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Progress and expansions of chitosan-graphene oxide hybrid
networks utilizing as adsorbents and their organic dye removal

performances: A short review
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Abstract:  Increasing  concentration  of  pollutants  has  significantly  affected  the  quality  of  water,
especially for organic dyes-contained water/wastewater. This is probably reduced effectively through
adsorbing  the  pollutants  onto  potential  materials-based  adsorbents.  Chitosan/graphene  oxide
(CTS/GO) hybrid networks utilizing as adsorbents are attracting considerable interest owing to the
available functional groups, which can remove plenty of the organic dyes from water/wastewater. In
this  review,  the  progress  and  expansions  of  CTS/GO  hybrid  networks-based  adsorbents  are
summarized  and  discussed  in  detail.  Following  the  general  introduction  and  properties  of  each
material system (i.e., CTS, GO and CTS/GO hybrid networks), the CTS/GO hybrid networks-based
emerging adsorbents with coupling numerous other support materials (i.e., reduced GO, magnetic
iron oxide,  polymeric  materials,  metal-organic  frameworks,  etc.)  are  compared and discussed in
short, at same time that some common organic dyes used in adsorption studies are also introduced.
Besides, adsorption technique and mechanisms (i.e., adsorption kinetics and isotherms) focus on the
CTS/GO hybrid networks' role are discussed as well. Although there are still some challenges from
the reviewed researches, the CTS/GO hybrid networks-based emerging materials can be considered
promising and potential adsorbents. Moreover, this review can provide a clear overview of CTS/GO
hybrid networks-based adsorbents in organic dye removal applications to readers.
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INTRODUCTION

So far, organic dyes have been employed plenty
in  the  dyeing,  textiles,  leather,  paper,  plastics,
and  food  industries,  etc.;  thus,  these  colored
matters  significantly  affect  currently
environmental  problems.  Various  organic  dye
types (i.e.,  reactive, anionic, and cationic dyes,
etc.) employed in these industries are toxic and
disadvantage to the water source (1-6) (Table 1).
Specifically,  anionic  dyes  contain  negative
charges  instead  of  cationic  dyes  with  positive

charges in an aqueous solution that is due to the
presence of carboxyl and/or sulfonate groups (2,
5,  6).  Among  them,  the  anionic  dyes  are
intensely  colored,  water-soluble,  and  manifest
acidic features inducing to the most challenging
(7, 8). 

Additionally, the organic molecular structures of
these  complex  aromatic  dyes  display  more
stability inducing to being difficult to biodegrade,
which leads to removing the organic dyes from
water/wastewater  with  an  economical  way  is
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considered  to  be  an  important  challenge  for
scientists.  In  fact,  primary  methods  regarding
dye-contaminated  water/wastewater  treatment
(i.e.,  flotation  and  sedimentation)  cannot  be
adequate to remove the colored features without
general  chemical  manners.  The  treatment
methods  of  coagulation,  separation,  and  ion
exchange are utilized for removing the color from
the dye-contaminated water/wastewater as well;
however,  the  cost  is  one  of  the  main
disadvantages  of  these  methods.  Whereas,
adsorption  is  a  well-known  and  effective
technique in dye-contaminated water/wastewater
treatment applications to remove the color from
the dye-containing wastewater (4, 8, 9) that is
mainly  owing  to  low  cost,  flexibility,  simple
design, and easy operation (4).

So far, material system was extensively applied
in  different  research  fields  and  practical
applications  (4,  6,  10-12),  at  same  time  that
remarkable factors of a material-based adsorbent
almost regard to possible physical, chemical and
interface  properties.  So,  it  is  necessary  to
conduct considerably synthetic methods that can
obtain  better  desired  results  corresponding  to
multiple researches. Concomitantly, the emerging
materials-based  adsorbents  are  found  and
utilized increasingly more to investigate the color
removal  from  dye-contaminated
water/wastewater (13-17),  which can be novel,
readily available, economical and highly effective
adsorbents.  Especially,  chitosan  (CTS)  –  a
biopolymer is attracting interest as a matrix for
the  development  of  emerging  material-based
adsorbent that can be mainly owing to potentially
active  adsorption  sites  in  a  high  density  of
available primary amine (–NH2) and hydroxyl (–
OH)  groups;  thus,  the  CTS  is  considered  an
efficient adsorbent (4, 6, 18). Actually, the CTS
molecule is not available that is produced through
N-deacetylation of  chitin (19-22) basing on the
replacement of acetamide group at position 2 to
distinguish the structure and solubility of CTS and
chitin molecules (Figure 1) (i.e., CTS is soluble in
weak acids, chitin is inert and insoluble) (19-22).
At the same time, graphene oxide (GO) contains
plenty of functional surface groups [i.e., carbonyl
(>C=O), epoxide (C–O–C), hydroxyl  (–OH) and
carboxylic (–COOH) groups] (Figure 2a) that can
facilitate  to  couple  with  positively  charged
molecules through electrostatic interactions, and

which  attracts  significantly  in  combing  with
polymer matrices for enhancement of organic dye
removal,  mainly based on its high surface area
and water solubility (4, 6, 23). Indeed, plenty of
studies have shown the GO's excellent ability to
adsorb various organic dyes through electrostatic
interaction,  –stacking  and  hydrogen  bonding
(24-28).  However,  the  organic  dye  adsorption
performance of  GO alone is  lower than that  of
modified GO-based adsorbents (24, 25, 28).

Furthermore,  the  stability  of  GO nanosheets  in
colloidal solutions can lead to coupling easily with
the  CTS  molecules  (i.e.,  the  CTS  is  often
dissolved in acetic acid) to reach CTS/GO hybrid
networks  with  a  homogeneous  mixture  (Figure
2b). The CTS is known as a positively charged
biopolymer that is mainly owing to protonation of
the amino (–NH2) groups leading to attracting the
negatively  charged GO nanosheets  (Figure 2b).
These  electrostatic  interactions  coupling  with
both  hydrogen  bonding  and  –stacking  have
facilitated  the  formation  of  the  CTS/GO hybrid
networks  (Figure  2b)  to  reach the more stable
hybrid  networks-based  materials  with
outstandingly  mechanical  and  thermal  features
(6,  29).  Indeed,  the  measurement  of  Fourier-
transform infrared spectroscopy (FTIR) (30) has
been successfully employed to demonstrate the
possible  reaction  between  the  amino  (–NH2)
groups of the CTS chains and the carboxylic (–
COOH) groups of GO basing on the formation of
amide (–NHCO–) linkages (Figure 2b). So far, the
CTS/GO hybrid networks can be easily attained
through various methods (i.e., the supplement of
NaOH, violent shaking, sonication, freeze-drying,
etc.)  (6,  31-33),  and  which  can  also  be  well
combined with other support material sources to
develop  and  expand  these  CTS/GO  hybrid
networks that are applied in organic dye removal
applications,  especially  for  becoming  cost-
effective, eco-friendly and recyclable adsorbents.
In  this  review article,  the  adsorption technique
regarding the general adsorption theory and the
adsorption  kinetics/isotherms  are  introduced  in
detail.  Significantly,  the  recent  progress  and
expansions  of  emerging  CTS/GO  hybrid
networks-based  adsorbents  for  various  organic
dye  removal  applications  are  summarized  and
compared  to  favor  the  reader  with  a  clear
overview.
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Table 1: Information of some organic dyes.

Organic
dyes

Structures
Dye
class

λmax

(nm)
M.W. 

(gmol-1)
Contamination

sources

Methylene
Blue

 
S

N

N N
H3C

CH3

CH3

CH3

Cl-

+ 665 319.85

Textile, Leather, 
Dyestuff, Paper and 
Plastic industries; 
Pharmaceutical uses;
Laundry activity

Rhodamine
B

 
O NN

CH3

CH3

H3C

H3C

COOH

Cl-

+ 558 479.02

Natural sources; 
Textile, Dyestuff, 
Food, Leather and 
Plastic industries; 
Laundry activity

Malachite
green

 
N

CH3

H3C N

CH3

CH3

Cl

+ 617 364.91

Textile, Leather and 
Dyestuff industries; 
Lab activities; 
Laundry activity

Methyl
Orange

N

CH3

CH3

N

N S

O

O

O
–
Na

+ - 464 327.33

Textile, Foodstuffs, 
Paper and Leather 
industries; Lab 
activities; Laundry 
activity

Congo Red
S

O

O O
–

NH2
N

N

N
N

NH2

S

O

O
O
–

Na
+

Na
+

- 498 696.67
Textile, Leather and 
Dyestuff industries

Brilliant
green

 

N

N

CH3

CH3

CH3
H3C

HSO4
+ 625 475.60

Pigments, Dyestuff 
and Chemical 
industries; 
Pharmaceutical uses

Crystal
violet

 
N

CH3

H3C N

CH3

CH3

Cl

NH3C CH3

+ 590 407.98
Textile, Leather and 
Dyestuff industries; 
Laundry activity
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Figure 1: Preparation of chitin and CTS molecules from the waste supply sources.

ADSORPTION TECHNIQUE

Adsorption is known as a surface phenomenon,
which  is  occurred  at  the  surface  or  interface
positions.  In  another  word,  it  mentions  a
procedure in which a material  is gathered at a
solid  surface  by  its  gaseous  or  liquid
surroundings. In 1881, the term "adsorption" was
firstly introduced by Heinrich Kayser – a German
physicist  (1853–1940)  in  order  to  distinguish
surface  accumulation  from  intermolecular
penetration,  as  well  as  which  assumes  surface
accumulation of a material to be a fundamental
feature  of  an  adsorption  process  (4).
Theoretically,  two  adsorption  types  count
physisorption and chemisorption. If the attractive
forces between the adsorbed molecules and the
solid  surface  relate  to  van  der  Waals  forces,
which are usually weak forces inducing reversible
adsorption  to  be  named  physisorption.  In
comparison,  chemisorption  involves  chemical
bonds between the adsorbed molecules and the
solid surface, which is higher strength, leading to
hard removal of the chemisorbed molecules from
the solid surface (4).

Besides,  adsorption  techniques  are  extensively
employed  to  remove  plenty  of  pollutants  from
water/wastewater,  especially  for  organic  dyes
that are not readily biodegradable.  The general
mechanism of  dye  adsorption  consists  of  three
steps  during  the  process  of  color  removal
following  as  (34):  (i)  diffusion  of  organic  dye
molecules  –  adsorbates  presented  availably  in
the bulk solution can be onto the material-based
adsorbent surface; (ii) the organic dye adsorption
on  the  material-based  adsorbent  surface  can
base  on  molecular  interactions  (i.e.,  "film
diffusion");  and  (iii)  diffusion  of  organic  dye
molecules can be moved from the surface to the
inside  of  the  materials-based  adsorbents  (i.e.,
"surface  diffusion"  or  "pore  diffusion").  The
processes  of  diffusion  and  surface  reaction
occurring on the materials-based adsorbents are
described  in  Figure  3.  Overall,  agitation  and
concentration of the organic dye molecules in the
solution  probably  impact  to  the  first  step.  The
nature  of  the  organic  dye  molecules  directly
influences  to  the  second  step,  for  example,
cationic and anionic features. At the same time,
the  third  step  regards  to  the  rate-confirming
stage in this process that surely impacts to the
adsorption  of  organic  dye  molecules  on  the
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substrates.  In  particular,  external  diffusion
occurring in the adsorption processes is the most
efficacy, while intraparticle diffusion will attain a
longer  contact  time  in  non-flow  systems.
Moreover,  these  are  influenced  by

physicochemical  factors,  examples  for
interactions  of  organic  dyes  and  adsorbents,
particle  sizes,  surface  areas  of  adsorbents,  pH
values, temperatures, and contact times.

Figure 2: Schematic of chemical structure of GO (a) and possible interactions in CTS/GO hybrid
networks (b).
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Figure 3: The processes of diffusion and surface reaction occurring on the materials-based
adsorbents.

In addition, adsorption isotherms and kinetics are
suitable  models  to  evaluate  the  adsorption
process  (35).  Specifically,  adsorption  isotherms
can  reach  through  a  change  in  the  initial
concentrations of organic dye solutions, and the
other  corresponding  parameters  are  constants
(i.e.,  contact  times,  temperatures,  pH  values,
and  stirring  speeds).  Basically,  the  removal
efficiency  will  attain  high  values  through
increases of the organic dye concentrations until
no further uptake, which is named saturation or
equilibrium  state.  The  common  adsorption
isotherm models are listed in Table 2, which are
on  basic  of  the  original  and  linearized  forms.
Concomitantly,  many other models can also be
employed to elucidate the mechanism of organic

dye  adsorption  on  a  material-based  adsorbent,
e.g., common adsorption kinetic models (Table 2
and Figure 3). In fact, the adsorption kinetics are
usually  defined  by  establishing  plots  of  the
adsorbed quantity vs. a time function to manifest
the possible nature of the adsorption process and
the  kinetics.  Overall,  in  order  to  more  easily
understand, this review has been summarized on
basic of various adsorbent types studied from the
progress  and  expansions  of  CTS/GO  hybrid
networks-based  adsorbents  coupled  with
numerous other support materials (i.e., reduced
GO,  magnetic  iron  oxide,  polymeric  materials,
metal-organic  frameworks,  etc.),  as  well  as
organic  dye  removal  efficiency  and  adsorption
mechanisms onto these emerging adsorbents.

1126



Table 2: Common adsorption isotherm and kinetic models.

Adsorption isotherms Original form Linearized form Plot
Constants 
attained from 
the plot

Langmuir qe=
qmKLCe
1+  KLCe

 Ce
qe

= 1
qmKL

+
Ce
qm

 Ce
qe
    vs Ce qm   and KL

Freundlich qe=KF
Ce
1 /n

n
 log ⁡qe=log ⁡KF+

1
n
log ⁡Ce    log ⁡qe   vs log ⁡Ce KF   and n

BET
qe=

KBCeqm

(Cs−Ce )[1+(KB−1)(
Ce
Cs

) ]
 Ce

qe (Cs−Ce )
=( 1
KB qm

)+(
KB−1
KBqm

)(
Ce
Cs

)  
Ce

qe (Cs−Ce )
  vs (

Ce
Cs

) KB   and qm

Temkin qe=
R .T .
b

ln ⁡(ATCe )  qe=
R .T .
b

ln ⁡AT+
R .T .
b

ln ⁡Ce  ln ⁡Ce qe   vs AT   and b

Dubinin-Radushkevich qe=qs e
−KD.R .ε

2  
ln ⁡qe=ln ⁡qs−KD.R .ε

2   

ε=RT ln ⁡(1+ 1
Ce

)  ln ⁡qe   vs ε2 KD.R .   and qs

Toth qe=
KTCe

t√(aT+Cet )
 log ⁡qe=2 log ⁡KT−

1
t
log ⁡aT+(2−1t )log ⁡Ce   log ⁡qe   vs   log ⁡Ce KT   and aT

Redlich-Peterson
 

ln ⁡
Ce
qe

=βln ⁡Ce− ln ⁡A  ln ⁡
Ce
qe
    vs ln ⁡Ce A and β

Adsorption kinetics Linearized form Plot Constants attained from the 
plot

Pseudo-first-order ln ( ⁡qe−q t)=ln ⁡qe−k1 t  ln( ⁡qe−q t)  vs t k1  

Pseudo-second-order
t
qt

= 1

k2qe
2
+ t
qe

 t
qt

 vs t
qe

k2  

Elovich q t=
1
β
ln ⁡αβ+ 1

β
ln ⁡t  q t    vs  ln ⁡t α and β

Intraparticle diffusion q t=k t t
0.5+ l  q t    vs  t

0.5 k t  and l

qe=
A×C e
1+BC e

β



VARIOUS CTS/GO HYBRID NETWORKS-BASED
ADSORBENTS  AND  ORGANIC  DYE
ADSORPTION PERFORMANCES

As known, CTS is  often dissolved in acetic  acid,
and GO is well stable in colloidal solutions, which
can easily couple together to attain CTS/GO hybrid
networks  with  a  homogeneous  mixture  through
electrostatic  interactions,  hydrogen  bonding,  and
–stacking  resulting  in  outstandingly  mechanical
and thermal features (6, 29). Concomitantly, the
CTS/GO hybrid  networks-based materials  can  be
prepared  from  various  methods  such  as
supplement of NaOH, violent shaking, sonication,
freeze-drying,  etc.  (6,  31-33).  As  a  result,  the
CTS/GO  hybrid  networks-based  materials  have
been  formed  with  various  shapes  such  as
membranes, beads, sponges, and columns (6, 36-
39),  and  which  are  all  utilized  successfully  as
effective adsorbents for organic dye removal from
water/wastewater (40). 

Notably,  other  components  –  support  materials
have been supplemented to enhance the organic
dye adsorption performance of the CTS/GO hybrid
networks-based  materials  in  recent  years;  in
particular,  two-dimensional  GO  has  also  been
developed  to  reduced  GO  (rGO)  or  three-
dimensional GO-based aerogels. Typically, the GO
is  formed  through  oxidizing  graphite  (i.e.,
Hummers  method)  (41),  while  the  rGO  is
synthesized  by  reducing  the  GO  (i.e.,  various
thermal methods, reducing agents, electrochemical
reduction)  (42-45).  Actually,  the  oxygen-
containing functional groups on the GO are difficult
to reduce, which still contained some on the rGO.
Besides, the rGO can combine with various metals
or  metal  oxide  particles  (46),  facilitating  their
incorporation  within  the  CTS  molecule.  For
instance,  CTS/rGO  hybrid  network  has  been
coupled with iron oxide (Fe3O4) to attain magnetic
CTS/rGO  hybrid  network-based  adsorbents  that
are effectively applied for the cefixime adsorption
(47) (Table 3). Concomitantly, a comparison of dye
removal  performance  of  CTS/GO  and  CTS/rGO
hybrid  networks  utilizing as  adsorbents  indicated
that  the  CTS/GO  hybrid  network  has  adsorbed
efficiently more (48) (Table 3), which can involve
to  the  presence  of  more  numerous  available
functional  groups  offering  a  combination  of
electrostatic interactions, hydrogen bonding and –
stacking with the organic dye molecules (4, 6, 28).
As  a  result,  the  pseudo-second-order  model
studied  in  this  research  was  the  best  model,
indicated that the organic dye adsorption could be
induced  on  the  chemical  rate-limiting  step  (i.e.,
electron share or covalent forces).

So  far,  magnetic  CTS-based  adsorbent  has
emerged  as  a  potential  material  for  removing
pollutants  from  water/wastewater.  There  has
recently  been  a  considerable  interest  in  the
magnetic  CTS/GO hybrid  network-based  material
as well (49, 50) (Table 3); notably, these magnetic
materials have shown a fast removal performance.
Obviously, the magnetism approach can facilitate

well  for  separating  the  adsorbents  from
water/wastewater  based  on  a  simple  magnetic
procedure  (51).  In  fact,  separation  of  CTS/GO
hybrid network-based materials using conventional
sedimentation  and  filtration  techniques  is  an
important challenge due to blocked and lost filters
inducing  secondary  contaminations.  Hence,  the
choice of Fe3O4 is the most efficacy, owing to its
low toxicity, good compatibility and high magnetic
features  (52).  For  preparation  methods  of  the
magnetic CTS/GO hybrid network-based materials,
it can be easily created via in- or ex-situ approach,
or  a  combination  of  both  these approaches  (49,
53), or alterations of these two methods (50, 54)
(i.e.,  CTS/  Fe3O4  hybrid  network  can  be  first
created  before  being  coupled  with  GO,  or
opposite). Nonetheless, the shape and size of the
Fe3O4 nanoparticles  are  also  important
characteristics  to couple with the CTS/GO hybrid
network-based materials for organic dye removal
performances.  Although  the  Fe3O4 nanoparticles
can be easily clustered that is mainly due to their
magnetic  nature,  several  studies  have  also  be
conducted to control  the suitable shape and size
with  the  research  aims  (54-56).  For  example,
Fe3O4 particles could be attained with the spherical
shapes and ~45 nm of size by Shafaati et al. (55),
but  their  particle  size  has  increased  with
incorporating  the  CTS,  suggesting  that  the  CTS
chains could probably induce linking together for
the neighboring Fe3O4 particles. Silica is employed
to  coat  the  Fe3O4 particles  resulting  from  the
significantly reduced agglomeration (56). Thereby,
the use of silica is a promising approach to coat
and protect  magnetic  iron-containing  particles  in
the CTS/GO hybrid networks, as well as stability of
these materials  need to be investigated more to
not leach the GO flakes or the magnetic iron oxide
particles.

In  addition,  the  CTS/GO  (or  CTS/rGO)  hybrid
networks-based  materials  with  three-dimensional
porous structures acting as scaffolds (i.e., aerogel,
foam, sponge, column) can be fabricated through
the  available  wrinkling  and  blending  of  GO
nanosheets. These scaffolds are effectively applied
in the organic dye removal applications owing to
high  surface  areas,  low  mass  densities  (porous
structure) and good mechanical strength (57, 58);
besides, these scaffolds-based adsorbents are also
easily  regained  from  the  aqueous  solution  after
completing the adsorption procedure. Indeed, the
GO or rGO alone with three-dimensional structures
reach  relatively  poor  stability  in  water,  but  this
stability  can  be  improved significantly  through a
combination of  the three-dimensional  GO or rGO
network and the CTS molecules. For instance, the
three-dimensional  CTS/GO  hybrid  network-based
columns  have  been  successfully  applied  in  five
adsorption-regeneration  cycles  reaching  >90%-
adsorption performances (6, 32), and the layered
CTS/GO hybrid network-based sponges have also
been  attained  good  stability  and  effective
recyclability  resulting  in>80%-adsorption
performances  over  five  adsorption-regeneration
cycles (59). Besides, plenty of studies on CTS/GO



hybrid  network-based  aerogel  have  been
successfully  fabricated  to  remove  effectively  azo
dyes,  anionic  and  cationic  dyes  (60,  61)  from
water.

Furthermore,  other  additives – support  materials
have  been  coupled  with  the  CTS/GO  hybrid
network  to  become  potential  and  outstanding
materials-based  adsorbents  in  environmental
applications.  For  example,  β-cyclodextrin  (Figure
4)  has  been  combined  with  the  CTS/GO  hybrid
network to enhance the adsorption performance of
methylene  blue  following  GO  <  CTS/GO  <
CTS/GO/β-cyclodextrin networks (62), similarly for
a  study  on  the  adsorption  performance  of
hydroquinone and dye molecules (63)  (Table 3).
Besides, polypyrrole (Figure 4) has also been used
to couple with the CTS/GO hybrid network basing
on polymerization of the pyrrole monomer in the
above-mentioned hybrid network, resulting in the
ternary CTS/GO/polypyrrole hybrid network-based
material that could become efficient adsorbents in
the  organic  dye  removal  applications  (64,  65)
(Table  3).  Interestedly,  these  hybrid  networks-
based  adsorbents  could  incorporate  magnetic
nanoparticles to improve the separation of  these
adsorbents  from  water/wastewater  after
completing  the  organic  dye  adsorption  process
(66) (Table 3). Concomitantly, other polymers with
high  molecular  weights  (i.e.,  polydopamine,
polyacrylamide,  and  polyacrylate  are  shown  in
Figure  4)  have  also  been  employed  to  combine
with  the  CTS/GO  hybrid  network  (67-69)  that
could  significantly  enhance  the  swelling  and
adsorption performances of these hybrid networks-
based  adsorbents  (Table  3).  In  another  word,
these  support  materials  have  offered  different
binding  sites  to  enhance  the  adsorption
performances, and which are considered promising
materials-based adsorbents. 

More  notably,  metal-organic  frameworks  (MOFs)
have  recently  attracted  much  interest  in

environmental  applications  that  is  mainly  due to
their  high  surface  areas  and  porosities  and
controlled pore structures.  Thus, they have been
used to add into the CTS/GO hybrid network that
enhances  adsorption  performance  (70,  71).
Unfortunately,  the  MOFs  are  powdered  materials
that are hard to separate from water, which is its
main  limitation  in  environmental  applications.
Thereby,  the  CTS/GO  hybrid  network  can  be
contributed  like  a  matrix  to  encapsulate  these
powdered materials that can couple with magnetic
iron to result in a necessary magnetic separation.
Besides, plenty of other support materials has also
been combined with the CTS/GO hybrid network;
for  examples,  the  use  of  hydroxyapatite
[Ca10(PO4)6(OH)2]  has  increased  strength  and
organic pollutant adsorption performance (72), the
use of silica (numerous silanol groups, Si–OH) has
favored a good dispersion of GO nanosheets within
CTS to reach effective adsorbents (73, 74), the use
of triethylenetetramine and lignosulfonate (Figure
4)  have  supplied  amine  groups  and  different
binding sites to enhance adsorption performance,
respectively (75-77) (Table 3).  In general,  these
studies  manifested  that  these  materials  could
become cost-effective, eco-friendly, and recyclable
adsorbents  for  organic  dye  removal  applications.
Additionally,  other  biopolymers  (i.e.,  gelatin,
alginate,  heparin,  and  cellulose  are  shown  in
Figure  4)  have  been  blended  with  the  CTS  to
create polymeric mixtures, which are then coupled
with  the  GO  nanosheets  to  attain  outstanding
performing  adsorbents  (78-81).  Overall,  the
pseudo-second-order  model  studied  in  these
researches were the best model; nonetheless, the
kinetic studies need to investigate more, and the
chemical/physical characterizations of the CTS can
be focused more on the degree of  deacetylation
levels,  molecular  weight,  etc.,  similarly,  for  the
GO. Also, it is needed to develop further suitable
recovery systems, as well as preparation process
of  the  adsorbents  should  be  employed  green
solvents and material sources.



Figure 4: Chemical structures of various additives.
Table 3. Adsorption data of various CTS/GO hybrid networks-based adsorbents.

Adsorbents Organic dyes
Adsorption 
performance 
(%, or mgg-1)

Adsorption 
isotherm 
models

Adsorption kinetic 
models

CTS/GO_1/15 (6)

Methylene blue,
Rhodamine B,
Congo Red,
Methyl orange

~95.0%,
>90.0%,
~70.0%,
~80.0%

-- --

CTS/GO (48) Reactive Red 32.2 mgg-1 Langmuir Pseudo-second order
Magnetic CTS/rGO 
(47)

Cefixime 30.6 mgg-1 Freundlich --

Magnetic CTS/GO 
(49)

Methylene blue 74.93 mgg-1 Freundlich Pseudo-second order

CTS/GO/-
cyclodextrin (62)

Methylene blue 1134.0 mgg-1 Freundlich Pseudo-second order

Magnetic 
CTS/GO/-
cyclodextrin (63)

Methylene blue 84.3 mgg-1 Langmuir Pseudo-second order



Polypyrrole/CTS/GO
(64)

Ponceau 4R 5.4 mgg-1 Langmuir Pseudo-second order

Magnetic 
Polypyrrole/CTS/GO
(66)

Ponceau 4R 5.1 mgg-1 Langmuir Pseudo-second order

CTS/
Polyacrylamide/GO 
(67)

Methylene blue 510.2 mgg-1 Langmuir Pseudo-second order

CTS/polyacrylate/
GO (68)

Methylene blue,
Food yellow 3

296.5 mgg-1,
280.3 mgg-1 -- Pseudo-first order,

Pseudo-second order

CTS/GO/
Hydroxyapatite (72)

Congo Red, 
Acid Red 1,
Reactive Red 2

43.1 mgg-1,
41.3 mgg-1,
40.0 mgg-1

Freundlich Pseudo-second order

CTS/
lignosulfonate/GO 
(75)

Methylene blue 1023.9 mgg-1 Langmuir Pseudo-second order

Magnetic 
CTS/lignosulfonate/
GO (76)

Methylene blue 253.5 mgg-1 Langmuir Pseudo-second order

CONCLUSIONS  AND  FUTURE  RESEARCH
OUTLOOKS

With a large number of publications, the CTS/GO
hybrid networks-based materials are employed as
potential  and  interesting  adsorbents  for  various
organic dye removal applications. In summary, the
CTS/GO  hybrid  networks  easily  couple  with
numerous other components or additives – support
materials  (i.e.,  rGO,  magnetic  iron  oxide,
polymeric materials, MOFs, etc.) that is attracting
considerable  attention,  as  well  as  the  CTS/GO
hybrid networks-based materials have attained not
only magnificent adsorption capacity with organic
dyes  but  also  heavy  metal  ions.  Nonetheless,
several challenges still exist for removing a variety
of pollutants directly implicating in terms of costs,
which  regards  the  regeneration  of  the  CTS/GO
hybrid  networks-based  adsorbents.  These
adsorbents  should  be  effectively  regenerated  to
can be employed multiple times in the adsorption
process,  which  relates  to  washing-solvents  and
natures  of  polysaccharide/carbon-based materials
(CTS/GO);  thus,  the  adsorption  capacity  can
reduce with each cycle of adsorption-regeneration
(i.e.,  the  polysaccharide  hydrolysis  on the  CTS).
These require an offer of more longer-lasting and
cost-effective  CTS/GO  hybrid  networks-based
adsorbents.

In addition to the effective performances of these
adsorbents,  they  also  need to  be  removed from
the  aqueous  solution  after  completing  the
adsorption  purposes,  especially  for  the  magnetic
CTS/GO hybrid networks. Concomitantly, there are
also concerns about the environmental influences
of  other  CTS/GO  hybrid  networks-based
adsorbents,  which  can  adversely  impact  to  the
water  environment  if  these  materials-based
adsorbents  are  leached.  Consequently,  the
emerging  CTS/GO  hybrid  networks-based
adsorbents  have  to  be  stable  and  not  leach
regarding other support materials  (i.e.,  magnetic
iron oxide particles,  GO flakes,  and MOFs,  etc.),
which  is  considered  as  one  of  the  importantly

environmental perspectives. The other studies on
intraparticle diffusion and adsorption kinetics also
need  to  be  investigated  further,  although  most
studied kinetic models regarded to pseudo-second-
order  models.  These  emerging  materials-based
adsorbents  are  attractive  and  potential  materials
that  is  probably  due  to  the  abundance  supply
source  from chitin  (seafood  waste  sources),  and
expansion  of  these  materials  in  the  various
preparation  methods  and  high-performance
studies.  Besides,  the  recent  development  has
attended to  new two-dimensional  materials  (i.e.,
MoS2,  MXenes,  and  MoSe2),  which  are  potential
support materials utilized as emerging adsorbents
and  can  easily  couple  with  the  CTS  or  CTS/GO
hybrid networks to generate novel materials-based
adsorbents with outstanding performances.
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