
      
 

 

Journal of Yasar University, 2014 9(36) 6261- 6380 

 

Design and Analysis of Student ECTS Credit Feedback 

Surveys using Pairwise Comparisons 

 
İkili Karşılaştırma ile Öğrenci AKTS Kredisi Geribildirim Anketlerinin 

Tasarımı ve Analizi 

 

 
Raif Serkan Albayrak, Yasar University, Turkey, raif.albayrak@yasar.edu.tr 

 

Abstract: Student ECTS Credit Feedback Surveys are implemented in order to fine tune ECTS credits of courses which are mainly calculated 

and allocated by the instructors according to the workload components they declared in the course descriptions. However, accumulated 

experience shows that the current design of surveys requires immense cognitive load on part of the student. At present, survey questions are 
posed in such a way that it requires the student to undertake a self-appraisal process regarding the workload of learning activities for a 

particular course. This article discusses an alternative design for adjusting ECTS credits; a holistic perspective based on pairwise 

comparisons of workloads of courses. Binary relationships are unfolded using Thurstone scaling and then rescaled to ECTS units through a 
measurement error model. Monte Carlo simulations are used to demonstrate the robustness of the estimators. 
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Öz: Öğrenci AKTS Kredisi Geri Bildirim Anketleri; derslere ait olan ve öğretim elemanları tarafından ders tanımında bildirilen iş yükü 

unsurları baz alınarak hesaplanan ve belirlenen AKTS kredileri hakkında geri dönüt elde etmek amacıyla uygulanırlar. Ne var ki, 

uygulamada, anketlerin mevcut tasarımının öğrenci için yoğun bilişsel yük teşkil ettiği görülmüştür. Mevcut anket soruları, öğrencinin her 

bir ders için gereken öğrenme aktivitelerinin getirdiği iş yüküne dair bir özdeğerlendirme sürecine girmesini gerektirmektedir. Bu makale 

AKTS kredilerini ayarlamak için alternatif bir tasarım sunmaktadır; derslere bağlı işyüklerinin ikili karşılaştırmasına dayanan bir bütünsel 

perspektif. İkili ilişkiler Thurstone ölçeği kullanılarak ortaya çıkarılır ve bir ölçüm hata modeli aracılığıyla AKTS birimleri olarak yeniden 

ölçeklendirilirler. Monte Carlo simülasyonları ile tahminleyicilerin özellikleri raporlanmıştır. 

Anahtar Kelimeler. AKTS Kredisi, İkili Karşılaştırma, Thurstone Ölçeği, Ölçüm Hata Modeli 

 

1. INTRODUCTION 

Through the Bologna Accords, Bologna process aims to ensure the comparability in the quality of the standards 

and the quality of the higher education system by creating a European Higher Education Area with the 

participation of 47 countries as of Budapest-Vienna declaration (B.V. Deleration, 2010). In order to facilitate this 

objective Bologna process introduced European Credit Transfer System (ECTS). ECTS is aimed to be a common 

unit in the design of the curricula that provides a clearly defined system for students and institutions (EC, 2009). 

ECTS is now widely recognized standard in design of higher education curricula across the European Union 

and other collaborating countries. Radical shift from an instructor - oriented system to a student - workload 

based methodology, has rapidly populated the literature, addressing conceptual and procedural issues with 

respect to calculations and implementations of ECTS credits.  

This article introduces a novel approach for the design and analysis of student’s ECTS feedback surveys that 

are used to regulate whether students are able to perform their tasks in the prescribed period of time. The 

calculation of ECTS credits rests on three fundamental pillars and student feedback surveys are one of them. The 

other two pillars; impositional allocation of credits by the instructors and credit allocation by reference to 

learning outcomes, are only briefly discussed in this article. 

In countries where the ECTS is legislated, periodical student surveys are administered in order to measure 

the actual workload hours it takes the student to complete all planned learning activities of a course. The 

attention is concentrated on the student’s own experience. Survey questions refer to the cells of the tabular form 

filled by the instructors in the impositional allocation of ECTS credits. Those tabular forms are detailed enough 
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for instructors to report their projections regarding the amount of time and workload required for an average or 

typical student to accomplish all academic activities such as: Class hours, preliminary studies, homework, 

presentations, seminars, project and examination preparations, laboratory study and field work. In that way, 

student surveys enable a substantial scientific tuning process where theoretical workload estimations can be 

tested against statistics revealed from data. Furthermore, the design of the survey that emulates the ECTS form 

filled by the instructors provides workload data for each academic activity enabling detailed monitoring of 

probable mismatches.  

However, current practice shows that there are a number of factors that jeopardize the validity of student 

surveys. According to Karran (2004), historical data collected from student surveys may involve 

incompatibilities as the course contents typically vary over time and the effect of this factor is multiplied with 

the changes in staff turnover. In addition, Albayrak and Gurkan (2011), discuss prevailing issues related to the 

implementations of student surveys. Requiring students, who have already successfully completed the 

requirements of a course, to fill out these surveys is problematic, since they could be reluctant to provide 

feedback due to the realization that the result of such action will not alter their academic records. In a similar 

vein, Albayrak and Gurkan (2011), underscore the effect of cognitive effort of a student spent to recall the 

amount of time commitment for each and all academic activities of a course throughout the semester and the 

precision of the data collected from such feedback surveys. In essence administrators of student surveys should 

expect contamination in data and, thus, need to use appropriate filtering techniques prior to computing statistical 

estimators. However, the usage of filtering techniques can distort cross-tabulated information regarding 

workload per academic activity.  

Another widely recognized issue related to the implementation and analysis of student surveys, is the 

fuzziness in the definition of the average student (Tuning Dissemination Conference I, 2008). The time an 

average student will need to meet the expected learning outcome may vary across student cohorts since workload 

is affected by many parameters such as; academic background, capacity, abilities, student origin, major and 

factors related to instruction of the course such as; effectiveness of teaching methods, methods of assessment and 

language of instruction. If the shape of the distribution of student workloads significantly deviates from the 

normal distribution, for instance in cases where the distribution is multimodal or skewed, then the conceptual 

average student is not adequately or fully represented by its statistical estimator. 

The quality of the survey data, and in return, the quality of the statistical estimators, depends to a large 

extent, on the design of the student ECTS feedback survey. Experience shows that the design of the survey 

should enable students to report their workloads undergoing minimum cognitive effort. This article develops a 

survey design that uses ordinal measurement through binary comparisons of workloads of courses for estimating 

ECTS credits. In each question, the total workload of two courses that the student is enrolled in, is being 

compared. It is argued that students are more successful in ordinal workload comparisons rather than reporting 

cardinal workload values of each course. Binary comparisons require a holistic perspective, whereas reporting 

cardinal values requires recalling and potentially computing working hours for each and every academic activity.  

Survey designs based on binary comparisons is efficient compared to current survey design in terms of 

number of questions as well. Current surveys ask 10 to 15 questions per course, amounting to 50 to 60 questions 

for a student enrolled in six courses. On the other hand, a binary comparison - based survey requires answering 

at most 20 questions since the answer of some questions unfolds through the transitivity property of the order 

relationship. 

In binary comparison - based designed student ECTS feedback surveys, every student compares the 

workload commitment of two courses. These surveys include all courses that the student is enrolled in per 

semester. When binary comparisons of courses are consolidated across students, workloads can be projected 

onto a scale using various techniques including Thurstone’s Scaling Algorithm (Thurstone, 1927) and the 

Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952; Luce, 1960). The basic premise of developing a 

scale from binary comparison data can be explained using a simple example: Suppose that 90% of the students 

say course A required more workload (hours) than course B and the remaining 10% say course B required more 

workload than course A
1
. Now suppose, further, that 55% say course B required more workload than course C. 

Then we should conclude that the separation between required workloads of two courses, A and B, on a scale of 

ECTS credits, is greater than the separation between B and C on the same scale. This logic may as well translate 

to talk about ‘distances on a scale of ECTS credits. 

It is known that Thurstone scales are arbitrary; meaning that they are essentially unitless. It is the aim of this 

article to revert Thurstone scales, obtained from binary comparisons, to actual ECTS units. The next section 

briefly discusses Thurstone scaling algorithm related to binary comparison- based designs of ECTS feedback 

surveys. A simulation is used to demonstrate the extraction procedure of Thurstone scales. Various probable 

                                                           
1
 For Thurstone’s initial formulation, while binariness is crucial it is as well possible to extend the framework to 

a multinomial case. 
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singularities are discussed. These scales are then transformed into ECTS units using a measurement error model. 

Coherence of instructor’s imposed ECTS credits is tested against survey data.  

 

2. THURSTONE SCALING 

In the simplest setup, we assume a group of students enrolled in an identical list of courses. This strong 

assumption can effectively be relaxed at the cost of introducing additional complexity. We further assume that 

the student workload of a course is normally distributed. Figure 1 depicts the workload distributions 𝑓(𝑋𝐴) and 

𝑓(𝑋𝐵) of students that are enrolled in courses 𝐴 and 𝐵. 

 

 

Figure 1. Student workload distributions of two courses 

In Figure 1, 𝜇𝐴 and 𝜇𝐵 are unknown average ECTS credits of courses A and B, respectively. Actually every 

single judgment in the form of; ‘A is greater than B’ or ‘B is greater than A’ in terms of workload, involves two 

variates from two distributions. As shown in Figure 1, when a student spends more hours on course 𝐴 compared 

to course 𝐵, 𝑋𝐴
𝑠 − 𝑋𝐵

𝑠  is positive for that student and negative otherwise, where the superscript stands for the 

particular student. 

For the differences in workloads of two courses we should have distribution as shown in Figure 2. In this 

figure the base line, this time, represents experienced workload differences in ECTS units (𝑋𝐴−𝐵 = 𝑋𝐴 − 𝑋𝐵) 

and corresponing ordinate represents relative frequencies of such actual experiences. To the right of the origin 

these differences are positive. The most common experience, which is assumed to represent the average 

students’ workload difference, happens to be the highest. Left of the origin represents the cases for which (𝑋𝐴−𝐵) 

are negative. Dispersion around the mean of this curve is a function of individual dispersions of the curves in 

Figure 1.  

 

 

Figure 2. Workload discrepancy distribution of two courses 

From this point forth, setup relates observation and theory. Observed 𝜋𝐴>𝐵 is the proportion of students who 

claimed that the workload of course 𝐴 is more than the workload of course 𝐵. This proportion also corresponds 

to the shaded area in Figure 2. Accordingly,  𝜋𝐵>𝐴 is the area of the unshaded region. Hence; 
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𝜋𝐴>𝐵 = Pr(𝑋𝐴 > 𝑋𝐵) = Pr(𝑋𝐴 − 𝑋𝐵 > 0) = 𝐹 (
𝜇𝐴−𝐵

𝜎𝐴−𝐵

) = 𝐹(𝑍𝐴−𝐵) 

 

Eq. (1) 

𝐹−1(𝜋𝐴>𝐵) = 𝑍𝐴−𝐵 =
𝜇𝐴−𝐵

𝜎𝐴−𝐵

    Eq. (2) 

  

Here 𝑍𝐴−𝐵 is the value that corresponds to probability 𝜋𝐴>𝐵 in the standard cumulative normal distribution. Also, 

𝜇𝐴−𝐵 = 𝜇A − 𝜇𝐵  
 

Eq. (3) 

𝜎𝐴−𝐵 = √𝜎𝐴
2 + 𝜎𝐵

2 − 2𝜎𝐴𝐵 
Eq. (4) 

This idea constructs an equation system: 𝑍𝑖−𝑗 = 𝑚𝑖 − 𝑚𝑗 for all binary comparisons between all courses. A 

solution set {𝑚𝑖|𝑖 = 1, … , 𝐿} defines a Thurstone scale. Next section discusses solution procedures through a 

simulation example. Various properties of Thurstone scales are discussed at length in Torgerson (1958) and 

Kenneth (2003). 

 

3. FROM THURSTONE SCALES TO ECTS CREDITS 

The workload estimators obtained through the previously explained Thurstone scaling procedure would satisfy 

probabilistic requirements, (�̂�𝑖 − �̂�𝑗) ≅ 𝜋𝑖>𝑗. However, since the estimators are standardized, the estimated 

values would be substantially different from the actual ECTS values. Yet, ECTS credits are themselves arbitrary; 

they are the quotients of actual workload hours and institutionally decided multipliers (a number between 25 and 

30). Since each binary comparison is carried over to workloads, Thurstone scales and ECTS credits have to be 

two measures of the same concept. As an analogy, Celcius and Fahrenheit are two scales measuring the same 

concept: temperature. One can relate these scales using a simple linear transformation. In fact, the use of any 

type of interval scales measuring the same concept, necessitates linear transformation. Thus, all we need to do is 

to find the scale equalizer linear transformation between the instructor’s prediction on the ECTS credit of the 

course and the Thurstone scale calculated from the survey data. Now, if 𝑌𝑖 is the instructor’s ECTS credit 

prediction and 𝑚𝑖 is the Thurstone scale corresponding to the same course, the parameters of this linear 

transformation can be found by solving the equation;  

 

𝑌𝑖 = 𝛼 + 𝛽𝑚𝑖    𝑖 ∈ {1,2, … , 𝑁} Eq. (5) 

 

Equation above may appear like an ordinary regression model, with the predictor variable 𝑚𝑖, but it is not 

for at least two reasons: First, the regressor variable �̂�𝑖 () is itself a prediction of a previous model (Thurstone 

setup) and therefore subject to random error. Second, the dependent variable is coming from another 

measurement effort; it is the workload prediction of the instructor regarding the average workload and is clearly 

subject to error. It is known that when there are errors in variables, estimations based on the standard 

assumptions of ordinary regression leads to inconsistent estimates (Fuller, 1987). A proper approach to compute 

the parameters of the equation is to use the measurement error model methodology. See Fuller (1987) and Cheng 

and Van Ness (1999) and references cited herein for the theory and some applications of measurement error 

models. In order to obtain appropriate estimators, measurement error models require external information about 

the error variances and the correlation between the errors. For instance, if the reliability ratio of survey data is 

known or given, consistent estimators of model parameters can be computed. In the next section, a solution 

where the reliability ratio is given is presented. For other solution variants, refer to Fuller (1987). 

In order to test the hypothesis that instructors’ and student survey workload estimations are compatible with 

each other, it is possible to use confidence intervals around the model fit. If an instructor’s workload estimation 

falls outside a pre-determined confidence interval, this serves as evidence for an inconsistency between the 

workload perceptions of two immediate stakeholders of education. 

 

4. SIMULATION 

Using a simulation run, we next show how to use and extend this setup as a decision making tool for comparing 

instructors’ imposed ECTS credits with student ECTS credit feedback survey results. We also discuss solutions 

for probable singularities that may appear in practice. 

Simulation run assumes 50 students from the same study and degree programme enrolled in five courses. 

These courses can be thought to constitute one semester study program. In practice, there might be several 
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situations that fall outside this assumption such as; students of the same degree programme might be enrolled in 

different electives and there might be students outside the degree programme taking these particular courses. 

While the solution procedure suggested in this article can be extended to handle these types of situations, the 

treatment and indexing can get quite complicated. Therefore we restrict the simulation to the most basic 

scenario. 

Workloads of courses are independently normally distributed with parameters displayed in Table 1. The unit 

of the parameters is ECTS credits. Standard deviations are chosen in such a way that there is no apparent 

dependency within means
2.

  

 

Table 1. Moments of workload distributions of courses 

Course Mean 

𝝁𝒊 

Standard 

Deviation 

𝝈𝒊 

𝐶1 3 2 

𝐶2 6 3 

𝐶3 4 3 

𝐶4 7 5 

𝐶5 10 4 
 

A binary comparison decision of a student between any two courses, say course 1 and course 2, is simulated 

by drawing two random variates, 𝐶1 and𝐶2, from the workload distributions of each course and then compared. 

Although the average workload value of course 2 is considerably bigger than the average workload value of 

course 1, workload ordering, for more than 20% of the students, is expected to be: 𝐶1 > 𝐶2. Each student 

performs all binary comparisons by comparing five randomly drawn variates, one for each course. The lower 

triangle in Table 2 shows ordering counts obtained with this method. In this run, 46 out of 50 students reported 

𝐶2 > 𝐶1 in terms of workload. Therefore,  

 

𝜋𝐶1>𝐶2
= 8% and 𝐹−1(𝜋𝐶1>𝐶2

) = 𝑍𝐶1>𝐶2
= -1.405, is in the upper triangle. 

Table 2. Observed 𝑍𝐶𝑖>𝐶𝑗
 (above diagonal) and sum of 𝐶2 > 𝐶1 values (below diagonal). The rightmost column 

depicts predicted Thurstone scales. 

 1 2 3 4 5 Thurstone 

Scales 

1 - -1.405 -0.202 -0.706 -2.054 -0.873 

2 46 - 0.524 0.000 -0.915 0.203 

3 29 15 - -0.412 -1.555 -0.458 

4 38 25 33 - -0.643 0.095 

5 49 41 47 37 - 1.033 

 

4.1. Removing Singularities 

In the simulation run, for all of the students 𝐶5 > 𝐶1 in workload, and this situation creates singularities since 

both F−1(0) = −∞ and F−1(1) = ∞. Gulliksen (1956) omits all such 0/1 entries and computes Thurstone scales 

with the remaining data. However the application of such would cause losing strong preference information of 

two courses with respect to each other. Another widely adopted solution is substituting 0/1 with 
1

𝑆
 ve 1 −

1

𝑆
 , 

where 𝑆 is the number of students that responded to the survey. This value is 50 in this particular simulation.  In 

Table 2, this adjustment is made in the bottom left cell. 

 

 

                                                           
2
 Simulation is coded in R (R Core Team, 2013) and for replicability we set the seed to 59. The reason to select 

this seed is to demonstrate some singularities that may appear in practice. 
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4.2. Weighted Regression  

Thurstone scales {𝑚𝐶1
, 𝑚𝐶2

, 𝑚𝐶3
, 𝑚𝐶4

, 𝑚𝐶5
} are displayed in the rightmost column of Table 2. Although these 

values can simply be calculated by taking row averages, in cases where the observed proportions are 

considerably different from 50%, the model needs to be re-set as a weighted least square regression model so as 

to equalize error variances (Neter, Wasserman and Kutner, 1996). In such case, we may define the regression 

equation using the following coding: 

 

𝐹−1 (𝜋𝐶𝑖>𝐶𝑗
) = 𝑚𝐶𝑖

− 𝑚𝐶𝑗
   for 𝑖 ≠ 1 

 

Eq. (6) 

𝐹−1 (𝜋𝐶1>𝐶𝑗
) = −2𝑚𝐶𝑗

− ∑ 𝑚𝐶𝑘𝑘≠{1,𝑗}  for 𝑖 = 1 

 

Eq. (7) 

Here, the second equation forces the sum of the estimators to zero. As a result, any statistical software 

package that can restrict the equation to pass through the origin, may be used to solve the system. Thus, we have 

chosen to use R Software (2013) with the weights 𝑤𝑖𝑗 = √𝑠𝑖𝑗(𝜋𝐶𝑖>𝐶𝑗
)(𝜋𝐶𝑗>𝐶𝑖

), where 𝑠𝑖𝑗  is the number of 

students who compared courses 𝐶𝑖 and 𝐶𝑗. Table 3 reports un-weighted and weighted regression estimators and 

their standard errors. 

Table 3. Predicted Thurstone Scales and predicted Weighted Thurstone Scales with standard errors 

𝒎𝑪𝒊
 Th. Scales  Stand. Errors Weighted Th. Scales Stand. Errors 

𝑚𝐶1
 -0.873 - -0.800 - 

𝑚𝐶2
 0.203 0.102 0.169 0.096 

𝑚𝐶3
 -0.458 0.102 -0.447 0.094 

𝑚𝐶4
 0.095 0.102 0.096 0.089 

𝑚𝐶5
 1.033 0.102 0.983 0.112 

 

4.3. Measurement Error Model 

In order to relate instructors’ estimation of workloads and Thurstone scales calculated from survey data, we set 

up a measurement error model. 

 

𝑌𝐶𝑖
= 𝛼 + 𝛽𝑀𝐶𝑖

+ 𝜀𝐶𝑖
    

 

Eq. (8) 

𝑚𝐶𝑖
= 𝑀𝐶𝑖

+ 𝛿𝐶𝑖
  

 

Eq. (9) 

Measurement error model assumes that both Thurstone scales calculated from survey data and survey data 

itself are erroneous measurements. In equation (8), 𝑌𝐶𝑖
 is the instructors’ report of average workload in ECTS 

units. However, both due to survey data and Thurstone scale calculations, students’ standardized perception of 

workload 𝑀𝐶𝑖
 can only be observed as 𝑚𝐶𝑖

 because of error, 𝛿𝐶𝑖
. Disregarding systematic errors in the 

observables can lead to biased and inconsistent parameter estimates, which may confound theoretical 

conclusions (Fuller, 1987). Distributional assumptions about the parameters of the error measurement model are 

listed below.  

 

 𝜀𝐶𝑖
~𝑁(0, 𝜎𝜀

2), 𝛿𝐶𝑖
~𝑁(0, 𝜎𝛿

2). Also 𝜀 and 𝛿 are uncorrelated and mutually independent. Thus, 

(𝜀𝐶𝑖
, 𝜀𝐶𝑗

) = 0 , 𝑖 ≠ 𝑗 and 𝐶𝑜𝑣 (𝛿𝐶𝑖
, 𝜀𝐶𝑗

) = 0 for all i and j. 

 

 Variances of M and m are 𝜎𝑀
2  and 𝜎𝑚

2 = 𝜎𝑀
2 + 𝜎𝛿

2 respectively. 

These assumptions relate population and sample moments shown in Table 4. 
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Table 4. Population moments and their sample equivalents 

Population Moments Sample Moments Sample Values 

𝜇𝑚 �̅� ~0 

𝜇𝑌 �̅� 6.000 

𝜎𝑚
2  (= 𝜎𝑀

2 + 𝜎𝛿
2) 𝑠𝑚

2  0.461 

𝜎𝑌
2 (= 𝛽2𝜎𝑀

2 + 𝜎𝜀
2) 𝑠𝑦

2 7.500 

𝜎𝑌𝑚 (= 𝛽2𝜎𝑀
2 ) 𝑠𝑌𝑚 1.831 

 

For identifiability, measurement error models require external information or assumption for some of the model 

parameters (Fuller, 1987). Such information includes the knowledge of at least one of: 

 

1. 𝛼 in equation (8)  

2. error variance 𝜎𝜀
2 in equation (8) 

3.  error variance 𝜎𝛿
2 in equation (2) 

4. reliability ratio 𝜅 =
𝜎𝑀

2

𝜎𝑚
2   

5. ratio of error variances 𝜆 =
𝜎𝜀

2

𝜎𝛿
2 

For the purpose of this article, controlling the reliability ratio encompasses combined accuracy of survey and 

Thurstone scaling measurement of student workload. Since it is known that Thurstone scaling has a high 

reliability ratio (Brown and Peterson, 2009), most of the conjectured inaccuracy in measuring student workload 

can be projected onto survey data. Yet, through repeated applications of surveys, reliability ratio can be 

calculated in a straightforward manner. Furthermore, as shown in proceeding pages, prudent conjectures on 

reliability ratio can relax confidence intervals around model predictions, which in return relaxes incompatibilities 

between instructor’s and students’ workload reports for a course. 

Given reliability ratio κ, the model parameters can be approximated by substituting sample moments (Table 

5). In the simulation we let κ = 0.970 be the coefficient of determination (R2) of Thurstone scales. 

Table 5. Model parameters and predicting sample moments 

Model 

Parameters 

Parameters i.t.o. 

Sample Moments 

Simulation Values 

𝛽 𝑆𝑌𝑚

𝜅𝑆𝑚
2  

4.097 

𝛼 �̅� − 𝛽�̅� 6.000 

𝜎𝑀
2  𝑠𝑌𝑚

𝛽
 

0.358 

𝜎𝛿
2 𝑠𝑚

2 − 𝜎𝑀
2  0.011 

𝜎𝜀
2 𝑠𝑌

2 − 𝛽2𝜎𝑀
2  ~ 0 

 

Therefore the parameters are computed as in the third column of Table 5. The equalizer linear transformation 

then takes the form, 

𝑌𝐶𝑖
= 6.000 + 4.097𝑚𝐶𝑖

 

Table 6 lists instructors’ imposed ECTS credits and forecasted ECTS credits. In this simulation it is assumed that 

instructors’ impositions are true in reality. Forecasted values are obtained from a binary comparison based 

design of student ECTS feedback survey, where a measurement error model follows Thurstone scaling 

procedure. 
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Table 6. Instructor’s imposed ECTS credits and outputs of the binary comparison scaling model followed by 

error measurement model 

Course Instructor’s 

ECTS 

Projection 

Model 

ECTS 

Prediction 

𝐶1 3 1.46 

𝐶2 6 6.54 

𝐶3 4 3.46 

𝐶4 7 6.96 

𝐶5 10 11.57 

4.4. Decision Making 

Student surveys are used as a mean to tune instructor’s projections on average student workload. Therefore we 

define the decision making criteria as a hypothesis test where we assume instructor’s projection match with 

student survey data. One further assumption in the decision making process is that more than half of the 

instructors’ projections are actually true. Otherwise the error measurement model would incorrectly scale the 

workload values.  

In order to conduct the hypothesis test, we need to evaluate confidence intervals around the regression line 

elicited from the measurement error model. As it is customary for such models, we have used the method of 

stochastic differentials in the derivation of confidence intervals. Thus, the variance around the regression line can 

be computed as: 

𝑉𝑎𝑟(�̂�|𝑚 = 𝑚0) = 𝑉𝑎𝑟(�̅� − 𝛽(𝑚0 − �̅�)) = {
𝜕�̂�

𝜕�̅�
}

2

𝑉𝑎𝑟(�̅�) + {
𝜕�̂�

𝜕𝛽
}

2

𝑉𝑎𝑟(𝛽) + {
𝜕�̂�

𝜕�̅�
}

2

𝑉𝑎𝑟(�̅�) 

+2 {
𝜕�̂�

𝜕�̅�
} {

𝜕�̂�

𝜕𝛽
} 𝐶𝑜𝑣(�̅�, 𝛽) + 2 {

𝜕�̂�

𝜕�̅�
} {

𝜕�̂�

𝜕𝛽
} 𝐶𝑜𝑣(�̅�, 𝛽) + 2 {

𝜕�̂�

𝜕�̅�
} {

𝜕�̂�

𝜕�̅�
} 𝐶𝑜𝑣(�̅�, �̅�) 

= 𝑉𝑎𝑟(�̅�) + 𝛽2𝑉𝑎𝑟(�̅�) + (𝑚0 − 𝑚)2𝑉𝑎𝑟(𝛽) − 2𝛽𝐶𝑜𝑣(�̅�, �̅�) Eq. (10) 
Where; 𝐶𝑜𝑣(�̅�, 𝛽) = 𝐶𝑜𝑣(�̅�, 𝛽) = 0 and the equations of the variances and covariances can be found as in 

Gillard and Iles (2006, p.10-11), with the exception that we have used degrees of freedom (L-1) as divisor in the 

computations for obvious reasons. Using simulation values, 

𝑉𝑎𝑟(�̂�) = 0.047 + 0.518(𝑚0 − �̅�)2 

Then the 95% confidence interval around the error regression model can be represented by using the square root 

of the above expression multiplied by 𝑡0.975,(𝐿−1) = 2.776. The resulting graph is displayed in Figure 3. The 

confidence intervals bound the rejection regions for the null hypothesis in decision making. If any point lies 

outside of this region, one should conclude that there is statistically significant evidence against the null 

hypothesis for that particular point where the null hypothesis is a congruence between instructor’s imposition 

and survey data. 

 

Figure 3. Confidence Intervals around the regression equation 
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Although it would not impair the calculation of confidence intervals, values too low for reliability coefficient 𝜅 

would cause  𝜎𝜀
2 to be negative. In practical applications this condition can be set as an admissibility constraint; a 

lower bound for the joint reliability of survey data and Thurstone scale computations. More specifically, 

reliability constraint should be greater or equal to the square of correlation between independent and dependent 

variables; 𝜅 ≥ 𝜌𝑌𝑚
2 . Nevertheless, when a reliability coefficient below this lower limit is used, it is still possible 

to compute relaxed confidence intervals (Figure 4).  

 

Figure 4. When reliability coefficient is decreased to 0.70, it is still possible to compute a regression line and 

corresponding confidence intervals. Dashed and solid regression lines correspond to solutions for  𝜅 = 0.70 and 

0.97 , respectively. 

 

4.5. Robustness 

Any decision making model under uncertainty is subject to false negatives (FN) and false positives (FP). In this 

context, the false negative rate is the probability of rejecting an instructor’s imposed ECTS credits for a course 

where it is actually the correct value. The false positive rate is the probability of failure to reject instructor’s 

imposition when it is actually wrong. For a robust decision making model, these probabilities should be as low 

as possible. In a hypothesis testing procedure the probability of FN is kept under control. That is why 95% 

confidence intervals around the regression life of error measurement model are used. On the other hand, FP 

probability, which is also equal to one minus the power coefficient of a test, depends on the true workload 

distribution of students and can therefore only be simulated. 

In order to estimate FN and FP rates, 100 Monte Carlo simulation runs for each rates, with different initial 

parameters per run, are used. These simulations are further replicated 100 times. Figure 5a displays FN rates. FN 

rates are within the expected 5% range. In order to calculate FP probabilities, instructor’s projection for one 

randomly selected course deviated from students’ ECTS average value. FP rates, or the rate of failure to capture 

the deviation between instructor’s and students’ ECTS values, are around 16%, which implies a power ratio of 

84% for the decision making process (Figure 5b). 

 

 



Albayrak, S. / Journal of Yasar University, 2014 9(36) 6261- 6272 

6270 
 

 

Figure 5. (a) False Negative Rates and (b) False Positive Rates in the Monte Carlo Simulation 

 

4.6. Increasing the Reliability Ratio 

Any survey data, in particular mandatory survey data, is subject to contamination. However the discrimination 

between contamination and variation should be properly made. Rasch literature introduces a misfit indicator 

called infit value,  that can handle this task from a statistical perspective (Curtis, 2004). The idea is to compare a 

particular student’s binary comparisons with the consensus and then compute residuals: 

 

𝑅𝑗,𝐴,𝐵 = 𝑆𝑗,𝐴,𝐵 − �̂�𝐴,𝐵 | 𝑆 = 1,0 Eq. (11) 

 
Where, 𝑆𝑗,𝐴,𝐵 is Student j’s workload binary comparison decision for courses A and B. If for that student the 

workload of course A is greater than the workload of course B, then 𝑆𝑗,𝐴,𝐵 = 1, otherwise 𝑆𝑗,𝐴,𝐵 = 0. 

Furthermore,  �̂�𝐴,𝐵 = F(𝑥𝐴 − 𝑥𝐵), and 𝐹(. ) is the cumulative standard normal distribution. Check that if student 

workload ordering is in pace with the consensus then residual is less than 0.5. When this residual is standardized, 

we arrive at a normally distributed statistic for a single binary comparison. 

 

 𝑧𝑗,𝐴,𝐵 =
𝑅𝑗,𝐴,𝐵

√𝜋𝐴,𝐵(1 − 𝜋𝐴,𝐵)
 

Eq. (12) 

 
Whenever the squares of these statistics is calculated for all binary comparison for that particular student and 

summed up, we obtain 𝑧𝑗
2 = ∑ 𝑧𝑗,𝐴,𝐵

2
𝐴,𝐵

𝐴≠𝐵

 value that has Chi Square distribution with [L(L-1)]-1 degrees of 

freedom. Using this method, it is possible to compute a p-value that can be used to reject a student’s complete set 

of binary comparisons. 

Another possible course to follow in order to increase reliability of survey data is to make use of inherent 

transitivity in binary workload comparison relationship. If, for a particular student, workload of course A is more 

than workload of course B, and furthermore if workload of course B is more than workload of course C, then for 

that student, workload of course A is necessarily more than workload of course C. Thus it is possible to check 

binary comparisons of students for transitivity property and eliminate or restrict student’s entries. 

 

5. CONCLUSION 

ECTS credit student feedback surveys are essential elements for fine - tuning ECTS credits and a proper 

implementation of Bologna Process. There are multiple factors that jeopardize the implementation, validity and 

reliability of these surveys. This article introduces a novel survey design based on the workload comparisons of 

courses. Rather than asking the students to report direct measures (cardinal values) of the workloads, students 

compare the workloads of courses in a binary fashion. This new design requires a new model for analysis of the 

survey data obtained in this way. The model is based on two tiers: Thurstone scaling and measurement error 

model. First tier arbitrarily scales the workloads of courses using binary comparison matrix whereas second tier 

reverts the scale to ECTS credits. Robustness of the model is tested using simulation runs. 

This type of survey implementation not only remedies weaknesses of usual ECTS feedback surveys, but also 

overcomes many complications including; the difficulty in the interpretation of the average student workload, 

high cognitive burden required to recall cardinal working hours committed for an academic activity, and data 

contamination. This new model also endows the administrators of the survey the control of the reliability ratio of 
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the overall process through which prudent claims about incompatibility between instructor projections and 

student survey results can be made. 

The simulation example used in the paper demonstrates an ideal situation, where all students of a degree 

programme and, hence, a considerably homogenous population, are enrolled on the same list of courses. 

However in reality, students of the same degree programme  are usually enrolled in different courses as electives 

and there are also students from other degree programmes taking many such courses. In this case the binary 

comparison matrix may not behave as nice as it has been idealized in the simulation example. Still, binary 

comparisons can be unfolded using the techniques discussed in this paper with minor modifications.  

Our conjectures on the proposed ECTS survey design and its analysis requires empirical justification. We 

conjectured that our design requires less cognitive effort to complete the survey. Another assumption was that 

data collected through binary comparisons are less contaminated when compared to current design. In order to 

test these conjectures, a lengthy field work is necessary which is a work in progress. 
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