get

(6.10)

v

A=0.

Using the last equation in (6.11), we conclude that x = —1, which contradicts with the
assumption x > —1.
Hence we give the following:

Theorem 6.6. There does not exist an almost Ricci soliton (€,X,g) in a (2n + 1)-
dimensional pem (K, p)-manifold (M, g) wrt the S-vK connection with k > —1 or k < —1.

Now, we consider k = —1. In this case we give the following:

Theorem 6.7. If a (2n + 1)-dimensional pcm (k, p)-manifold (M, g) wrt the S-vK con-
nection admits an almost Ricci soliton (§, A, g), then the almost Ricci soliton is steady.

Proof. By putting U = ¢ in (6.5), we get Q€ = 2kn — X. On the other hand, from (3.8)
we have Q¢ = 2kné. Thefore we obtain A = 0, which completes the proof. g

7. Almost gradient Ricci solitons on pcm (k, y)-manifolds with respect to
the Schouten-van Kampen connection

If the vector field V' is the gradient of a potential function —f, that is V = —gradf,
then ¢ is called an almost gradient Ricci soliton. In this case equation (1.2) becomes

Vgradf = Ric+ Ag, (7.1)
where V is the LC connection.

Now assume that M is a (2n + 1)-dimensional (n > 1) pcm (k, p)-manifold (k # —1)
wrt the S-vK connection. If we take V' = —gradf in (6.1), we write

)

(Lgraar9)(U, T) = (Lgraarg) (U, T) = g(Vugradf,T) + g(U, Vrgradf). (7.2)
We can easily see that
9(Vugradf,T) = g(U, Vrgradf),
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which implies that y 5 y
Lgradrg + 2Ric+ 2Ag = 0,
that is 5 y
g(Vugradf,T) = Ric(U,T) + A\g(U, T).
This reduces to y y
Vugradf = QU + A\U.
Now from (7.5), we write
Rewr (U, T)gradf = VyVrgradf —VyVrgradf — Vi rgradf
= VyQT +UNT —AVyT
—VrQU — T(NU — AV U
~QU.T] = \[U.T]
which implies that
Rewr (U, T)gradf = (VuQ)T — (VrQ)U — 2nk(29(U, ¥T)
+n(T)Vu€ —n(U)Vré)
—u((Vuh)T 4+ (Vrh)U) + UAN)T — T(A)U.
Taking covariant derivative of @ given by (3.7), we have

(VeQ)T = (2mn—1)+n@2s—p) |7 ((f’ﬁf%f %%)5

+2(n —1) 4+ ) (Vuh)T.
Using (7.7) and (2.2) in (7.6), we obtain
Rewr(U, Tgradf = 22k —n?)g(U, OT)¢
+(n? + 2xn — 28)(n(T)VU — n(U)UT)
—(n® = 2un + 2u)(n(T)WhU — n(U)WAT)

v v

+UNT — TN,

n
n

which implies that

9(Reur (U, T)gradf, &) = 2(2x — n*)g(U, OT) + UX)n(T) = T(\)n(V).

If we put U = £ in the last equation, we get
9(Rewr (&, T)gradf, &) = EN)n(T) — T(N).
On the other hand, from (1.1) we have
9(Reur (&, T)gradf, &) = kg(T, gradf — &£(f)E) + pg(hT, gradf).
Using (7.10) and (7.11), it follows that
w(gradf) — kE(f)E + ph(gradf) — EN)E + gradA = 0.
From (7.8), we get

Q(gradf) = —2n(gradf),
which infers

2nrc(gradf) + 2nph(gradf) = Q(gradf) +2n (k&(f) +EN) &,

477

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

via (7.12). Then, by using (3.8) and taking inner product of the last equation with &, we

obtain y
KE(f) +&(A) = 0.
If we put this equation in (7.13), we get

2nk(gradf) + 2nph(gradf) = Q(gradf).

(7.14)
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Taking U = £ in (7.5) and using (3.18), we obtain
Vegradf = AE.
By differentiating (7.14) with respect to £ and using the last equation we have
p(p(l—2n)+2(n—1)) h¥gradf =0,

which is equal to

p(p(l—2n)+2(n—1)) Ygradf =0, (7.15)
via (3.2). Also taking WU and ¥T instead of U and T, respectively, in (7.9) we write
G(Rewr (WU, OT)gradf,£) = (4k — 2n?)g(VU,T). (7.16)

In a pem (k, p)-manifold it is well known thatRe,, (YU, UT)¢ = 0. Then we obtain
(4K — 2n*)g(TU,T) = 0.

Because of dn is being non-zero, one gets

n2

K=o (7.17)

Hence, considering (7.15) and (7.17) we assume the following three cases:
Case 1. If ;4 = 0, then we can state that that the manifold is a N(x)-pcm manifold.
Case 2. If Wgradf = 0 and p # 0, then we write

Ulgradf = gradf — n(gradf)§ =0,

that is
gradf = §(f)E. (7.18)
By taking covariant derivative of the above equation along U, we have
Vugradf = U(E(f)E +&(f) (~0U + ThU). (7.19)
If we replace U with WU and take inner product with 7 in (7.19), we obtain
9(Vyugradf, VT) = =&£(f) (9(U, ¥T) + g(hU, ¥T)), (7.20)
which implies
9(Vurgradf, ¥U) = =¢(f) (9(T, ¥U) + g(hT, U)). (7.21)

We know that d?f = 0 and so, for any vector fields U and T, we have UT(f) — TU(f) —
[U,T]f = 0. It follows that

Ug(gradf,T) — Tg(gradf,U) — g(gradf, [U,T]) =0,
that is
Vul(gradf,T) — g(gradf,VuyT) — Vr(gradf,U) — g(gradf,VrU) = 0.
Since g is a metric connection then we have
9g(Vugradf,T) = g(U, Vrgradf). (7.22)

By taking U = WU and T' = ¥T in (7.22), we write

9(Vwugradf, ¥T) = g(VU, Vergradf).
Then, from (7.20), (7.21) and the last equation above, we obtain

§(f)g(U,¥T) =0,

which infer £(f) = 0, since dn # 0. From (7.18) we obtain gradf = 0, that is, f is a
constant. Therefore, from (7.5), we get Ric(U,T) = —Ag(U,T), which implies that the
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manifold is an Einstein manifold with respect to the the S-vK connection. Furthermore,
by using (3.17), we have

Ric(U,T) = —Ag(U, T) + 2nxn(U)n(T) + pg(hU,T). (7.23)
By using (3.7) in (7.23), we have
Ric(U,T) = ag(U,T) + bn(U)n(T),

ARty gy 2001+ —p(2(n—1)+n(26—-n))

where a = 5(n—1) 3n-1) , which im-
plies that the manifold is an n-Einstein manifold wrt the LC connection.
Case 3. If (1 —2n)+2(n—1) =0, then we obtain
2(n—1)
= —>". 7.24
| (7.24)

Using (7.14) and (3.7), we get
(2(1 = n) +nu —2nk)) (gradf —E(£)E) + (2(n — 1) + p — 2np)hgradf = 0. (7.25)

Using (7.24) and (7.17) in (7.25), we conclude that gradf = £(f)£. So, we get the similar
results given in Case 1.
Hence we give the following:

Theorem 7.1. Let (M, g) be a (2n + 1)-dimensional (n > 1) pcm (k, p)-manifold (k #
—1) bearing an almost gradient Ricci soliton wrt the S-vK connection. Then either the
manifold is a N(k)-pcm manifold, or it is an Finstein manifold wrt the S-vK connection
(equivalently, it is an n-Einstein manifold wrt the LC connection).

8. Almost Yamabe solitons on pcm (k, ;)-manifolds with respect to the
Schouten-van Kampen connection

In this section we study almost Yamabe solitons on a pcm (k, p)-manifold (k # —1)
wrt the S-vK connection. Assume that (M, V0, g) is an almost Yamabe soliton on a pcm
(K, pr)-manifold wrt the S-vK connection. Then we write

1 Ly
5 Lvg)(U,T) = (7 = 8)g(U, T). (8.1)
From (3.19), we write
1 o
S Lvg)(U,T) = (r — 2nk = 0)g(U, T). (82)
Hence, we state the following:

Theorem 8.1. An almost Yamabe soliton (M,V,6,g9) on a (2n + 1)-dimensional pcm
(K, p)-manifold with k # —1 is invariant under the S-vK connection if and only if the
manifold is a para-Sasakian manifold.

For V = ¢ in (8.2), we get
g(U, OhT) = (r — 2nk — 8)g(U,T). (8.3)
So we give the followings:

Theorem 8.2. Let M be a (2n + 1)-dimensional pcm (k, p)-manifold (k # —1) bearing a
Yamabe soliton (€,9,g) wrt the S-vK connection. Then, M is of constant scalar curvature
2nk + 0 wrt the LC connection.

Corollary 8.3. An almost Yamabe soliton (€,0,g) on a (2n+ 1)-dimensional pem (5, j1)-
manifold (k # —1) wrt the S-vK connection is steady if r = 2nk.

We conclude with an example of pcm (k, p)-manifold wrt the S-vK connection such
that k < —1.
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Example 8.4. Let g be the Lie algebra endowed with a basis {E1, Ea, E5, E4, E5} and

non-zero Lie brackets

afEi + afEs,
—afEs + afEy,
aF] + aFbs,

BE2 + aEs,

BE1 — aFs + 2Fs5,

[E2, E5] = aBE1 + aBEs,
(B4, B5] = afE3 — afEy,
[E1, B3] = BEy + aEy — 2F5,
[Eo, E3] = BE1 — aFy,

[E3, E4) = —BE3 + BEy,

(8.4)

where «, 8 are non-zero real numbers such that af > 0. Let G be a Lie group whose Lie
algebra is g. Define on G a left invariant pcm structure (¥, &, 7, g) by imposing that, at the
identity, g(E1, E1) = g(E4, E4) = —g(E», E») = —g(E3, E3) = g(E5, E5) = 1, g(E;, Ej) =
0, for any 1 7§ j, and \I/El = Eg,\I/EQ = E4,\I/E3 = El,\IfE4 = EQ,\I/Eg, = 0,€ = E5 and
n =g(-, E5). A very long but straightforward computation shows that

VE ¢
Vog§
VeE
Vg\I/El
Vi, Ey

Vi, VE,
Vg, E1
Vg, VE;
Vg, Er
Vyg, YE,
Vg, Er
Ve, VE;

afEy — VE;,
—FE1 —aBVE,
—afby —VEy,
—FE1 —afVE,,
alby — afEs,
aVFEy — Ej,
OéEQ,

—aV Fy,

—fBEs + Es,
—BYE; — afEs,
—BEs,
—pYEs,

Vg, =afE; — VE,,
Vug,§ = —FE2 — apfVEy,
VeEy = —afE; — VEs,
VeWEy; = —FEy — afVE],
Vg By =aky,
Vg, VEy =aVE],
VEQEQ = —aF1 + afEs,
Vg, VEy = —aVE) + Es,
Vg, B2 = —BE1,
Vyg, VE; = -V E,
Veg, B2 = —BE — Es,
Vug,VEy = -V E + afEs,

where A = af and u = 2. Then one can prove that the curvature tensor field of the LC
connection of (G, g) satisfies that (x, u)-nullity condition (1.1), with Kk = —1 — (a3)? and
p = 2, which implies that (G, V¥,&,n,g) is a 5-dimensional pcm (k, p)-manifold [6]. Now
we shall construct the S-vK connection on (G, ¥, &, 7, g). Using (8.5), we get

Vi By = aBy,
Ve, B = —ak,

Vi, E1 = —BEs,

Vi, By = —BEs, (8.6)
Ve, Es = —BEy,

Ve, E1 = aFs, Vg Ey=aF,

Vi, By aFE3,  Vg,E = —aFs,

Vi, Es —aBEy,  Vg,Ei=—akF;,

Vi, Es ~BEy, Vp,E3=—pBE,

Vi B ~BEs,  Vp,FEr=—BE,
Ve,Bs = —BFEs, VgFE =—afE;— Fs,
Ve, B2 = —aBE;— Ej,

Vi, B3 = —F) — afE,,

¢E5E4 = —E2 — OzﬂEg.
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Now using (8.6), we can calculate the non-zero components of its curvature tensor wrt the
S-vK connection as follows:

Rew(E1,E3)Ey = —2E;, Reur(E1, E3) By = —2Fy,
Rew(E1,E3)Ey = —2E, Reur(E1, B3)Ey = —2F»,

Rewr(E1, E)E1 = 2af3Es, Reur(E1, E) By = 208Fx,
Rewr(E1,E4)Es = 2aBE,, Rewr(E1, E4)Ey = 2083, (8.7)
Rew (B2, E3)E1 = —20BEs,  Rew(E2, E3)Es = —203E],

Rew (B2, E3)Es = —20BEy,  Rew(Ea, E3)Ey = —203E;,

Rew(Es, Ey)Ey = 2E3, Reur (B2, By)Ey = 2By,

9 9

Rewr(E2, E4)Es = 2E, Reur(Eo, E4)Eq = 2E5,

which imply that the non-zero components of its Ricci tensor wrt the S-vK connection as
follows:

Ric(Ey, Ey) = Ric(Ey, Ey) =2, Ric(Fy, Ey) = Ric(Fs, F3) = —2. (8.8)

From (8.8), (6.2) and (6.9), one can see that there does not exist an almost Ricci soliton
on such a 5-dimensional pcm (k, p)-manifold with k£ < —1.

Furthermore, for U = u1 E1 + uoFo + usEs +us By + usEs, T = t1E1 + toFs + tsFE3 +
taEy + t5E5 € x(G), we have

g(U, WhT) = af(uity — ugty + usts — ugty).

By using the last equation in (8.3), we say that the 5-dimensional pcm (k, pt)-manifold G
admits a Yamabe soliton (£,8 — af3, g) wrt the S-vK connection. Such a Yamabe soliton
is expanding if a5 > 8, steady if aff = 8 and shrinking if a5 < 8.
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