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0000-0002-3258-6240 and 0000-0001-8855-9260

Abstract. The aim of this paper we establish some new inequalities of Hermite-

Hadamard type by using (η1, η2)−strongly convex function whose nth deriva-

tives in absolute value at certain powers. Moreover, we also consider their
relevances for other related known results.

1. Introduction

In the following integral inequalities which are well known in the literature as
the Hermite-Hadamard inequality.

(1.1) f
(
a+b

2

)
≤ 1

b−a
∫ b
a
f (x) dx ≤ f(a)+f(b)

2 .

where f : I ⊆ R→ R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b.

Many authors have studied and generalized the Hermite-Hadamard inequality
in several ways via different classes functions. For some recent result related to
the Hermite-Hadamard inequality, we refer the interested reader to the papers.
[4− 15] . Convex functions have played an important role in the development of
various fields in pure and applied sciences. A significant class of convex functions
is strongly convex functions. The strongly convex functions also play an important
role in optimization theory and mathematical economics.

Now let’s state the definitions necessary for our work.

Definition 1.1. [11]A set I ⊆ R is invex with respect to a real bifunction η :
I × I → R, if

(1.2) x, y ∈ I, λ ∈ [0, 1] =⇒ y + λη (x, y) ∈ I.
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If I is an invex set with respect to η, then a function f : I → R is called preinvex ,
if x, y ∈ I and λ ∈ [0, 1] .

(1.3) f (y + λη (x, y)) ≤ λf (x) + (1− λ) f(y).

In 2016,Gordji et al. [11] introduced the concept η−convexity as follows:

Definition 1.2. A function f : I → R is called convex with respect to η−convex,
if

(1.4) f (tx+ (1− t)y) ≤ f (y) + tη (f(x), f(y))

for all x, y ∈ I and t ∈ [0, 1] .

Definition 1.3. [24] Let I ⊆ R be an invex set with respect to η1 : I × I →
R. Consider f : I → R and η2 : f (I) × f (I) → R. The function f is said to be
(η1, η2)− convex, if

(1.5) f (x+ λη1 (y, x)) ≤ f (x) + λη2 (f(y), f(x))

for all x, y ∈ I and λ ∈ [0, 1] .

Definition 1.4. Let I ⊆ R be an invex set with respect to η1 : I×I → R. Consider
f : I → R and η2 : f (I)×f (I)→ R. The function f is said to be (η1, η2)− strongly
convex, if c ≥ 0,

(1.6)
f (x+ λη1 (y, x))
≤ f (x) + λη2 (f(y), f(x))− cλ (1− λ) η1 (y, x) η2 (y, x)

for all x, y ∈ I and λ ∈ [0, 1] .

Definition 1.5. An (η1, η2)− strongly convex function reduces to

Remark 1.6. (i) If we choose c = 0 in definition 1.4 we obtain (η1, η2)− convex
function.

(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in definition 1.4 we
obtain η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in definition 1.4
we obtain preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in definition 1.4 we
obtain classical convex function.

(v) If we choose η1 (x, y) = η2 (x, y) = x− y in definition 1.4 we obtain strongly
convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in definition 1.4 we obtain
η − strongly convex function.

2. Main Results

In this section, we establish some new inequalities of Hermite-Hadamard type
by using (η1, η2)−strongly convex function whose n th derivatives in absolute value
at certain powers. Moreover, we also consider their relevances for other related
known results.

Lemma 2.1. Let I ⊆ R be an invex set with respect to η1 such that for all x ∈
I and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differentiable functions on
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I◦ with a < b, and n ∈ N+. For any a, b ∈ I◦ with η1 (b, a) > 0, suppose that
fn ∈ L1 [a, a+ η1 (b, a)] . Then for α > 0, the following equality holds;

(2.1)

1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx

−
∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

= η1(b,a)nthis

2(n!)

∫ 1

0
tnf (n) (a+ tη1 (b, a)) dt

Proof. By integration by parts, it follows that
(2.2)

η1(b,a)n+1

2(n!)

∫ 1

0
tnf (n) (a+ tη1 (b, a)) dt

= −η1(b,a)n

2(n!) f (n−1) (a+ η1 (b, a)) + η1(b,a)n

2[(n−1)!]

∫ 1

0
tn−1f (n−1) (a+ tη1 (b, a)) dt

= −η1(b,a)n

2(n!) f (n−1) (a+ η1 (b, a))− η1(b,a)n−1

2[(n−1)!] f
(n−2) (a+ η1 (b, a))

+η1(b,a)n−1

2[(n−2)!]

∫ 1

0
tn−2f (n−2) (a+ tη1 (b, a)) dt

= −
∑n−1
k=1

η1(b,a)k+1f(k)(a+η1(b,a))
2(k!) + η1(b,a)2

2

∫ 1

0
tf
′
(a+ tη1 (b, a)) dt

= −
∑n
k=1

η1(b,a)kf(k−1)(a+η1(b,a))
2(k!) + 1

2

∫ a+η1(b,a)

a
f (x) dx.

with the same argument as the above we have
(2.3)

η1(b,a)n+1

2(n!)

∫ 1

0
(t− 1)

n
f (n) (a+ tη1 (b, a)) dt

= −η1(b,a)n

2(n!) (−1)
n
f (n−1) (a) + η1(b,a)n

2[(n−1)!]

∫ 1

0
(t− 1)

n−1
f (n−1) (a+ tη1 (b, a)) dt

= −η1(b,a)n

2(n!) (−1)
n
f (n−1) (a)− η1(b,a)n−1

2[(n−1)!] (−1)
n
f (n−2) (a)

+η1(b,a)n−1

2[(n−2)!]

∫ 1

0
(t− 1)

n−2
f (n−2) (a+ tη1 (b, a)) dt

= −
∑n
k=1

η1(b,a)k(−1)kf(k−1)(a)
2(k!) + 1

2

∫ a+η1(b,a)

a
f (x) dx.

Adding these two equations leads to Lemma 2.1. �

Lemma 2.2. Let I ⊆ R be an invex set with respect to η1 such that for all x ∈
I and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differentiable functions on
I◦ with a < b, and n ∈ N+. For any a, b ∈ I◦ with η1 (b, a) > 0, suppose that
fn ∈ L1 [a, a+ η1 (b, a)] .Then for α > 0, the following equality holds;

(2.4)

1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx+ 1

η1(b,a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
∑n
k=1

η1(b,a)k[1+(−1)k]
2k(k!)

×
[
f (k−1)

(
a+ 1

2η1 (b, a)
)

+ f (k−1)
(
b+ 1

2η1 (a, b)
)]

= η1(b,a)n

2(n!)

[∫ 1
2

0
(−t)n f (n) (a+ tη1 (b, a)) dt

+
∫ 1

1
2

(1− t)n f (n) (b+ tη1 (a, b)) dt
]
.

Proof. This follows from integration by parts immediately. �

Theorem 2.3. Let I ⊆ R be an invex set with respect to η1 such that for all
x ∈ I and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differentiable functions
on I◦ with a < b, and n ∈ N+ (η1, η2)−strongly convex function where η2 is
an integrable bi functionon f(I)× f(I) with modulus c ≥ 0. For any a, b ∈ I◦ with
η1 (b, a) > 0, suppose that fn ∈ L1 [a, a+ η1 (b, a)] and |fn|q for q ≥ 1.Then for
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α > 0, the following inequality holds;

(2.5)

∣∣∣∣ 1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx−

∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

∣∣∣∣
≤ η1(b,a)n

2(n!)

(
2

n+1

)1− 1
q

×
(

2
n+1 (|fn (a)|q) + 1

n+1η2 (|fn (b)|q , |fn (a)|q)− 2cη1(b,a)η2(b,a)
(n+2)(n+3)

) 1
q

.

Proof. By using Lemma 1, the power mean inequality and the (η1, η2)−strongly
convex function of |fn|q , we have
(2.6)∣∣∣∣ 1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx−

∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

∣∣∣∣
≤ η1(b,a)n

2(n!)

∫ 1

0
[tn + (1− t)n]

∣∣f (n) (a+ tη1 (b, a))
∣∣ dt

≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n] dt

)1− 1
q
(∫ 1

0
[tn + (1− t)n]

∣∣f (n) (a+ tη1 (b, a))
∣∣ dt) 1

q

≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

)1− 1
q

×
(∫ 1

0
[tn + (1− t)n] [|fn (a)|q + tη2 (|fn (b)|q , |fn (a)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt

) 1
q

= η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

)1− 1
q

×
(

(|fn (a)|q)
∫ 1

0
[tn + (1− t)n] dt+ η2 (|fn (b)|q , |fn (a)|q)

(∫ 1

0
t [tn + (1− t)n] dt

)
−cη1 (b, a) η2 (b, a)

∫ 1

0
t (1− t) [tn + (1− t)n] dt

) 1
q

= η1(b,a)n

2(n!)

(
2

n+1

)1− 1
q
(

2
n+1 (|fn (a)|q) + 1

n+1η2 (|fn (b)|q , |fn (a)|q)− 2cη1(b,a)η2(b,a)
(n+2)(n+3)

) 1
q

where

(2.7)
∫ 1

0
[tn + (1− t)n] dt = 2

n+1

(2.8)
∫ 1

0
t [tn + (1− t)n] dt = 1

n+1

and

(2.9)
∫ 1

0
t (1− t) [tn + (1− t)n] dt = 2

(n+2)(n+3)

This completes the proof of the theorem. �

We will give some special cases of Theorem 2.3 which show that our result
generalize several results obtained previous works.

Remark 2.4. As can be seen from the special elections below, our results are more
general.

(i) If we choose c = 0 in Theorem 2.3 the results are we obtain also provided
for (η1, η2)−convex functions, is proved by S. Kermausuor et. al. [25].

(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in Theorem 2.3 the
results are we obtain also provided for η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in Theorem 2.3
the results are we obtain also provided for preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in Theorem 2.3 the
results are we obtain also provided for classical convex function.
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(v) If we choose η1 (x, y) = η2 (x, y) = x− y in Theorem 2.3 the results are we
obtain also provided for strongly convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in Theorem 2.3 we obtain
η − strongly convex function.

Theorem 2.5. Let I ⊂ R be an invex set with respect to η1such that for all x ∈ I
and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differantiable functions on
I◦ with a < b, and n ∈ N+ (η1, η2)−strongly convex function where η2 is an
integrable bi functionon f(I) × f(I) with modulus c ≥ 0. For any a, b ∈ I◦ with
η1 (b, a) > 0, suppose that fn ∈ L1 [a, a+ η1 (b, a)] and |fn|q for q ≥ 1.Then for
α > 0, the following inequality holds;
(2.10)∣∣∣∣ 1

η1(b,a)

∫ a+η1(b,a)

a
f (x) dx−

∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

∣∣∣∣
≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p

×
(
|fn (a)|q + 1

2η2 (|fn (b)|q , |fn (a)|q)− cη1(b,a)η2(b,a)
6

) 1
q

,

where 1
p + 1

q = 1.

Proof. By using Lemma 1, the Hölder’s inequality and the (η1, η2)−strongly con-
vexity of |fn|q , we have
(2.11)∣∣∣∣ 1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx−

∑n
k=1

η1(b,a)k[f(k−1)(a+η1(b,a))+(−1)kf(k−1)(a)]
2(k!)

∣∣∣∣
≤ η1(b,a)n

2(n!)

∫ 1

0
[tn + (1− t)n]

∣∣f (n) (a+ tη1 (b, a))
∣∣ dt

≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p
(∫ 1

0

∣∣f (n) (a+ tη1 (b, a))
∣∣q) 1

q

≤ η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p

×
(∫ 1

0
[|fn (a)|q + tη2 (|fn (b)|q , |fn (a)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt

) 1
q

= η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p

×
(
|fn (a)|q

∫ 1

0
1dt+ η2 (|fn (b)|q , |fn (a)|q)

∫ 1

0
tdt− cη1 (b, a) η2 (b, a)

∫ 1

0
t (1− t) dt

) 1
q

= η1(b,a)n

2(n!)

(∫ 1

0
[tn + (1− t)n]

p
dt
) 1

p
(
|fn (a)|q + 1

2η2 (|fn (b)|q , |fn (a)|q)− cη1(b,a)η2(b,a)
6

) 1
q

.

It can easily be verified that tn + (1− t)n ≤ 1 for t ∈ [0, 1] . So, it follows that

(2.12)
∫ 1

0
[tn + (1− t)n]

p
dt ≤

∫ 1

0
[tn + (1− t)n] dt = 2

n+1

Hence, the desired inequality follows from 2.11 and 2.12. This completes the proof
of the theorem. �

We will give some special cases of Theorem 2.5 which show that our result
generalize several results obtained previous works.

Remark 2.6. As can be seen from the special elections below, our results are more
general.

(i) If we choose c = 0 in Theorem 2.5 the results are we obtain also provided
for (η1, η2)−convex functions, is proved by S. Kermausuor et. al. [25].
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(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in Theorem 2.5 the
results are we obtain also provided for η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in Theorem 2.5
the results are we obtain also provided for preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in Theorem 2.5 the
results are we obtain also provided for classical convex function.

(v) If we choose η1 (x, y) = η2 (x, y) = x− y in Theorem 2.5 the results are we
obtain also provided for strongly convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in Theorem 2.5 we obtain
η − strongly convex function.

Theorem 2.7. Let I ⊂ R be an invex set with respect to η1such that for all x ∈ I
and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differantiable functions on
I◦ with a < b, and n ∈ N+ (η1, η2)−strongly convex function where η2 is an
integrable bi functionon f(I) × f(I) with modulus c ≥ 0. For any a, b ∈ I◦ with
η1 (b, a) > 0, suppose that fn ∈ L1 [a, a+ η1 (b, a)] and |fn|q for q ≥ 1.Then for
α > 0, the following inequality holds;∣∣∣ 1

η1(b,a)

∫ a+η1(b,a)

a
f (x) dx+ 1

η1(b,a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
∑n
k=1

η1(b,a)k[1+(−1)k]
2k(k!)∣∣× [f (k−1)

(
a+ 1

2η1 (b, a)
)

+ f (k−1)
(
b+ 1

2η1 (a, b)
)]∣∣

(2.13)

≤ η1(b,a)n

(n!)

(
1

2n+1(n+1)

)1− 1
q

×
[(

1
2n+1(n+1) |f

n (a)|q + 1
2n+2(n+2)η2 (|fn (b)|q , |fn (a)|q)

− cη1(b,a)η2(b,a)(n+4)
2n+3(n+2)(n+3)

) 1
q

]
+η1(b,a)n

(n!)

(
1

2n+1(n+1)

)1− 1
q[(

1
2n+1(n+1) |f

n (b)|q + n+3
2n+2(n+2)(n+1)η2 (|fn (a)|q , |fn (b)|q)

− cη1(b,a)η2(b,a)(n+4)
2n+3(n+2)(n+3)

) 1
q

]
.

Proof. By using Lemma 2, the Power mean inequality and the (η1, η2)−strongly
convexity of |fn|q , we have∣∣∣ 1

η1(b,a)

∫ a+η1(b,a)

a
f (x) dx+ 1

η1(b,a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
∑n
k=1

η1(b,a)k[1+(−1)k]
2k(k!)

[
f (k−1)

(
a+ 1

2η1 (b, a)
)

+ f (k−1)
(
b+ 1

2η1 (a, b)
)]∣∣∣∣

≤ η1(b,a)n

(n!)

[∫ 1
2

0
(t)

n ∣∣f (n) (a+ tη1 (b, a))
∣∣ dt+

∫ 1
1
2

(1− t)n
∣∣f (n) (b+ tη1 (a, b))

∣∣ dt]
≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

n
dt
)1− 1

q
(∫ 1

2

0
(t)

n ∣∣f (n) (a+ tη1 (b, a))
∣∣q) 1

q

dt

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)n dt
)1− 1

q
(∫ 1

1
2

(1− t)n
∣∣f (n) (b+ tη1 (a, b))

∣∣q dt) 1
q

]
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≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

n
dt
)1− 1

q

×
(∫ 1

2

0
(t)

n
[|fn (a)|q + tη2 (|fn (b)|q , |fn (a)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt

) 1
q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)n dt
)1− 1

q

×
(∫ 1

1
2

(1− t)n [|fn (b)|q + tη2 (|fn (a)|q , |fn (b)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt
) 1

q

]
(2.14)

≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

n
dt
)1− 1

q
((
|fn (a)|q

∫ 1
2

0
(t)

n
dt
)

+ η2 (|fn (b)|q , |fn (a)|q)
∫ 1

2

0
tn+1dt

−cη1 (b, a) η2 (b, a)
∫ 1

2

0
tn+1 (1− t) dt

) 1
q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)n dt
)1− 1

q
((
|fn (b)|q

∫ 1
1
2

(1− t)n
)

+ η2 (|fn (a)|q , |fn (b)|q)
∫ 1

1
2
t (1− t)n

−cη1 (b, a) η2 (b, a)
∫ 1

1
2
t (1− t)n+1

) 1
q

]
≤ η1(b,a)n

(n!)

(
1

2n+1(n+1)

)1− 1
q
[(

1
2n+1(n+1) |f

n (a)|q + 1
2n+2(n+2)η2 (|fn (b)|q , |fn (a)|q)

− cη1(b,a)η2(b,a)(n+4)
2n+3(n+2)(n+3)

) 1
q

]
+η1(b,a)n

(n!)

(
1

2n+1(n+1)

)1− 1
q
[(

1
2n+1(n+1) |f

n (b)|q + n+3
2n+2(n+2)(n+1)η2 (|fn (a)|q , |fn (b)|q)

− cη1(b,a)η2(b,a)(n+4)
2n+3(n+2)(n+3)

) 1
q

]
.

This completes the proof of the theorem. �

We will give some special cases of Theorem 2.7 which show that our result
generalize several results obtained previous works.

Remark 2.8. As can be seen from the special elections below, our results are more
general.

(i) If we choose c = 0 in Theorem 2.7 the results are we obtain also provided
for (η1, η2)−convex functions, is proved by S. Kermausuor et. al. [25].

(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in Theorem 2.7 the
results are we obtain also provided for η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in Theorem 2.7
the results are we obtain also provided for preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in Theorem 2.7 the
results are we obtain also provided for classical convex function.

(v) If we choose η1 (x, y) = η2 (x, y) = x− y in Theorem 2.7 the results are we
obtain also provided for strongly convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in Theorem 2.7we obtain
η − strongly convex function.

Theorem 2.9. Let I ⊂ R be an invex set with respect to η1such that for all x ∈ I
and t ∈ [0, 1] . Also let f : I ⊂ R → R be n-times differantiable functions on
I◦ with a < b, and n ∈ N+ (η1, η2)−strongly convex function where η2 is an
integrable bi functionon f(I) × f(I) with modulus c ≥ 0. For any a, b ∈ I◦ with
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η1 (b, a) > 0, suppose that fn ∈ L1 [a, a+ η1 (b, a)] and |fn|q for q ≥ 1.Then for
α > 0, the following inequality holds;

∣∣∣∣∣ 1

η1 (b, a)

∫ a+η1(b,a)

a

f (x) dx+
1

η1 (b, a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
n∑
k=1

η1 (b, a)
k
[
1 + (−1)

k
]

2k (k!)

×
[
f (k−1)

(
a+

1

2
η1 (b, a)

)
+ f (k−1)

(
b+

1

2
η1 (a, b)

)]∣∣∣∣

≤ η1 (b, a)
n

2 (n!)

(
1

2np (np+ 1)

) 1
p

(2.15)

×

[(
|fn (a)|q +

1

4
η2 (|fn (b)|q , |fn (a)|q)− cη1 (b, a) η2 (b, a)

6

) 1
q

+

(
|fn (b)|q +

3

4
η2 (|fn (a)|q , |fn (b)|q)− cη1 (b, a) η2 (b, a)

6

) 1
q

]
,

where 1
p + 1

q = 1.

Proof. Again, using Lemma 2, the Hölder’s inequality and the (η1, η2)−strongly
convexity of |fn|q , we have

∣∣∣ 1
η1(b,a)

∫ a+η1(b,a)

a
f (x) dx+ 1

η1(b,a)

∫ b+η1(a,b)

b+ 1
2η1(a,b)

f (x) dx

−
∑n
k=1

η1(b,a)k[1+(−1)k]
2k(k!)

[
f (k−1)

(
a+ 1

2η1 (b, a)
)

+ f (k−1)
(
b+ 1

2η1 (a, b)
)]∣∣∣∣

≤ η1(b,a)n

(n!)

[∫ 1
2

0
(t)

n ∣∣f (n) (a+ tη1 (b, a))
∣∣ dt+

∫ 1
1
2

(1− t)n
∣∣f (n) (b+ tη1 (a, b))

∣∣ dt]
≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

np
dt
) 1

p
(∫ 1

2

0

∣∣f (n) (a+ tη1 (b, a))
∣∣q dt) 1

q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)np dt
) 1

p
(∫ 1

1
2

∣∣f (n) (b+ tη1 (a, b))
∣∣ dt) 1

q

]

≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

np
dt
) 1

p

×
(∫ 1

2

0
[|fn (a)|q + tη2 (|fn (b)|q , |fn (a)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt

) 1
q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)np dt
) 1

p

×
(∫ 1

1
2

[|fn (b)|q + tη2 (|fn (a)|q , |fn (b)|q)− ct (1− t) η1 (b, a) η2 (b, a)] dt
) 1

q

]
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(2.16)

≤ η1(b,a)n

(n!)

[(∫ 1
2

0
(t)

np
dt
) 1

p

×
(
|fn (a)|q

∫ 1
2

0
1dt+ η2 (|fn (b)|q , |fn (a)|q)

∫ 1
2

0
tdt− cη1 (b, a) η2 (b, a)

∫ 1
2

0
t (1− t) dt

) 1
q

]
+η1(b,a)n

(n!)

[(∫ 1
1
2

(1− t)np dt
) 1

p

×
(
|fn (b)|q

∫ 1
1
2

1dt+ η2 (|fn (a)|q , |fn (b)|q)
∫ 1

1
2
tdt− cη1 (b, a) η2 (b, a)

∫ 1
1
2
t (1− t) dt

) 1
q

]
≤ η1(b,a)n

(n!)

(
1

2np(np+1)

) 1
p

[(
1
2 |f

n (a)|q + 1
8η2 (|fn (b)|q , |fn (a)|q)− cη1(b,a)η2(b,a)

12

) 1
q

]
+η1(b,a)n

(n!)

(
1

2np(np+1)

) 1
p

[(
1
2 |f

n (b)|q + 3
8η2 (|fn (a)|q , |fn (b)|q)− cη1(b,a)η2(b,a)

12

) 1
q

]
= η1(b,a)n

2(n!)

(
1

2np(np+1)

) 1
p

[(
|fn (a)|q + 1

4η2 (|fn (b)|q , |fn (a)|q)− cη1(b,a)η2(b,a)
6

) 1
q

+
(
|fn (b)|q + 3

4η2 (|fn (a)|q , |fn (b)|q)− cη1(b,a)η2(b,a)
6

) 1
q

]
This completes the proof of the theorem. �

We will give some special cases of Theorem 2.9 which show that our result
generalize several results obtained previous works.

Remark 2.10. As can be seen from the special elections below, our results are more
general.

(i) If we choose c = 0 in Theorem 2.9 the results are we obtain also provided
for (η1, η2)−convex functions, is proved by S. Kermausuor et. al. [25].

(ii) If we choose c = 0 and η1 (x, y) = x− y for all x, y ∈ I in Theorem 2.9 the
results are we obtain also provided for η− convex function.

(iii) If we choose c = 0 and η2 (x, y) = x− y for all x, y ∈ f (I ) in Theorem 2.9
the results are we obtain also provided for preinvex function.

(iv) If we choose c = 0 and η1 (x, y) = η2 (x, y) = x − y in Theorem 2.9 the
results are we obtain also provided for classical convex function.

(v) If we choose η1 (x, y) = η2 (x, y) = x− y in Theorem 2.9 the results are we
obtain also provided for strongly convex function.

(vi) If we choose η1 (x, y) = x − y for all x, y ∈ I in Theorem 2.9 we obtain
η − strongly convex function.

3. Conclusion

In this study, we present some inequalities for (η1, η2)−strongly convex functions
involving whose nth derivatives in absolute value at certain powers. It is also shown
that the results proved here are the strong generalization of some already published
ones. It is an interesting and new problem that the forthcoming researchers can
use the techniques of this study and obtain similar inequalities for different kinds
of strongly convexity in their future work.
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Sütçü İmam, 46000, Kahramanmaraş, Turkey
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