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Keywords Abstract
Analytic function, Driving point impedance functions (DPIFs) are frequently used in electrical
Schwarz lemma, engineering, and they represent characteristic properties of various types of circuits
Positive real function, such as RL, RC, LC and RLC networks. In this paper, boundary analysis of driving point
Driving point, impedance functions are investigated using Schwarz lemma. Assuming that the
Impedance function, driving point impedance function, Z(s), is given as Z(s) = §+ (s — 1P +cppq(s—

Boundary analysis. 1)P*14... and it is analytic in the right half of the s-plane, novel boundaries are

obtained for |Z’(0)|. Accordingly, it is aimed to obtain novel inequalities which
presents higher boundaries for |Z(0)| and derive novel generic driving point
impedace functions by performing extremal analysis of these obtained inequalities. It
is also aimed to investigate how |Z'(s)| can be interpreted when it is considered at the
boundary. According to simulation results, frequency characteristics of obtained
driving point impedance functions can be used to design of multi-notch filters which
are localized at certain frequency values.

SAG YARI DUZLEMIN SINIRINDAKI SUREN NOKTA EMPEDANS
FONKSIYONLARI iCiN KESKINLESTIRILMiS FORMLAR

Anahtar Kelimeler 0z

Analitik fonksiyon, Siiren nokta empedans fonksiyonlar1 (SNEF), elektrik miihendisliginde siklikla
Schwarz lemmasi, kullanilmaktadir ve RL, RC, LC, ve RLC aglarn gibi farkh tipteki devrelerin
Pozitif reel fonksiyon, karakteristik 06zelliklerini temsil etmektedirler. Bu c¢alismada, siiren nokta
Stiren nokta empedans fonksiyonlarinin smir analizi, Schwarz lemmas:t kullanilarak
Empedans fonksiyonu, arastirilmaktadir. Z(s) siiren nokta empedans fonksiyonunun Z(s) = 24 cp(s —
Sinir analizi. 2

1)? + cpi1(s — 1)P*1+. . yapisinda oldugu ve sag yari s-diizleminde analitik oldugu
varsayilarak, |Z'(0)| i¢cin yeni sinirlar belirlenmektedir. Buna gore, |Z'(0)| i¢in yeni
iist sinirlar temsil eden esitsizlikler tiiretilmesi ve bu esitsizliklerin ekstremal
analizi ile yeni genel sliren nokta empedans fonksiyonlar1 elde edilmesi
amagclanmaktadir. Ayrica, sinirda oldugu disiintldagi takdirde, |Z'(s)|'nin nasil
yorumlanacagl meselesinin ¢oziilmesi de hedeflenmektedir. Benzetim sonuglarina
gore, elde edilen stiren nokta empedans fonksiyonlarinin frekans karakteristikleri,
belli frekanslarda konumlanmis ¢ok centikli siizgeclerin tasarlanmasi igin
kullanilabilmektedir.
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1. Introduction

Driving point impedance functions (DPIFs) are frequently used in electrical engineering to represent spectral
characteristics of RL, RC, LC and RLC circuits. Mathematically, DPIFs satisfy the properties of positive real functions
(PRFs). Accordingly, the DPIF Z(s), where s represents the complex frequency parameter, s=y+iw, is analytic and
single valued in Rs > 0 except possibly for poles on the axis of imaginaries. Also, Z(5) = Z(s) and RZ(s) = 0, in
Rs = 0 (Reza, 1962).

In this paper, boundary analysis of DPIFs is performed by considering the derivative of Z(s) evaluated at zero, i.e.
Z'(0). Accordingly, it is aimed to obtain novel inequalities which presents higher boundaries for |Z’(0)|and derive
new DPIFs by performing sharpness analysis of these inequalities. Also, we aim to address the issue of how canbe
interpreted |Z'(s)| when it is considered at the boundary. It may seem that evaluation of |Z’'(0)| at boundary may
narrow the results, however the analysis at the origin is a requirement which is caused by the nature of the
considered problem.

Investigation of derivative of DPIFs is still a hot topic in the literature although the pioneer studies are back to
1930s. As one the pioneer works, Van Der Pol used the derivative of DPIFs to establish a relation between electrical
and magnetic energy (Van Der Pol, 1937). In another work, Hazony showed that it is possible to utilize the DPIFs
for gyrator design (Hazony, 1963). Theoretical analysis of positive real derivatives of DPIFs is given by (Krueger
and Brown, 1969) where it’s proved that the derivative of an RC driving point admittance is positive real under
certain coefficient conditions. There are also other studies on boundary analysis of DPIFs using Schwarz lemma in
the literature (Ornek and Diizenli, 2018; 2019).

The rest of the paper is organized as follows: Preliminary Considerations are given in Section II. In the next section,
Main Results are presented with simulative findings. At the end, Conclusions are given in Section IV.

2. Preliminary Considerations

Let us consider a function h(z) an analytic in the unit disc E = {z: |z| < 1}. Schwarz’s Lemma, which is a
consequence of the Maximum Principle, says that if h: E — E is analytic with h(z) = a,2zP + ap,,2P*'+.., then

|h(2)| < |z|?, for every z € E and thus |ap| < 1. In addition, if the equality |h(z)| = |z| holds for any z # 0, or
|h'(0)| = 1 then f is a rotation, that is,h(z) = zPe?, 8 real (Dineen, 2016).

On the other hand, in the book (Kresin and Maz'ja, 2007), Sharp Real-Parts Theorem’s (in particular
Carathéodory’s inequalities), which are frequently used in the theory of entire functions and analytic function
theory, have been studied. Also, a boundary version of the Carathéodory’s inequality is considered in unit disc and
novel results are obtained in (Ornek, 2015). Mercer prove a version of the Schwarz lemma where the images of
two points are known (Mercer, 1997). Also, he considers some Schwarz and Carathéodory inequalities at the
boundary, as consequences of alemma due to Rogosinski (Mercer, 2018a). In addition, he obtain an new boundary
Schwarz lemma , for analytic functions mapping the unit disk to itself (Mercer, 2018b). At first, as in Schwarz
lemma, Carathéodory’s inequality at right half plane for positive real functions will be presented.

In Fig. 1, positive real Z(s) function is mapped from right half plane to unit disc. In this way, 9(z) function has been
obtained where it maps the unit disc to unit disc.
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A

s-plane
H ={seC:Rs>0} E={:€E:|_’|<1]

Figure 1. Mapping from RHP of s—-domain (H) to unit disc in z-domain (E).

Let Z(s) = %+ b,(s — 1)P + by,4(s — 1)P*'+..be a positive real function with 0 < RZ(s) < A for Rs > 0 and
consider the function

[ (1+Z) ]1 1 s-1 si—1
9(2) = w7 = 2= 0% = (1.1)

eZ[AZ(1+§) 1]+1 i=11-7;z si+1

2
A e WY [ T R I
2 \A (1-2)P A(1-z)P*1 2\ 2\4 (1-2)P A(1-z)P*1 1
19(Z) = 2 n Z—Zj
24 in (b_p 2p+1zp n 2P 42D, 1zP 1L + ) + 1fin (b_p 2pt1zp n 2P+2py 2P + ) + =113
2 \A (1-2)P A(l—z)p+1 e 2\ 2 \a (1-2)P A(l—z)p"’l eee e
2
iﬂ (b_p 2p+1 n 2p+2bp+1z N ) n lZp E(b_p 2p+1 n 2p+2bp+1z + ) +
9(z) 2 \A (1-2)P = A(1-z)pt1 "7 2 2 \A4 (1-2)P = A(1-z)pt1 77 1
zP - n  Z-Zj

5 -
a4 (bp 2P+1,p n 2P+2p), 1 zP*1 n ) N 1fir (b_p 2P+15p n 2P+2py, 1 zPH1L n ) n =117,
2 \A (1-2)P A(1-z)P*1 2\ 2 \4a (1-2) A(1-z)pPt1

and passing to limit (z — 0) in the last equality and from Schwarz lemma yields

|bp| anl zil = HZF’H

This result is sharp with the function

sl+1

We thus obtain the following lemma.

Lemma 1 Let Z(s) = %+ by(s = 1)P + by,1(s — 1)P* +..., p = 1 be a positive real function with 0 < RZ(s) < A

for Rs = 0.Assume that s, ..., s, are points in right half plane that are different from s = 1 with Z(s;) = g. Then we
have the inequality
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|bp| < 25T, (12)

Si_1|
si+1 ’

The inequality (1.2) is sharp, with equality for the function

[ [

s 1 Sl—l

S+1 Si +1\
|
o

SL ls 1
A 2 | Si+is+1
Z(S)=Ei 1+Eln| s—1_si—1

1 (s—l)p n st sptt |
s+1 i=1 5i—1s-1
5 +1s+1

Frequency characteristic graphics related to Z(s) obtained in Lemma 1 are given in Fig. 2. For simplicity, it is
assumed that parameters of Z(s) are givenas A = 1 and s; = s, = s3 = 5, = 1. According to Fig. 2, various filter
structures can be possibly determined using the obtained DPIF. It is common for all filters that they have a spiky
structure at low frequency values where the number of the spikes increases proportionally with n parameter. It
can be observed from the figures that p parameter has no effect on the number of the spikes however it slightly
changes the smoothness of the spikes.

p=1, n=2 p=2, n=2

p=1, n=1 p=2, n=1

1.6 1.2 15 1.5
1.15
1.4 1 1
= z = =
S N 5 S
1.2 ¢ 0.5 0.5
1
1 s 0
0 5 10 15 20 0 5 10 15 20 ) 20 0 5 10 15 20
w [t w [ w — w [
=3, n=1 =4, n=1 p=3, n=2 =4, n=2
1.4 L1 15 p=.0 15 15 P
1.2
. o 1 1
% s S =
0.5 0.5
0.8
0.6 05 o 0
0 5 10 15 20 0 5 10 15 20 20 ] 5 10 15 20
o wlz] w [z
an=1 b.n=2
p=1, n=3 p=2, n=3
15 15 p=1, n=4 p=2, n=4
1.5 2
1 1 1.5
= = . =
N [T = o
05 0.5 N RS
0.5
05
0 0
0 5 10 15 20 10 15 20 0 0
w [z w 2] 20 0 5 10 15 20
\- w [
p=3, n=3 p=4, n=3 «
15 2 p=3, n—4 p=4, n=4
15 15
15
o 5 -y °f _
S 8 = =
0.5 8 N
05 0.5 0.5
0 0
0 5 10 15 20 0 5 10 15 20 0 o
w [k w 1] 0 20 0 5 0 15 20
w [22
cn=3 dn=4

Figure 2. Frequency magnitude graphic of Z(s) function obtained in Lemma 1 for different n and different p values.
Since the area of applicability of Schwarz Lemma is quite wide, there exist many studies about it. Some of these

studies is called the boundary version of Schwarz Lemma. An important result of Schwarz lemma was given by
Osserman (Boas, 2010, Dubinin, 2004; Mercer, 2018a; Osserman, 2000; Reza, 1962).
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3. Main Results

In this section, a boundary analysis results for the derivative of Positive Real function are presented. From the
definition of PRFs, we can state that Z(s) is analytic and single valued on the right half of the s-plane. In the
following theorem, we establish lower bounds on the derivative of Z(0) for positive real functions with Z(0) = A.

Theorem 1 Let Z(s) = % + b, (s — 1)P + b,y1(s — D)P*14+..., p = 2 be a positive real function with 0 < RZ(s) < A
for Rs = 0 that is also analytic at the point s = 0 of the imaginary axis with Z(0) = A. Assume that s,,...,s, are
points in right half plane that are different from s = 1 with Z(s;) = %. Then

Si—1

s |—”2p|bp|
o ) (2.1)

ezl

n
=1

2A

24 Rs;

Z'(0)] == n =L
HOEE: <p+21_1 it o

The results (2.1) is sharp for the function given by

s—1_si—1
11— s-1 p+1 - S+1 s;+1
s+1 =1 _Sit1s=1
A 2 | sitis+1 |
“l1+=In — , p=24,..
2 i 14 '(E)ZH—I n m_s:ﬂ
vt =1 §i-1s-1
sj+1s+l
Z(s) = ) 5ot syt )
. (s—1 n S+l s;+1
A /1 ti (s+1) i=1 51‘15—1\
| Tsiris+1 |
E 1+—1n| 51 51 , p=3,5,
1 .(s—l)p n S+l si+1
—i(== A
s+1 =1 5-1s-1
Sj+1s+1
where sy,..., s, are positive real numbers.
Proof. Consider the function
im2,01+z) n
ez [AZ(I—Z) 1] -1 Z— Zj
f(z)=mand B(Z)=| |1—Z_iZ.
ez2la"\1-z +1 i=1

f(2) and B(z) are analyticin E, and |f(2)| < 1, |B(2)| < 1 for z € E. By the maximum principle for each z € E, we
have |f(z)| < [B(2)I.

The composite function

_f®
~ B(2)

m(z)

is analytic in the unit disc E, [m(z)| < 1 for z € E, m(0) = 0 and |m(—1)| = 1 for —1 € dE. Moreover, it can be
seen that

-Df' (=D _

o vy CDB'(=D
Foy = DI B D =

B(-1)
Besides, with the simple calculations, we get
N 1—|z]?

B'(-1)| = _
IB" (=D — |1+ 2|2
i=
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Therefore, m(z) function satisfies the assumptions of the Schwarz lemma on the boundary, we obtain

1-|c , -Df'(-1) (-1DB'(-1)
p+ |p|$|m(—1)|= -
1-c,] f-1) B(-1)
=|f'(-DIl-B'(-D)]
4im Z(0)-1 n
Ez@elEoll &y
= 1z
(ez 22(0)- 1]+1> £ |1+ z]
n
s 1— |z
=—|Z'(0)] - ) —m.
2AI I — |1+ z|?
Since
|CP|_2AH ', |Z|| p|
we take
14
N 1= 2Al%?=1 |zl 17'(0)] — Z = lz|?
p 1_L|b|—2A |1+ z;|?
2AH?=1|Zi|
and
24TT%, |z;| — =2P|b
+ i=1 1 | | Z | l|2 _ |Z (0)|
2ATIY, |zl + m27|b,| 11+2z]2~ 24
Now, we shall show that the inequality (2.1) is sharp. Let
z-zj
Z(1+Z>_A 1+21 1_"(Z)p_'—ll_[lllzz —24 _S_l _Si_1
1-—2) 2 P 1+i()PHe, ==L ) p= "”"Z_s+1'zi_sl-+1'
1-z;z
Then
» z— zl p+1 1—|z;|? n  2Z7%
2 Z’(1+Z) A ((p+ Diz? [ +1(z) X (1-7;2)(z—zp 1 1i=1 1—z_iz)k
_ 2 — ] i i
1-2) 1-z) in (1 + l(Z)p+1 Hl ] 12 zi )(1 — ()P I, 1ZZZZ)
) Z-Zj p+1l 1-|z;? n Z7Z%Zi
_i((pJ’l)lZ M 5 H IO e [T 1—z7~z)l
o (1 i T, ) (1- i T, 22
where
n
zZ— z;
k=1+i" ] [ 1=
L 11—2z
i=1
and
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n

l=1—i(z)p+1| | -
L4 1-2z
i=

For z = —1 and since s;,..., s, are positive real numbers, we obtain

24~ (=00 + DIC-DP +i(-DP T, 72 (1 - i(-)P*)

Z'(0) =

i (1= i(-DP)( + i(-1)P+D)
24 (= + DICDP +i(-DP L, 72) A+ (=17
_F (1= i(=DPD(A + i(-1)P*D) ’
24— (=0 + DICDP +i-DP B £2) A= i-DP)
Z'(0) = i 2
24 (= + DI +i(~1P B, T72) A+ i(-DP)
_E 2
and
12 (0)] = <p+1+21;j)
Similarly, let
Stz Al 2 1+i@P L ac Cs-1 s—1
(1—z>_5 A vy ) D s EE &

lllzz

Then,

1Z'(0)| = <p+1+21;?>.

Also, since z; = S— we take
l

12/(0)] = 22 +1+Zl_si+1 -2 +1+Zn:1
()_n p 145 @ p _1si'
= i=

In addition, since |bp| =0, (2.1) holds.

In Figs. 3 and 4, frequency characteristic graphics are given for DPIF obtained in Theorem 1 for even and odd
values of p, respectively. As in Lemma 1, again n is the significant variable that determines the number of the spikes
here. According to figures, notches have a sharper structure when p takes odd values and they are smoother for
even values of p.
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Figure 3. Frequency magnitude graphic of Z(s) function obtained in Theorem 1 assuming that p parameter takes even

values.
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Figure 4. Frequency magnitude graphic of Z(s) function obtained in Theorem 1 assuming that p parameter takes odd values.

Theorem 2 Let Z(s) = % + by(s — P + byy1(s — 1)P*1+..., p = 2 be a positive real function with 0 < RZ(s) < A

for Rs = 0 that is also analytic at the point s = 0 of the imaginary axis with Z(0) = A. Suppose that Z(s) has no
points right half plane except s = 1 and b, > 0. Then we have the inequality

2byln? ﬁb
1Z'(0) 2%(1} ——— (Gt ) (2.2)

2bp1n(ﬂbp)+|pbp+2bp+1|

and

Dby + 2By | < 2 |Bpn (b, ). (2.3)

2A

The equality in (2.3) occurs for the function

al 2 1S o (5)
[ 14+=In s+l — , p=24
2 LT 1—i (E)P esln( A bp)
Z(s) = ,
e
E 1+ ,—ln s+l 2 ) p= 3'5'
o\t (%)p eSI"( )
S

where In (%bp) < 0and bp > 0.
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Proof. Let b, > 0 in the expression of the function Z(s). Also, the function Z(s) has no points in the right half plane
except s = 1 and f(2) be as in the proof Theorem 1. Consider the funtion

_f@

™=y

where u(z) = iz? So, the maximum priciple implies that for each z € E, we have |f(2)| < |u(z)|. Therefore,
Im(z)| < 1 for |z| < 1. Thus, we obtain

m(0) =2 b, (2.4)

Having in mind equality (2.4), we denote by Inm(z) the analytic branch of logarithm normalized by the condition

2P
Inm(0) = In <ﬂb,,) <o.

The auxiliary function

_ Inm(z) — Inm(0)
~ Inm(z) + Inm(0)

9(2)

is analyticin E, |g(z)| < 1for z € E, g(0) = 0 and |g(—1)| = 1 for —1 € JE. Therefore, from (1.3) for p = 1, we
obtain

|2Inm(0)]
[Inm(—1) + Inm(0)|?

m'(=1)
m(=1)

<lg'(=Dl=

2
1+1g'(0)l

_ —2lnm(0)
" In2m(0) + arg?m(—1)

-2 (A |Z'(0)] )
< — -p)
Inm(0)\r 2

Af'DI = l'(=1)D

L m(0)  |pb,+2by.
g (O) - 1 - 2P
2m(0)Inm(0) 2b,In (—b )
24 P

and

2 __—2 (AlZ©
|pbp+2bpia| — 2P E 2 P
14 22l = (22 )

2P 24 P
2bpln(7bp)

Thus, we have the inequality (2.2). Similarly, the function g(z) satisfies the assumtions of the Schwarz lemma, we
take

|2Inm(0)|
[Inm(0) + Inm(0)|?

m'(0)

121g'(0)] = (0

_ =1 pby +2by
2 (Zob,) o

and
[pby + 2bpss| < 2 |byln (b, ).
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Now we shall show that inequality (2.3) is sharp. Let

14z (nzpb)
Z(1+Z) A 1+21 1+ izPet= i 24 s—1
= — —In , = 4,4...,Z = .
1-—2z 2\ i\ izpefr;l ("zpbp) } p s+1

After simple calculations, we take

] 1+§1 (nzpbp>
TG g o o2

Lz, (2P
1—izPel-z \24°F

= zPw(2).

Therefore,we have

o726 _q

yA4

2
; p+1 p+2 P p+1 p+
_im(by_2 27 by PR T by 2 20" bpsa7 +o. )] +..
2\A(1-2)pP A(l—z)P+1 2 2\A(1-2)p A(l—z)erl

w(z) =

and

lw'(0)] = Ipb + 2Dy

In addition, let

1+z, (m2P
Ziel—zl< b”)

1tz <n2pb )
1—izPel-= p

w(z) =

Taking the derivative of the function w(z), we get
1+z, (m2P 1+z, (m2P
2 _1n (ﬁbp) el- 1" ( bP) (1 —izPel- 0 ( bp))

(1-2)2 2A
) 1+z1 (nzpb ) 2
1—izPel-z P

14z, (m2P 1+z, (m2P 1+z, (m2P
(Z,Zp—leﬁln(ﬂ”p) +—2% In (ﬂ bp) ez‘“(ﬁbz))) e1-2" n(S0p)
2A

w'(z) = 2i

(1-2)?

14z, (n:zpb ) 2
1—izPel-= P

+i

and

o1 ()

Thus, we obtain

2P
|pb, + 2by44] —2|b 1n(2A b )|

Similarly, forp = 3,5,...
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In Figs. 5 and 6, frequency characteristic graphics of Z(s) function obtained in Theorem 2 are given for even and
odd values of p, respectively. Here, A and b, values are assumed to be equal to 1. According to Figs 5 and 6, |Z(s)|

has an self-repeating structure which makes it possible to comment that the filters given here are sampled
(discrete in time) analog filters since their frequency spectrum has a periodical structure.
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Figure 5. Frequency magnitude graphics of Z(s) function obtained in Theorem 2 for even values of p.
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Figure 6.Frequency magnitude graphics of Z(s) function obtained in Theorem 2 for odd values of p.

3. Conclusions

In this work, Schwarz Lemma has been used for boundary analysis of DPIFs by analyzing the derivative of DPIF at
the origin. Within the manuscript, a lemma and two theorems have been presented and lower boundaries have
been obtained for |Z’(0)|. Performing sharpness analysis of obtained inequalities, three DPIFs corresponding to
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three generic filter structures have been obtained. According to simulation results, different filter structures can
be obtained by utilizing the resulting DPIFs. Simple filter structures are determined when the DPIFs obtained in
Lemma 1 and Theorem 1 are utilized. On the other hand, an oscillating DPIF is obtained in Theorem 2. Various
filter structures showing distinct characteristics in frequency domain can be determined by performing analyses
presented in this study.
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