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Introduction 

Tuberous sclerosis complex (TSC) is a 

dominantly inherited disease of high 

penetrance, pathologically characterized by 

the presence of tumour-like lesions 

(hamartomas) in multiple organ system, 

caused by mutations in one of the tumor 

suppressor genes, TSC1 or TSC2, encoding 

for hamartin and tuberin respectively. The 

most common neurological manifestations of 

TSC are epilepsy, mental retardation, 

challenging behavioural problems, and 

autism [1,2]. 

Progress in structural and functional imaging 

has led to further characterization of the 

brain lesions, including cortical tubers (CTs), 

subependymal nodules (SENs), 

subependymal giant cell tumors (SGCTs), and 

white matter abnormalities [3,4]. 

The TSC1/TSC2 complex plays an important 

role during cortical development and growth 

control. At distinct stages of central nervous 

system (CNS) development, including 

morphogenesis, cell adhesion/migration and 

cell fate determination, a precise interaction 

of tuberin and hamartin appears critical. Gene 

mutations in either of the two genes influence 

neural precursor between weeks 7 and 20 of 

gestation to result in disrupted cell division, 

abnormal cell differentiation, dysregulated 

cell size control and abnormal cellular 

migration [5]. Fundamental advances in 

defining the molecular function of hamartin 

and tuberin have been recently made. These 

two proteins normally work together to inhibit 
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the mammalian target of rapamycin (mTOR) 

and a cascade of other downstream kinases 

and translational factors that stimulate protein 

translation, cell growth and proliferation [6]. 

Thus, mutation in hamartin or tuberin in TSC 

leads to hyperactivation of the downstream 

mTOR pathway and the associated kinase 

signalling cascades and translational factors, 

resulting in increased cell growth and 

proliferation.  In this article we review the 

mechanisms underlying epileptogenesis in 

TSC, from molecular genetics to the 

pathophysiological mechanisms of 

epileptogenicity in drug resistant seizures 

associated with TSC. 
 

Epilepsy in TSC  

Epilepsy in TSC often begins during the first 

year of life and, in most cases, in the very first 

months. The high incidence of epileptic 

spasms and hypsarrhythmia has long been 

emphasized, but it is now clear that infants 

with TSC are clinically and 

electroencephalographically different from 

classical epileptic spasms and hypsarrhythmia 

of West syndrome
 
[7]. In the same child focal 

seizures may precede, coexist with, or evolve 

into epileptic spasms. Subtle focal seizures, 

such as unilateral tonic or clonic phenomena 

mainly localized in the face or limbs, and 

other seizures with subtle lateralizing features, 

such as tonic eye deviation, head turning, and 

unilateral grimacing can occur, but may be 

missed by the parents until the third or fourth 

month of life when epileptic spasms occur. 

The EEG at onset usually shows focal or 

multifocal spike discharges and irregular focal 

slow activity. Video-EEG monitoring and 

polygraphic recordings of the epileptic 

spasms have shown that each spasm consists 

of a combination of both focal and bilateral 

manifestations. Although the patho-

physiological mechanisms responsible for the 

coexistence of spasms and focal motor 

seizures are still uncertain, epileptic spasms 

associated with TSC may show focal features 

at onset, followed by a rapid secondary 

generalization. The age at seizure onset and 

the age when epileptiform activity becomes 

apparent on the EEG is largely dependent on 

the location of the cortical tubers detected by 

MRI and may coincide with functional 

maturation of the cortex, with an earlier 

expression for temporo-occipital regions than 

for frontal ones
 
[7]. 

 

A number of young children with TSC, who 

present with focal seizures or epileptic spasms 

at onset, later develop intractable seizures 

with multifocal EEG abnormalities (Fig. 1) 

associated with bilateral and more 

synchronous slow spike-wave complexes and 

an electroclinical pattern that resembles a 

Lennox-Gastaut Syndrome (LGS). In patients 

with TSC, the differential diagnosis between 

LGS and localization related symptomatic 

epilepsy originating in the frontal lobe may be 

extremely difficult and only in few cases 

long-term video-EEG monitoring can reveal 

subtle electroclinical manifestations 

suggestive of a focal seizure onset. In these 

patients, high time-resolution topographic 

EEG analysis and dipole localization methods 

may detect secondary bilateral synchrony 

(SBS), often originating in frontal regions and 

corresponding to prominent cortical tubers 

detected by MRI in the mesial surface of the 

frontal or the anterior temporal lobes
 
[8].  

The natural history of epilepsy in patients 

with TSC from infancy into childhood tends 

to be one of increasing seizure frequency and 

severity, with poor response to antiepileptic 

drug (AED) treatment. The proportion of 

children with TSC and epilepsy referred to 

tuberous sclerosis clinics who achieve 

prolonged seizure remission is small. Usually 

seizure remission is associated with mild 

neurological deficits, and sustained remission 

is more likely associated with normal 

intelligence, a greater likelihood of having a 

normal finding on electroencephalogram
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Figure 1. Multifocal electroencephalographic abnormalities with a left fronto-centro-

temporal prevalence in a 8 years old boy with intractable epilepsy 

at the time of discontinuation, and fewer 

cortical and subcortical tubers on 

neuroimaging [9]. Unfavourable prognostic 

factors include onset earlier than one year of 

age, presence of multiple seizures types 

(spasms and focal motor or complex partial 

seizures, drop attacks and atypical absences), 

multifocal discharges in the awake state 

which tend to bilateralise in sleep and/or SBS, 

and occurrence of new EEG foci during the 

evolution
 
[10]. 

Molecular pathogenesis  

Present evidence suggests that the CNS 

lesions of TSC are due to a developmental 

disorder of neurogenesis and neuronal 

migration. In TSC two populations of 

neuroepithelial cells are generated by the 

germinal matrix. The first consists of normal 

neuroblasts that form normal neurons and 

astroglia, which migrate to the cortical plate 

to form histologically normal cerebral cortex.  

The second is an abnormal cell population 

that forms primitive cells, which often fail to 

show clear neuronal and glial differentiation. 

Some of these cells, named "neuroastrocytes", 

remain in the germinal matrix zone where 

they form subependymal nodules and giant 

cell tumours. 

Some neuroastrocytes show partial migration, 

forming heterotopias in the subcortical white 

matter. More differentiated cells migrate to 

the cortical plate where they form aggregates 

of dysplastic cortex, the cortical tubers. 

Histologically tubers are characterized by 

disorganized cortical lamination and by the 

presence of cells with aberrant morphology. 

The most prominent abnormal cell types in 

tubers are large dysplastic neurons and giant 

cells, as well as bizarrely shaped astrocytes
 

[11]. Tubers are found most commonly in the 

fronto-parietal cortical regions [12], but in 

many patients they involve all the brain (Fig. 

2). In a report on two cases a disseminated 

distribution of atypical cells throughout the 

white matter and cortex of the telencephalon 

has been found
 
[13]. MRI studies provide 

excellent in vivo demonstration of the various 
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pathological lesions. An especially interesting 

imaging finding is the frequent presence of 

abnormal wedges of tissue extending from the 

subependymal zone to the cerebral cortex, and 

including radial hypomyelinated tracts.  

TSC is due to inactivating mutations in either 

of two genes, TSC1 (on chromosome 9q34) 

encoding hamartin, or TSC2 (on chromosome 

16p13.3) encoding tuberin. 393 TSC1 and 

1118 TSC2 unique allelic variants have been 

reported (http://chromium.liacs.nl/lovd/index. 

php?select_db=TSC1 or _db=TSC2) [14-18]. 

These mutations comprise the usual mix of 

nonsense, missense, insertion and deletion 

mutations, involving nearly all of the exons of 

TSC1 and TSC2.   

New mutations have been implicated in up to 

75% of all cases. Mutational studies of TSC 

patients have demonstrated that mutations in 

TSC2 are about five times more common than 

mutations in TSC1 in the sporadic TSC 

population, whereas the ratio is 1:1 in large 

families with multiple generations affected. 

Due to the large number of mutations, 

phenotype-genotype correlations are complex 

[2]. TSC1 disease is milder than TSC2 

disease in multiple respects, which appears to 

be due to a reduced rate of second hit events 

[15,17,19]. 

Fundamental advances in defining the 

molecular function of hamartin and tuberin 

have been recently made. Hamartin and 

tuberin normally work together to inhibit the 

phosphatidylinositol 3-kinase (PI3K)/insulin 

activated signaling pathway, involving the 

mammalian target of rapamycin (mTOR) and 

a cascade of other downstream kinases and 

translational factors that stimulate protein 

translation, cell growth and proliferation [6]. 

Thus, mutation of hamartin or tuberin in TSC 

leads to hyperactivation of the downstream 

mTOR pathway and the associated kinase 

signaling cascades and translational factors, 

resulting in increased cell growth and 

proliferation.  

Hamartin and tuberin form together a GTPase 

activating protein (GAP) complex that 

inhibits rheb, the GTPase that activates the 

mTOR [20,21]. Mutations to either TSC1 or 

TSC2 disrupt the function of the complex, 

explaining why mutations to either gene cause 

the same disease. 

In the brain, TSC1 and TSC2 mRNA and 

protein have been detected in cerebral cortex, 

hippocampus, cerebellum, brainstem, choroid 

plexus epithelium, and spinal cord of the 

immature and mature brain [22]. Mutations of 

TSC genes, via downstream effects on 

neuronal and synaptic structures or 

neurotransmission, have the potential to 

induce fundamental alterations in network 

properties, as well as an imbalance in 

excitation and inhibition, producing epilepsy, 

mental retardation, and autism. 

Several independent studies of large cohorts 

of TSC patients have demonstrated that 

patients with a TSC2 mutation are more often 

mentally retarded than patients with a TSC1 

mutation [14,15,17,19]. However, in most of 

these studies, cognitive ability was estimated 

clinically, or through indirect methods, such 

as level of schooling [23], rather than with 

standardized measures, such as intelligence 

scales. 

Patients with a TSC2 mutation as a group had 

earlier age at seizure onset, lower cognition 

index, more tubers, and a greater tuber brain 

proportion (the proportion of the total brain 

volume occupied by tubers) than those with a 

TSC1 mutation, but the ranges overlapped 

considerably; familial cases were older at 

seizure onset and had a higher cognition index 

than nonfamilial cases [24]. A more severe 

phenotype is to be expected in TSC patients 

with mutations inactivating the tuberin  

http://chromium.liacs.nl/lovd/index.%20php?select_db=TSC1
http://chromium.liacs.nl/lovd/index.%20php?select_db=TSC1
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GTPase activating protein (GAP) domain, 

with a greater number of tubers and a greater 

tuber brain proportion than those with an 

intact GAP domain [24]. 

Different mutations in TSC2 gene have been 

described in association with severe clinical 

and epileptic phenotypes, including infantile 

spasms and Lennox-Gastaut syndrome [25], 

West syndrome and cardiac rhabdomyoma 

[26], and autism and mood and anxiety 

disorders[27]. By contrast, certain TSC2 

missense mutations are associated with a 

milder form of TSC, which in many patients 

does not meet the standard diagnostic criteria. 

The TSC2 R905Q mutation is associated with 

unusually mild disease, characterized by 

hypomelanotic macules and focal seizures 

that remitted spontaneously, or were easily 

controlled with medications [26]. Similarly, a 

very mild phenotype, including brain 

imaging, has been reported associated with 

G1556S TSC2 mutation [28]. 

The phenotypes of TSC1 and TSC2 mutations 

may overlap considerably, and although some 

clinical phenotypes have been associated with 

specific mutations, prediction of the 

neurological and cognitive phenotypes should 

not be only based on the particular 

TSC1/TSC2 mutation.  

The over-representation of cognitive 

impairments in patients with a TSC2 mutation 

might be due to a higher frequency of 

somatic, inactivating mutations at the TSC2 

locus. An alternative possibility is that 

patients with TSC1 mutations may still retain 

some rheb GAP activity since the tuberin 

GAP domain is still present. Identification of 

a mutation is important in confirming a 

diagnosis of TSC. Yet, neither the onset of 

seizures nor the degree of cognitive 

impairment can be predicted on the basis of 

the mutation type. Current molecular 

diagnostic methods allow identification of 

mutations in either TSC1 or TSC2 in 75-85% 

of TSC patients. TSC individuals with no 

mutation identified have milder brain features 

than TSC1 and TSC2 mutations [17]. 

 

           Figure 2. Axial MRI image showing 

multiple cortical tubers in a patient with 

autism and drug resistant epilepsy. 

Pathophysiological mechanisms of 

epileptogenicity 

Although mechanisms of epileptogenesis 

remain unknown, tubers represent the 

epileptic foci. Cortical tubers are 

characterized by a proliferation of both glial 

and neuronal cells and by a loss of the normal 

six–layered structure of the cortex. Tubers are 

variable in size and multiple in number, and 

may be detected by fetal MRI as early as 26 

weeks of gestation [29,30].  

A spectrum of abnormal cell types, including 

large dysplastic neurons (DNs), giant cells 

(GCs), and bizarrely shaped astrocytes, has 

been identified in tubers,  based on 

morphological characteristics, markers of 

neuronal and glial differentiation, mTOR 

pathway activation, and ionotropic glutamate 

receptor (iGluR) subunit expression[31]. 

Dysplastic cells in cortical tubers expressing 
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high S6 levels demonstrate unique iGluR 

expression patterns consistent with a        

hyperexcitable state and reminiscent of those  

present on immature neurons and astrocytes 

in normal human developing cortex[32]. 

Differences in iGluR expression profiles 

between dysplastic and nondysplastic 

epileptic tissue suggest that, in human cortical 

tubers, TSC1/TSC2 dysfunction may alter the 

developmental regulation of iGluRs and 

enhance glutamatergic function.DNs exhibit 

disrupted radial orientation in cortex and 

abnormal dendritic arborization, showing 

GABA transporter defect and reduced 

GABAergic inhibition [33]. 
 

Epileptogenesis in TSC arise by an imbalance 

of decreased inhibition secondary to 

molecular changes of γ–aminobutirric acid 

(GABA) receptors in giant cells and 

dysplastic neurons, and increased excitation 

secondary to molecular changes of glutamate 

receptors in dyplastic neurons[34]. The 

deficiency of GABAergic interneurons may 

explain the early onset and severity of 

seizures in TSC [35-36]. By acting as a 

sensory gate, inhibitory GABAergic 

interneurons regulate the degree of 

glutaminergic excitation in the neocortex, 

filtering the input, and coordinating the output 

of multiple projection neurons. The 

importance of GABAergic inhibitory system 

in TSC has been confirmed by the particular 

efficacy of Vigabatrin (VGB), an inhibitor of 

GABA transaminase, able to completely stop 

spasms in 95% of TSC infants [37-39]. 

Prompt seizure control is crucial and could 

prevent the development of an epileptic 

encephalopathy [40]. 

 

One of the critical factors regulating neuronal 

excitability is expression and function of 

synaptic receptors for the main excitatory 

neuro-transmitter glutamate [41]. GluRs 

expression is developmentally regulated, and 

during early cortical development, certain 

receptor subtypes are over expressed resulting 

in physiological hyperexcitability during the 

critical periods of enhanced synaptic 

plasticity[42]. Also expression of 

metabotropic glutamate receptor (mGluR) 

subtypes is developmentally regulated, and 

several studies suggest an involvement of 

mGluR mediated glutamate signaling in the 

regulation of proliferation and survival of 

neural stem-progenitor cells, as well as in the 

control of tumor growth [43]. Recent findings 

expand our knowledge concerning the cellular 

phenotype in cortical tubers and in SGCTs, 

and highlight the role of group I mGluRs as 

important mediators of glutamate signaling in 

TSC brain lesions. 

Individual mGluR subtypes may thus 

represent potential pharmacological targets 

for the treatment of the neurological 

manifestations associated with TSC brain 

lesions [44]. 

Increasing experimental data suggest a direct 

effect of the TSC1 or TSC2 mutations on 

brain development and excitability. Loss of 

TSC1 or TSC2 in mature postmitotic 

hippocampal neurons in vitro causes enlarged 

somas, abnormal dendritic spines, and 

enhancement of glutamatergic 

neurotransmission [45]. Astrocytes are 

specifically involved in TSC pathology. 

Recent evidence suggests that astrocyte 

changes may result from mTOR cascade 

activation in astrocytes, secondary to a 

mutation of TSC1/TSC2 genes [46]. 

Astrocyte deficiency in potassium and 

glutamate uptake may combine with neuronal 

hyperexcitation to contribute to 

epileptogenesis in TSC individuals [47]. 

Early rational treatment for epilepsy 

The treatment of seizures in TSC is often 

difficult and frustrating with a limited 

response to the conventional AEDs. The 

introduction of new anticonvulsant has 

improved this otherwise bleak scenario. 
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Hancock and Osborne
 
[39] reviewed English 

language studies on the efficacy of vigabatrin 

(VGB) in the treatment of epileptic spasms. 

Of the patients affected by TSC, 73 (95%) 

had complete cessation of their epileptic 

spasms, as compared with 169 (54%) of the 

remaining patients. In the vast majority of 

patients, the effect was observed within one 

week, a much quicker response than that 

observed with steroids, benzodiazepines or 

sodium valproate, which can take weeks 

before they show any efficacy. It has been 

reported that VGB could be effective in 

reducing frequency of focal seizures in up to 

74% of patients with TSC
 
[38]. Localization 

related effectiveness of VGB shows better 

results on focal seizures originating from 

parieto-occipital lobes. Unfortunately, in 

recent years, there have been several reports 

on the appearance of alterations of the visual 

fields of patients treated with VGB [48]. Tong 

et al. [49] have demonstrated that VGB levels 

are dose-related, but are significantly higher 

in the retina than in any other brain tissues. 

It has recently become clear that the use of 

VGB was associated with delayed appearance 

of concentric narrowing of the visual fields in 

up to 40-50% of cases. This narrowing can be 

severe and irreversible and continuation of the 

drug can be associated with progressive visual 

field loss[50]. This phenomenon may result 

from a sequence of events starting from cone 

cell injury to the more severe disorganization 

of the photoreceptors layer
 
[51]. Currently, 

the minimum duration and doses of VGB 

treatment that can produce this side effect are 

unknown and the feasibility of using low 

dosages and short treatment periods (2-3 

months) should be investigated.  

 

Topiramate (TPM) is emerging as a more 

effective drug in TSC affected by focal 

seizures with or without secondary 

generalization and in the Lennox-Gastaut 

syndrome [52] The mechanisms of action of 

TPM, apart from state-dependent blockade of 

sodium and calcium channels and inhibitory 

effect on carbonic anhydrase, include the 

enhancement of GABA activity on GABA-A 

receptors with elevation of cerebral GABA 

levels, and antagonism of glutamate receptors.  

Non pharmacologic management of 

seizures  

Up to 20% of individuals with TSC develop 

partial seizures that are refractory to 

anticonvulsants. For these patients, the 

ketogenic diet, vagus nerve stimulation, and 

resective epilepsy surgery are being 

increasingly utilized.  

The ketogenic diet, whereby 80-90% of daily 

calories are administered as a fat, is one of the 

oldest treatments for epilepsy [53]. Since 

carbohydrate depletion serves to inhibit 

mTOR, this approach may have particular 

relevance for TSC patients. In one series of 

TSC patients with refractory epilepsy, 11 of 

12 patients experienced >50% reduction in 

seizures, despite having previously failed to 

improve with multiple traditional 

anticonvulsants [54]. The ketogenic diet is 

often associated with improved cognition, 

which can relate to improved seizure control 

and the ability to eliminate concurrent 

antiepileptic drugs [55,56]. Recent work 

suggests that carbohydrate restriction alone 

may produce benefits equal to those of the 

classical ketogenic diet [57,58]. Vagus nerve 

stimulation is generally well tolerated and 

appears to be effective primarily for partial 

seizures with secondary generalization 

[59,60]. Vagus nerve stimulation can also be 

associated with improvements in cognition 

and behavior; whether this is due primarily to 

improved seizures control or attributable to 

the vagus nerve stimulation independently is 

not clear. Traditionally avoided in patients 

with tuberous sclerosis, epilepsy surgery has 

an increasing role in this disorder [61]. Novel 

techniques such as magnetoencephalography, 

co-registered magnetic resonance, and 

positron emission tomography (PET) are 
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increasingly able to localize epileptogenic 

tubers or adjacent abnormal cortex [62].  

A specific PET tracer, alfa-methyltryptofan, 

has also been used successfully to identify 

epilptogenic tubers [63]. However, owing to 

technical difficulties with its synthesis and a 

short half-life once formulated, its use has 

been limited to a few centers. Many patients 

may have a so-called “dominant” tuber or 

zone of cortical dysplasia that is responsible 

for the bulk of their epileptic activity. These 

patients are particularly suitable for resective 

surgery. Recent work has also described 

successful surgical treatment of multifocal 

partial epilepsy in TSC [61,64].  Sometimes 

removal of a primary epileptic focus may 

disrupt an underlying “epileptic network), 

with resulting improvement despite the 

presence of multiple areas of epileptic cortex. 

Another approach used at some centers is to 

employ a staged technique in which what 

appears to be the primary focus is resected, 

cortical grids are replaced, further monitoring 

is performed, and, if appropriate, additional 

foci are subsequently removed. In the largest 

series of surgical epilepsy patients with TSC 

and partial seizures to date, 37of 70 patients 

(53%) were seizure free and another 8 (11%) 

had significantly reduced seizure frequency 

[65]. These findings are consistent with 

earlier reports that found 68-69% of TSC 

patients seizure free following resection 

[64,66]. Therefore, epilepsy surgery should be 

considered for all TSC patients with seizures 

refractory to medical treatment, as these 

patients have the potential to have significant 

improvement following resection.  

New therapeutic approaches  

Rapamycin is a potent translational modifier 

in neurons although its effects on gene 

transcription and neuronal development are 

poorly understood. Rapamycin mediates 

protein synthesis stimulated by brain derived 

neurotrophic factor and has also been shown 

to have direct neurophysiological effects 

[67,68]. The single channel activity of the 

Ca
2+

-dependent K
+
 channel is modulated by 

rapamycin through its direct association with 

the FK506 binding protein-12 (FKBP12)[69]. 

Rapamycin might also influence mTOR-

mediated propagation of inhibitory 

transmission via the glycine- and GABA-

receptor clustering protein gephyrin [70-72]. 

In one model, rapamycin did not enhance the 

firing of spontaneous action potentials [73-

75], perhaps because unlike other calcineurin 

inhibitors, cyclosporine A and tacrolimus, 

rapamycin does not inhibit the Ca
2+ 

calmodulin dependent phosphatase 

calcineurin. 

The effect of rapamycin on long term-

potentiation (LTP) is controversial. One study 

demonstrated that low dose rapamycin leads 

to NMDA-dependent induction of LTP in 

CA1 neurons of rat hippocampal slices when 

paired with weak presynaptic stimulation 

[76]. In contrast, others have shown that 

rapamycin impairs LTP by inhibiting mTOR 

through reduced protein synthesis [77-78]. 

Finally, a third study demonstrated that 

rapamycin did not affect LTP at baseline, and 

did not prevent the inhibition of LTP by H2O2 

[79]. The effect of rapamycin on cell 

morphology, gene expression, and seizure-

like firing patterns in cultured rat 

hippocampal neurons at post-natal time 

periods was demonstrated [80]; rapamycin 

does not produce neurotoxicity, nor alter 

dendritic growth and complexity in vitro, and 

does not significantly alter voltage-gated 

sodium and potassium currents. Rapamycin 

does affect neuronal gene transcription in 

vitro.  

A recent study has tested rapamycin and 

RAD001 [40-O-(2-hydroxyethyl)-rapamycin], 

both mTOR inhibitors, as potential 

therapeutic agents in a mouse neuronal model 

of TSC, in which TSC1 is ablated in most 

neurons during cortical development [81]. 

Rapamycin/RAD001 were highly effective 
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therapies for this neuronal model of TSC, 

with benefit apparently attributable to effects 

on mTOR and Akt signaling and, 

consequently, cell size and myelination.  

In another recent experiment early treatment 

with rapamycin prevented the development of 

epilepsy and premature death observed in 

vehicle-treated TSC1
GFAP

CKO mice. Late 

treatment with rapamycin suppressed seizures 

and prolonged survival in TSC1
GFAP

CKO 

mice that had already developed epilepsy. 

Rapamycin inhibited the abnormal activation 

of the mTOR pathway, astrogliosis, and 

neuronal disorganization, and increased brain 

size in TSC1
GFAP

CKO mice [82]. Although 

caution is appropriate, the results suggest the 

possibility that rapamycin/RAD001 may have 

benefit in the treatment of TSC brain disease, 

including infantile spasms.  

Ehninger et al.[83] recently reported about 

deficits in learning and memory presented by 

mice with a heterozygous, inactivating 

mutation in the TSC2 gene (TSC2
+/-

 mice), 

but without any neuropathology or seizures, 

thus suggesting that other disease mechanisms 

were involved. These findings demonstrated a 

role of mTOR signaling in altering the LTP in 

a specific hippocampal region leading to 

deficits in hippocampal-dependent learning, 

and showed that treatment with mTOR 

antagonists ameliorated cognitive 

dysfunctions of these animal models. 

 

Rapamycin is being proposed for use in 

individuals with TSC. Recent clinical trials 

using rapamycin have demonstrated to be 

effective in reducing the volume of renal 

angiomyolipomas, SGCTs, angiofibromas, as 

well as an improving pulmonary function in 

individuals with sporadic lymphangio-

leiomyomatosis [84-86]. However, when the 

therapy was stopped, the lesions tended to 

increase again in volume, even if some 

improvement in spirometric measurements 

persisted after treatment [84]. One group 

reported rapamycin-induced regression of 

astrocytomas in five patients with TSC. Four 

of these patients remained seizure-free during 

the treatment period [86]. A dramatic 

reduction in seizure frequency with 

rapamicyn therapy has been recently reported 

in a 10 years old girl [87].  

Although caution is appropriate, the results of 

these studies will influence future clinical 

trials and suggest the possibility that 

rapamycin may have benefit in the treatment 

of TSC brain diseases, including epilepsy, 

mental retardation and autism. 
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