

Journal of Yasar University,
1(2), 149-157

149

TEACHING OBJECT ORIENTED PROGRAMMING AT THE

INTRODUCTORY LEVEL

Mehmet C. OKUR*

ABSTRACT

Teaching object oriented programming has become a rapidly expanding preference at various

educational environments. However, teachers usually experience problems when introducing

object oriented concepts and programming to beginners. How to teach the fundamentals of

object oriented programming at an introductory level course is still a common subject for

debate. In this paper, an evaluation of these problems is presented and some possible

approaches for improving the quality and success of such courses are discussed.

Key Words : Object oriented language , procedural programming, abstraction, UML,

algorithm, programming environment.

1. INTRODUCTION

Object oriented programming has become the dominant programming style in both the

software industry and education over the last ten years or so. Software companies have

released the object oriented versions of their products and educational institutions at every

level have included object oriented programming in their curricula. Most secondary school

and university courses on programming have moved from Pascal or C to object oriented

languages such as C++, Smalltalk, Eiffel and lately Java and C#. The main reasons for this

tendency are related to having advantages like; abstraction , inheritanca ,polymorphism and

encapsulation. On the other hand, object oriented methods scale up very well with the

growing sizes of real life software projects and they facilitate the creation of complex

software products. It is now widely accepted that the object oriented style offers better tools

for teaching and software development.

* Department of Computer Engineering Yasar University, Izmir, TÜRKİYE mehmet.okur@yasar.edu.tr

TEACHING OBJECT ORIENTED PROGRAMMING AT THE INTRODUCTORY LEVEL

Okur, 2006

150

Switching from the older imperative procedural programming style to object oriented

style, however, still remains to be a difficult task. Because, object orientation imposes a

paradigm shift for the educators and in most cases, for the students. For most teachers and

students, procedural style programming constitutes the first experience. It is a known fact that,

learning object oriented programming is more difficult after getting used to procedural

programming. According to observations, a considerably long period is needed for an average

student to switch his or her mind from a procedural to an object oriented approach

(Stroustrup,1994).Namely, in the transition period, an “unlearn” process takes place. This

phenomenon suggests that, if we want to teach object oriented programming, we should start

it as early as possible. Alongside with many others, our experience shows that starting with

procedural style complicates teaching and learning object oriented programming at later

stages.

Teaching object oriented programming ,on the other hand, is not an easy task. There are

no pedagogically proven methodologies to guide the teachers and institutions. Educators in

this area are still experimenting various styles and approaches to identify better and more

effective ways of introducing object oriented concepts and techniques. Some important

questions of interest that require decisions are:

• Which object oriented language should be used?

• What should be the teaching order of object oriented concepts?

• What should be the teaching environment?

• When and how deep the modeling and object oriented design elements should be included?

The choices, regarding these and similar questions, affect to a great extent the

structure and success of a course on object oriented programming. It is sometimes argued that,

object oriented technologies are too complex and full of difficulties for the earlier stages of

programming education. This is partly true but experience from numerous courses

demonstrates that, choosing effective educational pedagogies and careful design of the

courses help overcome these difficulties. Object oriented software technologies are essentially

based on the modeling of real life objects, It is therefore natural to place the description and

identification of objects at the start of a course on object oriented programming .So if we want

to teach object oriented programming, objects and their interactions should always be at the

focal point. Modeling objects and their relationships, on the other hand, can best be realized

Journal of Yasar University,
1(2), 149-157

151

by including a design element into the course right from the beginning. However, modeling,

design and implementation of objects should be integrated into the course in a coherent

manner. Modern object oriented languages and teaching aids provide effective techniques and

tools that facilitate such an integration.

2. DIFFICULTIES IN MOVING FROM PROCEDURAL TO OBJECT ORIENTED

PROGRAMMING

Traditional imperative programming languages are mostly based on the von Neumann

architecture. Their pedagogy is built upon sequence, selection and iteration. As a result,

teaching popular languages such as FORTRAN, Pascal and C is governed by the design and

implementation of common algorithms and data structures. This was best expressed by the

famous quotation “Algorithms+ Data Structures=Programs.” Here the main focus is to teach

students programming through the implementation of algorithmic methods. This educational

model necessitates teaching the syntax and basic structures of the language as early as

possible. In this process, the peculiarities and syntactical details of the language dominate,

even the earlier stages of teaching. All these tendencies are contradictory and even harmful in

case of object oriented programming, where the main focus is problem solving, rather than

language details. In order to escape these adverse effects, object oriented programming is

recommended to be the first choice for teaching and learning programming (Kölling,1999).

An important negative carry-over effect of traditional programming is caused by the emphasis

on the syntactic and structural details of the language. As a result , most teachers and students

tend to spend their times on unnecessary details rather than concentrating on real life projects

and applications. This is a fairly common observation for especially introductory level

courses. Object oriented programming education is no exception. In most cases, the syntax

and algorithmic elements of the object oriented language could shadow more important

characteristics of the object oriented paradigm. A traceable reason is the use C++ as the

teaching language for object oriented programming. It is a well known fact that C++ is a

“hybrid” language and sometimes classified as an “object oriented C”. Namely, C++ is based

on and compatible with the procedural C language. Due to this proximity,changing the

teaching and programming habits become very difficult if one tries to replace C by C++. So,

the better approach is to start teaching object oriented programming with a so called “pure”

object oriented language.

TEACHING OBJECT ORIENTED PROGRAMMING AT THE INTRODUCTORY LEVEL

Okur, 2006

152

3.THE IMPORTANCE OF ABSTRACTION AND DESIGN IN OBJECT ORIENTED

PROGRAMMING

Object oriented software products are based on objects and their relationships. In some

sense, object oriented concepts have replaced the procedural structure of traditional

programming languages. Therefore, object oriented programs should not be slightly different

versions of programs in Pascal or C .The main framework should be problem solving through

proper modeling and design of objects and classes. So, a “Hello World!” type program is

definitely a bad start .Because the syntax is being put before the problem solving dimension

of programming. A better and mostly recommended approach is to use abstraction and design

right from the beginning Nguyen and Wong,2001). Although abstract thinking may be

considered to be somehow difficult for many students to learn, it has now become an

important component in object oriented programming education. Abstraction on the other

hand, requires the modeling and design components to be introduced in even introductory

level courses.

Teaching the fundamentals of object oriented programming at introductory level

remains to be a serious pedagogical challenge. Even the most common concepts are

inherently advanced and it is difficult to form complete programs without using them. Take

for example the minimal signature of the main method, which is needed for every Java

application or simple print statements which require reference to System Class.These

concepts and frameworks could only be grasped after considerable experience in the Java

language. So, how to overcome this kind of difficulties and make object oriented

programming more manageable for the beginner?

Object oriented programming require some design effort before the actual coding

starts. Because, finding out the objects and deciding on the task allocation among them is not

a programming job. The work at this stage should be concentrated on finding answers to

questions like:

• What will the program achieve when it is completed?

• What classes and objects will be needed?

• What will be responsibilities of the classes and objects?

• What will be the information content and functionalities of each object?

Journal of Yasar University,
1(2), 149-157

153

• How will the objects handle their responsibilities?

• How will the objects communicate?

A good and well received approach in this respect is “Objects first with design

patterns” (Dock and Steegmans,2002) . The main ingredients of this approach are object

identification, object modeling and object design. Coding decisions should be based on the

realizations of this stage. Object oriented modeling and design can be facilitated by using

simple graphical integrated graphical aids. A subset of the Unified Modeling Language

(UML), or even a simple notation that uses boxes and arrows could be of great assistance. In

most courses, the use of a home-made diagrammatic notation greatly facilitates apprehension

of object-class-instance relationships. Emphasizing modeling and design right from the

beginning and coupling code with design are now well established preferences in object

oriented programming education (Ventura et.al.,2001).

4. CHOOSING THE OBJECT ORIENTED TEACHING LANGUAGE

Nowadays C++ and Java are two popular languages for teaching object oriented

programming,C++ is mostly preferred in Computer Science and Computer Engineering

curricula, because of its power as a programming language, backward compatibility with C

and relative ease of implementing classical algorithms and data structures. However, C++

lacks many characteristics that should be possessed by a language for teaching object oriented

programming. Among the problem areas are the “hybrid” nature of the language, unsafe

typing, highly complex object model and lack of readability(Kölling 1999) classifies C++ to

be one of the worst candidates as a teaching language for object oriented programming,

Java , on the other hand, is considered to be a “pure” object oriented language and does not

exhibit many important disadvantages of C++. It is also by far the most common language for

Internet environments and many network based programming tasks. These and other

advantages ,such as platform independence and relative simplicity promote Java to be the

natural choice for a teaching language at introductory levels. The market success of Java is

also another positive factor to its favor (Kölling, 1999) concludes that, among various

alternatives, Java appears to be a better choice to start object oriented programming.

5 . PROGRAMMING ENVIRONMENTS

TEACHING OBJECT ORIENTED PROGRAMMING AT THE INTRODUCTORY LEVEL

Okur, 2006

154

A suitable programming environment is important for the success of an introductory

course on object oriented programming. Traditional environments for programming include

an editor and the DOS or UNIX operating system. These are sufficient for simple application

development. Many commercial development systems are also available for common

programming languages. The use of integrated graphical development systems in teaching is

becoming more and more common. However these systems are essentially professional

development environments and their suitability as teaching aides in an introductory course are

questionable. Simply they are far more powerful and sophisticated than needed and their

advanced features make them less convenient for such a course. This kind of environments

are also criticized for their inability to reflect the object oriented concepts.

As a compromise, environments that are specifically designed for object oriented

language teaching have been developed .A popular example in this respect is the BLUE

language.The C++ and Java versions of the BLUE provides a very simple and user friendly

environment for creating and manipulating objects and methods. The system encourages the

student to think a program in terms of objects, classes and their interactions. The Java version

of the system, BLUEJ is now available as the accompanying component of a textbook

(Barnes and Kölling 2005). Depending on the next step in object oriented programming

education, this kind of Integrated environment can be chosen as the basic teaching aid.

6. OBJECT ORIENTED COURSE CONTENTS

Another critical success factor in teaching object oriented programming is the choice

and order of the topics that should be presented. The fact that, even the simplest object

oriented programs include fairly advanced concepts makes this choice more important. As we

have emphasized, the aim is not only teaching a programming language, but to integrate a

considerable amount of abstraction and design element into the course. To some extent, object

oriented programming is about building and implementing abstractions. Therefore the main

goal should be to teach program structuring and design through objects and classes. The

algorithmic details and data structures should all be based on the modeling and design work.

In structuring an introductory course, we should keep in mind that object oriented paradigm

incorporates three concepts : object, class and inheritance. The course contents should reflect

this incorporation. A possible priority list of topics could be as follows:

Journal of Yasar University,
1(2), 149-157

155

• Object

• Class, subclass and superclass

• Data and variables

• Methods

• Constructors and method overloading

• Encapsulation and visibility modifiers

• Object interactions

• Inheritance and software reuse

As indicated in the list, objects and classes should be introduced from the very

beginning of the course. Starting with very simple real life objects and classes, major

modeling and design steps of software development cycle should be followed. The

fundamental stages of this cycle constitute a natural framework for this purpose. Easily

recognized objects such as person, student, car, house, school, bank, traffic light etc. could be

chosen for illustration. From a design point of view, an object should be considered as a

software element that contributes to the solution of the problem at hand. After introducing the

fundamentals of object modeling and design, formal class definitions and instantiations can be

implemented using a minimal amount of code detail. Basic elements of the language could be

introduced after this point. Main topics that should be covered include data values and types,

variables expressions, method invocations and parameter passing.

Next the relationships among the objects and classes should be covered by

emphasizing the use of libraries, packages, reference variables and various data structures.

Full extent of Inheritance and related concepts of software reuse and streams can not be

covered in an introductory course So, the priority should be to make a sound introduction to

the fundamental concepts and leave more advanced concepts to a higher level course. It

should be stressed again that, at an introductory level course, the details of the language

should not dominate teaching so as to obscure the fundamental object oriented concepts.

7 .CONCLUDING GUIDELINES

TEACHING OBJECT ORIENTED PROGRAMMING AT THE INTRODUCTORY LEVEL

Okur, 2006

156

The following is a set of of concluding remarks based on experiences:

• Use a pure object oriented language in teaching.

• Start teaching by introducing objects and classes first.

• Demonstrate the basic concepts by referring to simple real life objects.

• Require modeling and design as fundamental components at every stage. Use a simple

graphical notation.

• Do not start coding without a proper class and object design.

• Follow a simple problem-design-implementation pattern consistently.

• Develop the solution to a new problem by including as many elements as

possible from a previous solution..

• Introduce, object associations and inheritance as early as possible but to a manageable

extent.

• Use simple algorithms and data structures that do not require advanced features of the

language.

Journal of Yasar University,
1(2), 149-157

157

REFERENCES

Barnes, D.J,, Kölling, M.(2005) : Objects First with Java. A Practical Introduction Using

BLUEJ. Prentice Hall.

Docks, van D., Steegmans, E.(2002):A new pedagogy for Programming. Sixth Workshop on

Pedagogies and Tools for Learning Object Oriented Concepts, ECOOP,Malaga Spain.

Kölling, M. (1999). The problem of teaching Object-Oriented Programming, Part 1:

Languages.Journal of Object-OrientedProgramming, 1(8): 8-15.

Kölling M, (1999).:The Problem of teaching Object-Oriented Programming, Part

2:Environments.Journal of Object-OrientedProgramming, 11(9): 6-12.

Nguyen, D., Wong, S(2001):OOP in Introductory CS: Better Students through Abstraction.

Fifth Workshop on Pedagogies and Tools for Assimilating Object Oriented Concepts.

OOPSLA,Umea,Sweden.

Nino J., Hosch, (2001): Programming and Object Oriented Design Using Java. Wiley,

Stroustrup, B.(1994.): The Design and Evolution of C++.Addison-Wesley.

Ventura, P.R., et. Al.(2001) : Teaching OOD and OOP through Java and UML in CS1 and

CS2.OOPSLA,Umea,Sweden.

