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Abstract: The purpose of this study was to explicate one preservice middle grades 

mathematics teacher’s Knowledge of Content and Students (KCS) in the context of 

multiple solution strategies. This study’s purpose is to underline the importance of 

preservice teachers’ KCS and provide possible investigative methods for evaluating 

preservice teachers’ KCS. Specifically, the research inquiry guiding this study 

focused on how a middle school preservice mathematics teacher displays KCS 

when engaging with tasks about pattern recognition and linear functions in the 

context of multiple solution strategies. The data consisted of three videotaped semi-

structured interviews with the preservice mathematics teacher as well as the written 

work she produced during the interviews. This study explicated one preservice 

mathematic teacher’s performance regarding two important themes of KCS: 

generating multiple possible solution strategies of middle school students and 

explaining multiple student solution strategies. In terms of generating multiple 

solution strategies of middle school students, the study found that the preservice 

mathematics teacher provided the same solution strategies that she employed when 

she solved the problems by herself. Regarding explaining multiple student solution 

strategies, this study revealed that the preservice teacher did not explicate how 

typical middle school students reason. The preservice teacher had limitations when 

explaining the possible procedures that students might have used to solve problems 

when given the final student solutions. With regard to the teacher’s abilities to 

recognise and understand students’ typical understandings and misunderstandings, 

the study demonstrated that the preservice teacher was capable of explaining some 

solution strategies but not all of them. 

1. INTRODUCTION 

In the teacher knowledge literature, Shulman’s (1986, 1987) categorization is deemed seminal. 

Shulman (1986) initially organized teacher knowledge into three categories: subject matter 

content knowledge, pedagogical content knowledge, and curricular knowledge. Pedagogical 

content knowledge includes the consideration of teaching the content to students and how the 

content makes sense from the perspective of the students. Moreover, it consists of the 

knowledge of how teaching one way might have potential pitfalls or advantages regarding 

students’ perspectives and backgrounds. Shulman proposed that pedagogical content 

knowledge makes a content specialist different from a pedagogue. Drawing on this 

categorization in his 1986 essay, Shulman (1987) reframed the categorization of knowledge 
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and identified the seven categories of teacher knowledge as content knowledge, general 

pedagogical knowledge, curriculum knowledge, pedagogical content knowledge, knowledge of 

learners and their characteristics, knowledge of educational contexts, and knowledge of 

educational philosophies. Content knowledge, pedagogical knowledge, and curriculum 

knowledge are content-specific dimensions of teacher knowledge, whereas the other remaining 

categories are general dimensions of teacher knowledge and were not the primary focus of 

Shulman’s work (Ball et al., 2008). 

Taking Shulman’s categorization of teacher knowledge, Ball et al. (2008) developed a model 

to explore the domains of Mathematical Knowledge for Teaching (MKT). They defined MKT 

as the “mathematical knowledge needed to carry out the work of teaching mathematics” (p. 

395). According to Ball and her colleagues, MKT consists of two categories: Subject Matter 

Knowledge and Pedagogical Content Knowledge. Subject Matter Knowledge houses three 

subdomains: Common Content Knowledge (CCK), Knowledge at the Mathematical Horizon, 

and Specialized Content Knowledge (SCK). Pedagogical Content Knowledge consists of three 

subdomains: Knowledge of Content and Students (KCS), Knowledge of Content and Teaching 

(KCT), and Knowledge of Content and Curriculum.  

According to Ball et al. (2008), the term Pedagogical Content Knowledge is used differently by 

various authors and has not been explored in depth. KCS, one component of Pedagogical 

Content Knowledge, is the combination of both the individual’s knowledge of content and the 

individual’s knowledge of students. Ball et al. (2008) explained KCS with “the example of 

analyzing a student error…[A] teacher might figure it out because she has seen students do this 

before with this particular type of problem” (p. 403). Teachers’ familiarity with and knowledge 

of possible ways students think about the content is emphasized. The prior emphasis is on 

teachers’ knowledge of students’ thinking rather than their knowledge of content by itself. KCS 

focuses on teachers’ knowledge about students’ reasoning, how students understand the 

content, and what types of misconceptions students may have.  

Studying KCS, one vital component of MKT, can reveal more accurate descriptions and 

measures of teachers’ KCS, creating clearer distinction between different domains of MKT. 

This study aims to explore and underline why it is important to better understand preservice 

teachers’ KCS. Preservice teachers need to be more familiar with possible student thinking 

before they actually begin teaching. In particular, in this study, I examined one preservice 

middle grades teacher’s KCS in the context of three tasks involving linear functions. 

1.1. Literature Review 

Teaching mathematics is complicated (Boerst et al., 2011; Diez, 2010; Spalding et al., 2011), 

and teachers need to be responsive to students’ mathematical reasoning when they teach (Dyer 

& Sherin, 2016; Jacobs & Empson, 2016; Thomas et al., 2017). However, studies pointed out 

that teachers cannot possibly give adequate explanations for every action each student takes 

when solving a mathematical problem (Nagle et al., 2017; Shin, 2020; Styers et al., 2020). This 

inability to predict or explain every action taken by a student exists regardless of whether the 

teacher is preservice (Nathan & Petrosino, 2002; Van Dooren et al., 2002) or experienced 

(Asquith et al., 2007; Gvozdic & Sadler, 2018). Nevertheless, research shows that teachers who 

have been trained to work through students’ reasoning will be better prepared to notice trends 

in students’ errors (Lee, 2021; Wuttke & Seifried, 2017). Even though teaching multiple ways 

of solving problems can be challenging for preservice teachers, using multiple solving stretegies 

can have an impact on both high and low achieving preservice teachers by improving their 

problem solving skills (Gubermen & Leikin, 2013). Using multiple strategies will in turn 

reproduce both the standard solution method in the course and new solution methods (Leikin 

& Levav-Waynberg, 2008). Further, using multiple solutions have the potential to impact 

teacher knowledge. Mathematical Knowledge for Teaching (Ball et al., 2008), one of the 
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important categorization of teacher knowledge, is an important component of effective 

mathematics teaching (Bryan et al., 2007). However, researchers have examined MKT 

differently. Some scholars focused on teachers’ overall MKT (Charalambous, 2010; Jacob et 

al., 2017; Steele & Rogers, 2012), others focused on a specific domain of MKT (Alqahtani & 

Powell, 2017; Bansilal et al., 2014; Johnson & Larsen, 2012), and others focused on more than 

one domain of MKT in their examinations (Hill, 2010; Lee et al., 2018; Ni Shuilleabhain, 2016). 

Ball et al. (2008) distinguished KCS from the other domains of MKT as follows: 

consider what is involved in selecting a numerical example to investigate students’ 

understanding of decimal numbers. The shifts that occur across the four domains, for example, 

ordering a list of decimals (CCK), generating a list to be ordered that would reveal key 

mathematical issues (SCK), recognizing which decimals would cause students the most 

difficulty (KCS), and deciding what to do about their difficulties (KCT), are important yet 

subtle. (p. 404) 

KCS will both inform teachers’ lessons and instructional methods to preempt students 

reasoning errors before they become ingrained patterns (Johnson & Larsen, 2012). The ability 

to understand the nature of students’ reasoning errors should be an aspirational goal and core 

component of teaching. KCS will increase the effectiveness of teacher instruction by helping 

students understand the mathematical principles and their errors in applying those principles to 

mathematical problems (Lannin et al., 2007). Different ways of explaining concepts can help 

different students conceptualize ideas (An et al., 2004). When students were prompted to use 

multiple solutions, they became more interested in mathematics. This new interest in turn led 

to greater student mathematical competencies (Schukajlow & Krug, 2014). Multiple teaching 

approaches are better than one (Guberman & Leikin, 2013) because diverse lesson delivery 

methods and explanatory approaches should engage a larger number of students and allow them 

to process information to become better mathematical thinkers. This focus on developing an 

awareness of multiple ways of teaching mathematical content will in turn address a common 

teaching tendency, the teacher's reliance on their own personal reasoning strategies as the basis 

for their lessons (Peterson & Treagust, 1995). Consequently, this study employs KCS because 

the processes preservice teachers employ in their own problem-solving emerge in their 

teaching, whereas established teachers employ problem-solving methods learned from 

exposure to actual student solutions. Studies focusing on teachers’ knowledge on students’ 

reasoning found that teachers with limited knowledge lack the ability to listen actively to their 

students (Johnson & Larsen, 2012), pose problems (Lee et al., 2018), interpret or answer 

students’ responses and questions (Edelman, 2017), and predict students’ reasoning (Asquith et 

al., 2007; Norton et al., 2011). One reason for their lack of knowledge can be the excessiveness 

of goals in teacher preparation programs that can exacerbate the tendency to omit multiple 

solution strategies in teachers’ pedagogies (Hiebert & Berk, 2020).  

In terms of generating and explicating multiple solution strategies, Silver et al. (2005) found 

that teachers have cognitive (e.g., insecurity) and pedagogical (e.g., teaching difficulty) 

concerns regarding using multiple solution strategies. Interactive and reflective solutions can 

enhance teachers’ understanding of students’ multiple solution strategies (Leikin & Levav-

Waynberg, 2007). Having a deeper understanding of both the content and students reasoning 

abilities are crucial aspects of those solution strategies (Taşdan & Çelik, 2016). There should 

also be a clear focus on explaining mathematical concepts both procedurally and conceptually. 

Hiebert and Lefevre (1986) defined conceptual knowledge with an emphasis on relationships 

as: “a connected web of knowledge, a network in which the linking relationships are as 

prominent as the discrete pieces of information. Relationships pervade the individual facts and 

propositions so that all pieces of information are linked to some network” (pp. 3-4). They 

described procedural knowledge with an emphasis on its two kinds: “… a familiarity with the 

individual symbols of the system and with the syntactic conventions for acceptable 
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configurations of symbols… [and] … rules or procedures for solving mathematical problems” 

(p. 7). Conceptual and procedural knowledge constructs are generally referred to by 

mathematics educators as “qualities of knowledge” and by psyschologists as “thypes of 

knowledge” (Star, Stylianides, 2013, p. 15). Rittle-Johnson et al. (2015) claimed that there is a 

bidiractional relationship between conceptual and procedural knowledge that both types of 

knowledge supports each other. 

Even though KCS is a vital component of teacher knowledge, there is scarce research 

investigating preservice mathematics teachers’ KCS (Sitrava, 2020). One of the main reasons 

for this lack of critical data can be traced to the difficulty of writing KCS items. This difficulty 

is likely due to the fact that there is no common conceptual understanding and shared definition 

among researchers regarding what, exactly, KCS is (Hill et al., 2008). Another reason why there 

is limited research on this subject is because researchers’ have great difficulty findings sample 

KCS items. With a greater sample of KCS items, researchers could have a better understanding 

of how to write new KCS items and utilize those items in their research. These sample items 

predominantly rely on the multiple-choice format. More items with open-ended questionaries 

or video interviews could aid resarchers in developing more diverse KCS items. Also, the 

difficulty involved in distinguishing between the MKT domains could be a contributing factor 

in the scarcity of data on the topic (Ball et al., 2008). 

1.2. Research Questions 

The purpose of this study was to scrutinize one preservice teacher’s Knowledge of Content and 

Students (KCS) using pattern recognition and linear function tasks. To reach this objective, this 

study investigated the preservice teacher’s knowledge on generating and explaining possible 

student thinking. Specifically, the research inquiry guiding this study focused on how a middle 

school preservice mathematics teacher displays KCS when engaging with tasks about pattern 

recognition and linear functions in the context of multiple solution strategies.  

2. METHODOLOGY 

2.1. Participant 

The study reported in this article is a part of a broader study. The population of the broader 

study was middle grades preservice mathematics teachers studying at a southern university in 

the United States. Eight middle grades preservice mathematics teachers volunteered to 

participate in the study. Convenience sampling (Patton, 2002) was utilized, and four volunteers 

agreed to participate in the broader study. Selection was based on participants’ schedule 

availability for the broader study rather than their levels of subject knowledge. Pseudonyms 

were used for each participant. In this study, the focus was one of the four volunteer middle 

school preservice teachers (Megan). Megan was selected because she was talkative, and her 

interviews provided the richest information in terms of preservice teachers’ potential KCS 

limitations. Time and participant availability necessitated the study only focus on one 

preservice teacher. For a comparative study, the inservice and preservice teachers’ KCS can be 

compared to strengthen the findings. 

2.2. Data Collection 

The data consisted of three videotaped semi-structured interviews (Maxwell, 1996) with Megan 

as well as the written work she produced during the interviews. Each interview took 

approximately one and a half hours; therefore, these interview data were supplemented by 

approximately 5 hours of videotaping, and all of them were transcribed.  

Each of the three interviews were conducted around one mathematical task that was selected 

from the National Council of Teachers of Mathematics (NCTM) teaching and learning modules 

as part of an online toolkit aligned with the teaching practices contained in Principles to Actions 
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(NCTM, 2014). All the tasks that were selected involved linear relationships. While this 

presents a limitation in that this study does not have evidence of the participant’s KCS in other 

mathematics topic areas, it has more detailed information about her thinking regarding linear 

functions. The first interview focused on a Hexagon task. The visual representation of the 

Hexagon task can be accessed at https://www.nctm.org/Conferences-and-Professional-

Development/Principles-to-Actions-Toolkit/The-Case-of-Patrica-Rossman-and-the-Hexagon-

Task/. In the Hexagon task, the preservice teacher was asked to find the patterns of the 

perimeters of trains constructed with regular hexagons. The first four trains, consisting of 

hexagonal wagons, were visually demonstrated in the problem.  The first train consists of one, 

the second train of two, the third train of three, and the fourth train of four hexagonal wagons.  

Subsequent hexagons were added linearly to the right edge of the preceding hexagon. The first 

four trains consisting of hexagonal wagons were visually demonstrated in the problem as 

follows: 

Figure 1. Visual depiction of the the Hexagon task. 

 

The second interview focused on a Counting Cubes task. The visual representation of the 

Counting Cubes task can be accessed at https://www.nctm.org/Conferences-and-Professional-

Development/Principles-to-Actions-Toolkit/The-Case-of-Peter-Dubno-and-the-Counting-

Cubes-Task/. In the Counting Cubes task, Megan was asked to elaborate on the patterns of 

several cubes. The cubes represent buildings consisting of five extensions. Each subsequent 

building adds an additional cube for each extension of the building. In the task, three buildings 

were represented visually. Building 1 consists of one cube only; building 2 consists of 5 

extensions, an extension on each of the five faces of the cube in building 1; building 3 adds an 

additional cube in each direction. The first three buildings were shown in the problem as 

follows:   

Figure 2. Visual depiction of the Counting Cubes task. 

 

The third interview focused on a Two Storage Tanks task. The visual representation of the Two 

Storage Tanks task can be accessed at https://www.nctm.org/Conferences-and-Professional-

Development/Principles-to-Actions-Toolkit/The-Case-of-Elizabeth-Brovey-and-the-Two-

Storage-Tanks-Task/. In the Two Storage Tanks task, Megan was asked to read a graph and 

find the amount of water in two storage tanks, one losing water and the other gaining water at 

different rates. The amount of water in both tanks over a period of time was demonstrated with 

the number of hours presented on the 𝑥 axis and gallons of water in the tank presented on the 𝑦 

axis. The graph was provided in the problem as follows: 

 

https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Patrica-Rossman-and-the-Hexagon-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Patrica-Rossman-and-the-Hexagon-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Patrica-Rossman-and-the-Hexagon-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Peter-Dubno-and-the-Counting-Cubes-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Peter-Dubno-and-the-Counting-Cubes-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Peter-Dubno-and-the-Counting-Cubes-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Elizabeth-Brovey-and-the-Two-Storage-Tanks-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Elizabeth-Brovey-and-the-Two-Storage-Tanks-Task/
https://www.nctm.org/Conferences-and-Professional-Development/Principles-to-Actions-Toolkit/The-Case-of-Elizabeth-Brovey-and-the-Two-Storage-Tanks-Task/
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Figure 3. Visual depiction of the Two Storage Tanks task. 

 

Specialized Content Knowledge (SCK) items developed by Hiebert et al.’s (2019) were 

modified for the interview protocol of this study, and their rubrics were adapted to evaluate the 

participant’s KCS. Hiebert et al. (2019) specifically focused on three topics: multiplying two-

digit whole numbers, subtracting fractions, and dividing fractions. This study focused on two 

topics: linear functions and pattern recognition. These sets of topics have transferrable qualities 

and shared concepts like integers, functions, and variables. Also, the relationship between 

quantities is the focus for both studies’ topics; therefore, both studies are matching. The only 

widely known bank of KCS items is a set developed by Ball and colleagues, but those items are 

not available for public use. Although Hiebert et al.’s (2019) SCK items were developed for 

use with elementary school teachers (preservice and in-service), the basic structure of the items 

was transferrable to a middle grade context. Namely, this study drew heavily on Hiebert et al.’s 

(2019) SCK items and Ball et al.’s (2008) distinction of SCK and KCS for constructing KCS 

items and rubrics for this study. Hiebert et al.’s (2019) study used three-point rubrics 0 meaning 

no knowledge to 2 meaning extensive knowledge. This study also used three-point rubrics 0 

referring to limited or lack of explanation; 1 referring to having some valid explanation but 

partial explanation; 2 having an adequate and elaborated explanation. Scoring rubrics are 

provided in the Appendix.  

2.3. Exploring KCS of the Preservice Teacher 

To compare and contrast the participant’s KCS, her performance on tasks requiring her to 1) 

generate multiple solution strategies and 2) explain multiple solution strategies was evaluated. 

To generate multiple solution strategies, Megan was asked to generate three correct solution 

strategies she thought middle school students would likely use for each of the three tasks. In the 

generating multiple solution strategies part on the Hexagon task, the preservice teacher was 

asked to show and explain three different ways that students could correctly solve the perimeter 

of any train in the pattern; on the Counting Cubes task, three different ways that students could 

correctly find the number of cubes in the nth building: on the Two Storage Tanks task, three 

different ways that students could correctly find the time at which the two tanks contain the 

same amount of water. 

The Generating Multiple Solution Strategies part was used for exploring the preservice 

teacher’s KCS and required her to predict and anticipate the typical middle school students’ 

solution strategies. To evaluate how accurately and elaborately the participant generated 

multiple solution strategies, her responses to the Generating Multiple Solution Strategies theme 

of all of the three tasks were invesigated. To determine how accurately and elaborately the 

participant explained multiple solution strategies, her responses to the Explaining Multiple 

Solution Strategies theme of the Hexagon and Counting Cubes tasks were focused. Students’ 

complete work was not given on these two tasks and the preservice teacher was asked to 

anticipate students’ work. The preservice teacher was given three hypothetical students’ final 

answers without providing the answers’ solutions. She was asked to explain the possible 
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procedures that each hypothetical student might have come up with for each of the three 

solutions. On the two tasks, the focus was on students’ reasoning or challenges while examining 

students’ work. If the task did not include the steps of the solutions but required the preservice 

teacher to predict the steps, the task was regarded as exploring the participant’s KCS. In other 

words, for the Hexagon and Counting Cubes tasks, the hypothetical student work consisted only 

of hypothetical students’ responses and required the participant to anticipate possible solution 

strategies, which aligned with KCS. Rachel, Sam, and Jason are the hypothetical students whose 

responses were provided in the Hexagon task. David, Emily, and Mary are the hypothetical 

students whose responses were provided in the Counting Cubes task. In the Hexagon task, 

Rachel’s response was given as 2𝑛 + 2𝑛 + 2 or 2(2𝑛) + 2;  Sam’s response was given as 5 +
4(𝑛 − 2) + 5 or 4(𝑛 − 2) + 5 + 5, or 4(𝑛 − 2) + 10; and Jason’s response was given as 6𝑛 −
2(𝑛 − 1) as the perimeter of any train in the pattern. In the Counting Cubes task, David’s 

response was given as 𝑛 + 4(𝑛 − 1); Emily’s response was given as 1 + 5(𝑛 − 1), and Mary’s 

response was given as 5𝑛 + 1 as the number of cubes in the 𝑛th building. For the Two Storage 

Tanks task, the hypothetical students’ work was already given, the preservice teacher was not 

required to predict student work, and asked to explain student work mathematically, which 

aligned with SCK and is not the focus of this study. 

3. RESULTS / FINDINGS 

In this section, the findings of the participant’s KCS on the tasks were presented regarding both 

the Generating Multiple Solution Strategies and the Explaining Multiple Solution Strategies 

themes. First, the participant’s performance on the Hexagon, Counting Cubes, and Two Storage 

Tanks tasks were presented in the context of the Generating Multiple Solution Strategies theme. 

Preservice teacher’s performance patterns on the tasks regarding the Generating Multiple 

Solution Strategies theme were then presented. Next, the participant’s performance patterns on 

the Hexagon and Counting Cubes tasks were presented in the context of the Explaining Multiple 

Solution Strategies theme. Finally, the preservice teacher’s performance patterns on the tasks 

in the Explaining Multiple Solution Strategies theme were presented. 

3.1. Generating Multiple Solution Strategies Theme 

3.1.1. Hexagon task 

Even though Megan was asked to explain three different ways that students could solve the 

perimeter of any train in the pattern, she provided only two possible student solution strategies. 

Megan considered the students’ potential solutions to the Hexagon task as follows: 1) finding 

the perimeter of each hexagon first and then subtracting the shared sides and 2) finding the 

perimeter of a set of hexagons (i.e., grouping 2 trains as a set or grouping 4 trains as a set) and 

then excluding the number of shared sides between sets of hexagons. Following is her response 

regarding students’ possible first strategy: 

Figure 4. Megan’s response regarding students’ possible first strategy on the Hexagon task. 
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In the first strategy, the hexagons were considered separately, whereas in the second strategy, 

the hexagons were considered as a group. Following is her response regarding students’ 

possible second strategy: 

Figure 5. Megan’s response regarding students’ possible second strategy on the Hexagon task. 

 

In her responses regarding students’ possible strategies, Megan did not mention whether 

students could possibly find the relationship between the number of trains and the perimeter of 

hexagons in the task or not. In her own solution strategies, Megan grouped the hexagons by 2 

hexagons in her third strategy and by 4 hexagons in her fourth strategy and then excluded the 

sides that were shared between the group of hexagons.  

4.1.2 Counting cubes task 

Even though Megan was asked to explain three different ways that students could solve the 

perimeter of any train in the pattern, similar to the Hexagon task, she provided only two possible 

student solution strategies. The following shows what Megan considered as students’ possible 

solutions in the Counting Cubes task: 1) using the expression 5𝑛 − 4 and 2) using the 

expression 5(𝑛 − 1) + 1. Following is her explanation of students’ possible first strategy: 

Figure 6. Megan’s explanation of students’ possible first strategy on the Counting Cubes task. 

 

In terms of the first possible student strategy, Megan described the strategy as “looking at each 

face of the cube and finding where the 5 new cubes will go in the next building.” The first 

student solution strategy that she came up with was the same as her first strategy. She was not 

clear what −4 represented when she described using expression 5𝑛 − 4 in both of her own 

solution strategy and the students’ possible solution strategies. She was incorrectly considering 

that each cube had 4 open faces and −4 represented those missing cubes that could come next 

to each of the open faces. She did not recognize that the last cubes in the extensions had 5 open 

faces as well as that −4 did not represent the cubes that could come next to the open faces. Her 

explanation of the second possible student solution strategy is as follows: 
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Figure 7. Megan’s explanation of students’ possible second strategy on the Counting Cubes task. 

 

Megan described the second possible student strategy, using the expression 5(𝑛 − 1) + 1, as 

“looking at 5 different extensions and counting the number of cubes in each extension then 

adding the 1 cube in the middle.” This second student solution strategy was the same as her 

own second strategy, and Megan assumed that students would use the same methods she did. 

3.1.3. Two storage tanks task 

Different from the Hexagon and the Two Storage Tanks tasks, Megan provided three possible 

students’ solutions to the Two Storage Tanks task as follows: 1) using 𝑦 = 𝑚𝑥 + 𝑏 for finding 

the equations of both lines and finding the 𝑦 value for the same 𝑥 value by plugging in different 

𝑥 values until finding the same 𝑥 and 𝑦 values and 2) using 𝑦 = 𝑚𝑥 + 𝑏 for finding the 

equations of both lines, set them equal to each other, and find the intersection point, 3) 

extending the lines and finding the intersection point.  

Her explanation of the first students’ possible solution strategy is as follows: 

Figure 8. Megan’s explanation of students’ possible first strategy on the Two Storage Tanks task. 

 

Megan thought using the equations 𝑦 = −50𝑥 + 900 for tank T and 𝑦 = 25𝑥 + 300 for tank 

W and plugging in numbers until getting the same 𝑥 and 𝑦 value as the first solution strategy 

students would likely try. She, however, considered that this strategy was too hard to apply if 

the 𝑥 value was a big number.  

Her explanation of the second possible student solution strategy is as follows: 

Figure 9. Megan’s work on students’ possible second strategy on the Two Storage Tanks task. 

 

As a more systematic way to solve the problem, Megan explained the second solution strategy 

as finding the equations of each line using 𝑦 = 𝑚𝑥 + 𝑏 and using systems of equations to find 

the 𝑥 and 𝑦 values for the intersection point.  

Her explanation of the third possible student solution strategy is as follows: 
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Figure 10. Megan’s work on students’ possible third strategy on the Two Storage Tanks task. 

 

The third solution strategy Megan thought students might try was extending each graphed line 

until they meet then finding the intersection point. 

3.1.4. Patterns among the tasks regarding Generating Multiple Solution Strategies theme 

Megan provided correct expressions as possible student solutions. However, she could not 

explain what some numbers and variables referred to in the expressions that she provided. She 

also explained some of the meanings of the variables inaccurately. For instance, she related −4 

with the open faces of the cubes even though −4 was not related with the number of open faces. 

Even though Megan grappled with explaining the meaning of −4 in the expression 5𝑛 − 4, she 

still reported as one possible solution strategy. Her challenges when solving the tasks herself 

were similar to her challenges when explaining the possible student solutions. Also, Megan did 

not offer explanations about which solutions would be easier or more difficult for students.  

Megan showed some possible student solution strategies, but her student solutions lacks variety 

for different levels of students. She provided similar strategies to the ones she came up with 

when solving the tasks herself. However, she could not relate the student solution strategies that 

she generated to middle school students’ reasoning. She did not hypothesize which strategy 

might have been more common and which strategy might have been less common among 

middle school students and did not provide reasons. She explained procedurally what students 

might possibly have done; however, she did not explain conceptually what they might have 

done. 

3.2. Explaining Multiple Solution Strategies Theme 

3.2.1. Hexagon task 

Megan first explained Jason’s response because it was similar to her solution. Following is her 

explanation of Jason’s response: 

Figure 11. Megan’s explanation of Jason’s response. 

 

Megan described Jason’s response, 6𝑛 − 2(𝑛 − 1), as finding the perimeter of one hexagon 

and subtracting 2(𝑛 − 1), which represented the number of sides being shared. Next, Megan 

explained Sam’s response. Megan did not write down any explanation; however, she underlined 

some parts of his work. Following shows Megan’s work on Sam’s response: 

Figure 12. Megan’s work on Sam’s response. 
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In Sam’s response, 5 + 4(𝑛 − 2) + 5, or 4(𝑛 − 2) + 5 + 5, or 4(𝑛 − 2) + 10, she stated that 

5 was the number of sides in the first hexagon and the other 5 was the number of sides in the 

last hexagon; 4(𝑛 − 2) was number of the sides in the middle hexagon, where 4 was the number 

of sides that were on the perimeter for each middle hexagon and 𝑛 − 2 was the number of 

hexagons in the middle.  

Even though Rachel’s response was written first among other possible solution strategies, 

Megan preferred to explain Rachel’s response last.  

Figure 13. Megan’s work on Rachel’s response. 

 

In Rachel’s response, 2𝑛 + 2𝑛 + 2 or 2(2𝑛) + 2, Megan struggled to explain what 2s referred 

to in the expressions. She checked that Rachel’s expression was correct by plugging in 3 and 4 

for 𝑛 in the expression and finding the correct perimeters. She stated in terms of Rachel’s 

response that, “My only thing that I think I can come up for her is that she is taking a hexagon 

and saying that is 2𝑛. And so, then she is adding up 2𝑛 + 2𝑛 and then 2 would be the sides in 

the middle.” When she was asked what 2𝑛 represented, she explained that “I know 𝑛 definitely 

represents the number of trains, and then this is just another way of showing this part of the 

equation of subtracting the sides out [showing −2(𝑛 − 1) in Jason’s response].” Because 

Megan said that −2(𝑛 − 1) was the number of shared sides when she was explaining Jason’s 

response, she was asked if 2𝑛 in Rachel’s response represented the shared sides. She explained 

that, “No, I think she is representing that in a different way, but it is very similar to the 2𝑛 down 

here, but it is represented in a different way, to me, not as clear as Jason’s responses.” She 

asserted that none of the 2s in Rachel’s explanation was clear, and Rachel needed more 

explanation regarding what those numbers referred to. Ultimately, Megan was still struggling 

to explain what the numbers in Rachel’s representation referred to. 

3.2.2 Counting cubes task 

Because Emily’s response 1 + 5(𝑛 − 1) was similar to her own response, Megan first started 

explaining Emily’s solution by describing 1 as the 1 cube in the middle, 5 as the number of 

extensions, and 𝑛 − 1 as the number of cubes in each extension. Following is Megan’s work 

on Emily’s response:  

Figure 14. Megan’s work on Emily’s response. 

 

Then, Megan described Mary’s response, 5𝑛 + 1, describing 1 as the cube in the middle. 

Following is Megan’s comments on Mary’s response: 
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Figure 15. Megan’s work on Mary’s response. 

 

Megan asserted that the meaning of 5 and 𝑛 was not clear in Mary’s expression because 5 could 

be either the number of extensions or the number of faces of a cube and 𝑛 could be either the 

number of buildings or the number of cubes in the previous building. She did not recognize that 

𝑛 could be the number of cubes in each extension excluding the middle cube and +1 was the 

cube in the middle. Her description of what 5 and 𝑛 could mean again shows that she conflated 

the number of cubes in a building with the number of open faces in a cube. Megan’s lack of 

knowledge on the task impacted her incorrect assumptions about Mary’s response.  

In terms of David’s response 𝑛 + 4(𝑛 − 1), Megan thought that 4 was the number of open faces 

of a cube; (𝑛 − 1) was the number of cubes in each extension. Following is Megan’s comments 

on David’s response: 

Figure 16. Megan’s work on David’s response. 

 

She said the meaning of the first 𝑛 was not clear and could refer to either the number of 

buildings or the number of cubes in the previous building. As Megan counted the number of 

faces of a cube in her own solution, she could relate David’s response with her own solution. 

Ultimately, Megan struggled to explain the meaning of the numbers in both David’s and Mary’s 

responses. 

3.2.3. Patterns among the tasks regarding explaining multiple solution strategies theme 

Megan preferred to explain the solutions that she was familiar with first and the solutions that 

she struggled with the most last. Megan struggled to explain some of the students’ solution 

strategies. For instance, Megan failed to explain what the 2s referred to in the expression 2𝑛 +
2𝑛 + 1 or 2(2𝑛) + 2 in the Hexagon task. Megan sometimes represented the variables in 

student solutions inaccurately. For instance, she thought that 4 in the expression 𝑛 + 4(𝑛 − 1) 

in the Counting Cubes task represented the number of faces of a cube. However, 4 in the 

expression 𝑛 + 4(𝑛 − 1) represented the number of extensions.  

Megan provided explanations of some of the student solution strategies. However, she had 

limited conceptual understanding of the solution strategies. She preferred to start explaining 

students’ solutions based on the ones that were similar to her own strategy. 
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4. DISCUSSION and CONCLUSION 

In the teacher knowledge literature, Shulman’s (1986, 1987) categorization of teacher 

knowledge is prominent. Shulman’s seven categoris provide the basis for numerous 

explanations of teacher knowledge. Developing Shulman’s influential teacher knowledge 

categorization, Ball et al. (2008) constructed MKT. KCS, one of the domains of MKT, plays 

an important role in shedding light on teachers’ knowledge. In spite of the scarcity of research 

on KCS, studies have shown that teachers lack KCS (Edelman, 2017; Johnson & Larsen, 2012; 

Lee et al., 2018). The purpose of this study is to underline the importance of the investigation 

of preservice teachers’ KCS. Specifically, this research focused on a middle school preservice 

teachers’ KCS when engaging with tasks about pattern recognition and linear functions in the 

context of multiple solution strategies. Generating multiple solution strategies and explaining 

multiple solution strategies are the two themes this study uses to explore the preservice teacher’s 

KCS. 

In terms of predicting students’ thinking and confusion, the preservice teacher, Megan, 

provided the same solution strategies that she provided when she solved the problems by 

herself. This study shows that the preservice teacher’s performance on predicting students’ 

reasoning might depend on her own knowledge. In general, Megan’s student predictions 

mirrored her own solutions to the tasks. Similar to this study, Norton et al. (2011) found that 

there can be a relationship between prospective elementary teachers’ prediction of students’ 

work and their own mathematical knowledge. Regarding the acquaintance with students’ 

mathematical reasoning, Megan did not explicate how typical middle school students reason. 

This finding is consistent with Asquith et al.’s (2007) finding that teachers have difficulties 

predicting students’ understanding and reasoning. In Asquith et al.’s (2007) study, middle 

school teachers struggled to predict students’ understanding of the equal sign and variable, 

whereas in this study, the preservice teacher had difficulties predicting middle school students’ 

possible reasoning about pattern recognition and linear functions. With regard to students’ 

typical understandings and misunderstandings, Megan was able to explain some solution 

strategies, but she could not explain others. For instance, Megan struggled to explain how the 

student produced the expression 2𝑛 + 2𝑛 + 2 or 2(2𝑛) + 2 for finding the perimeter of the 

hexagons in the Hexagon task. Megan stated that she did not know where any of the 2s come 

from in the expression 2𝑛 + 2𝑛 + 2 or 2(2𝑛) + 2. She could not explain that in this strategy, the 

student considers the tops of the hexagons as two times the train number and the bottoms. Also, 

Megan could not describe that since there are two sides on top of each hexagon, the number of 

top sides on any train is 𝑛 × 2 (𝑛 ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠 ×  2 𝑡𝑜𝑝 𝑠𝑖𝑑𝑒𝑠 𝑝𝑒𝑟 ℎ𝑒𝑥𝑎𝑔𝑜𝑛) or 2𝑛. Similarly, she 

did not explain that the number of bottom sides is also 2𝑛 in the student’s solution. 

Regarding multiple solution strategies, Silver et al. (2015) showed that veteran middle grades 

mathematics teachers were also concerned about explaining multiple solution strategies to their 

students. Those veteran teachers stated that some students might have had difficulties 

understanding different ways of solving problems. Therefore, multiple solution strategies can 

be challenging for teachers in terms of their ability to solve problems in multiple ways by 

themselves, as well as their ability to explain multiple solutions to students with limited 

understanding. Similar to this study, the teacher in the study of Johnson & Larsen (2012) had 

constraints on understanding her students’ struggles. Different from this study, the participant 

in Johnson & Larsen’s study (2012) had higher content knowledge. In their study, the teacher 

was a mathematician and got his PhD in mathematics. Therefore, this study and Johnson & 

Larsen’s (2012) study showed that teachers might struggle to understand from students’ 

perspectives no matter how knowledgeable they are in terms of the content. In the Counting 

Cubes task example, Megan was able to explicate some solution strategies, but she could not 

explain some other solution strategies and provided inaccurate explanations regarding what the 
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variables could represent. For instance, when she explained the expression 5𝑛 + 1 in the 

Counting Cubes task, she said that 5 could be either the number of extensions or the number of 

faces of a cube. However, 5 did not represent the number of faces of a cube in the expression. 

When Megan explained the expression 𝑛 + 4(𝑛 − 1), she thought that 4 was the number of faces 

on a cube and that the first n could be either the number of buildings or the number of cubes in 

the previous building. However, neither 4 represented the number of faces of a cube, nor did n 

represent the number of buildings.  

In sum, this study explicated one preservice teacher’s performance regarding two important 

themes of KCS: generating multiple solution strategies and explaining multiple solution 

strategies. More research is needed to construct KCS items to elaborate more on what 

constitutes teachers’ KCS. Also, teachers’ performance on the components of KCS requires 

more investigation. In this study, no professional development or interventions were employed. 

Thus, the impact of professional development on KCS can be explored. More research is needed 

to understand how to improve teachers’ KCS. Additionally, preservice teachers’ KCS can be 

explored further for different content and different grade levels with more participants by using 

more tasks. Also, the relationship between other domains of teacher knowledge can be 

investigated. How KCS impacts preservice and in-service teachers’ teaching strategies could 

be examined. In order to improve the quality of teacher education programs, future studies can 

explore the relationship between preservice teachers’ knowledge and their teaching strategies. 

Also, researchers need to conduct studies using well-designed KCS tasks. For this purpose, they 

can collaborate together to develop KCS tasks for their future studies and produce KCS items 

that are publicly available. 
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Taşdan, B. T., & Çelik, A. (2016). A Conceptual Framework for Examining Mathematics 

Teachers' Pedagogical Content Knowledge in the Context of Supporting Mathematical 

Thinking. European Journal of Education Studies, 2(5), 90-120. 

Thomas, J., Jong, C., Fisher, M. H., & Schack, E. O. (2017). Noticing and knowledge: 

Exploring theoretical connections between professional noticing and mathematical 

knowledge for teaching. The Mathematics Educator, 26(2), 3-25. 

Van Dooren, W., Verschaffel, L., & Onghena, P. (2002). The impact of preservice teachers' 

content knowledge on their evaluation of students' strategies for solving arithmetic and 

algebra word problems. Journal for Research in Mathematics Education, 33(5), 319-351. 

Wuttke, E., & Seifried, J. (Eds.). (2017). Professional error competence of preservice teachers: 

Evaluation and support. Springer. 

  



Int. J. Assess. Tools Educ., Vol. 8, No. 4, (2021) pp. 818–841 

 835 

6. APPENDIX † 

Scoring Rubric for the Hexagon task 

Task 2: Generate Multiple Solution Strategies 

Topic Valid Strategies Description of Coding 

 

 

 

 

 

 

Finding the 

pattern in 

the Hexagon 

task 

Tops and bottoms 

plus ends 

In this strategy, the student considers the tops of the 

hexagons as two times the train number and the bottoms. 

Since there are two sides on top of each hexagon, the number 

of top sides on any train is 𝑛 × 2 (𝑛 ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠 ×
 2 𝑡𝑜𝑝 𝑠𝑖𝑑𝑒𝑠 𝑝𝑒𝑟 ℎ𝑒𝑥𝑎𝑔𝑜𝑛) or 2𝑛. Similarly, the number of 

bottom sides is also 2𝑛. Then, the two end sides are 

considered separately. 

Possible representations: Verbal description. Equations: 2𝑛 +
 2𝑛 + 2 or 2(2𝑛) + 2. 

 

Tops and bottoms 

of each plus ends 

In this strategy, the student considers the tops of each 

hexagon and the bottoms of each hexagon. Then, the two end 

sides are considered separately.   

Possible representations: Verbal description. Equations: 

4𝑛 +  2, or (2 +  2)𝑛 +  2 

 

 

Insides and 

Outsides 

In this strategy, the student considers the end hexagons, 

noticing that each contributes five to the perimeter. Then, 

they consider that each internal hexagon contributes four. 

Possible representations: Verbal description. Equations: 5 +
 4(𝑛 –  2)  +  5, or 4(𝑛 –  2)  +  5 +  5, or 4(𝑛 –  2)  +  10. 

 

  

The second train is the two end hexagons that will be 

separated. They have 5 sides each (not including the one 

shared in the middle). Thus, the perimeter is 5 + 5 or 10. 

 

† All the scoring rubrics are made based on the task solution paths on NCTM’s Professional Learning Toolkit 
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The hexagon is the middle being added. This adds two on top 

and two on the bottom for 4 sides total. For every added 

hexagon, 4 more sides need to be added to the second train 

whose perimeter is 10. 

 

Note: the formula does work on Train 1, even though one 

can’t really see the 5 and 5 in the train. 

Total minus 

shared sides 

In this strategy, the student considers that each hexagon has 

six sides and notices that sides between hexagons are no 

longer on the perimeter. 

Possible representations: Verbal description. Equations: 

6𝑛 –  2(𝑛 –  1) 

 

 

Symmetry split In this strategy, the student considers the top sides and one 

end side as a unit and the bottom sides with the other end 

side. 

Possible representations: Verbal description. Equations: 

(2𝑛 +  1)  +  (2𝑛 +  1) or 2(2𝑛 +  1) 

 

There are 3 sides above (two sides and one end) and it 

repeats below it. 

 

There is two sides on the top of each, plus an end…and the 

same on the bottom 

 

This time its 3 plus 2 plus 2 on the top…times two, because 

it’s also on the bottom. 

(2𝑛 + 1) + (2𝑛 + 1) if you think top and bottom 

2(2𝑛 + 1) if you think doubling 
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Increases by four In this strategy, the student notices that the perimeter values 

increase by four with each additional hexagon. 

Possible representations: Verbal description.  

Equations: 4𝑛 +  2.  

Table: list values., notice an increase of 4 each time (may 

conclude equation is 𝑛 +  4, which is correct if 𝑛 is the 

perimeter of the 𝑛 − 1𝑡ℎ train)  

Graph: plot points. 

 

 

 

 

 

 

 

 

Plotted the points for each of the trains after counting the 

perimeter of each, and realized the pattern was linear, 

increasing by four as the train number increases by one as the 

slope. 

𝑦 =  𝑚𝑥 +  𝑏 

𝑦 =  4𝑥 +  𝑏 (used a point and guess and check to solve for 

𝑏) 

𝑦 =  4𝑥 +  2  

[or could connect all the points on graph with a straight edge 

and see that when 𝑥 = 0, 𝑦 = 2] 
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Task 3b: Explain Multiple Solution Strategies 

Topic Component Description of Coding 

Finding the 

pattern in the 

Hexagon task 

Explains 

procedurally 

what students 

might have done  

• Explains how students get each solution pattern. 

For Rachel’s response, indicates that 2𝑛 +  2𝑛 +  2 or 

2(2𝑛)  +  2 can be found by adding tops and bottoms plus 

ends. 

 

For Sam’s response, indicates that 5 +  4(𝑛 –  2)  +  5, or 

4(𝑛 –  2)  +  5 +  5, or 4(𝑛 –  2)  +  10 

can be found by adding the insides and outsides. 

 

For Jason’s response, indicates that 6𝑛 –  2(𝑛 –  1) can be 

found by adding all sides minus shared sides. 

Explains 

conceptually 

what students 

might have done 

• Indicates that there is a pattern between the number of 

train and the perimeter of the hexagons. 

• Indicates that the pattern consists of both multiplying (by 

4) and adding (by 2). 
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Scoring Rubric for the Counting Cubes task 

Task 2: Generate Multiple Solution Strategies 

Topic Valid Strategies Description of Coding 

Finding the 

pattern in the 

Counting Cubes 

task 

Arms plus middle cube In this strategy, the student considers that the 

figure has 5 arms and the number of cubes in 

each arm is 1 less than the number of building 

number. 

1 + 5(𝑛 − 1) = 1 + 5𝑛 − 5 = 5𝑛 − 4 

Arms minus 4 cubes In this strategy, the student considers that the 

figure has 5 arms and the number of cubes in 

each arm is the same as the building number. 

Then, students subtract 4 cubes since in the 

pattern, there is 1 cube less in each arm. 

5𝑛 − 4 

Arms plus tower In this strategy, the student considers that there 

is one tower in the middle and 4 arms in the 

figure. The tower has 𝑛 cubes (𝑛: building 

number) and each arm has 𝑛 − 1 cubes. 

𝑛 +  4(𝑛 − 1) = 𝑛 + 4𝑛 − 4 = 5𝑛 − 4 

Table method Table method: 

Building 

number 

Number of Cubes 

1 1 

2 1 + 5 = 6 

3 1 + 5 + 5 = 11 

By using the table, students find the number of 

cubes as the following (𝑛 is the building 

number) 

1 + 5(𝑛 − 1) = 5𝑛 − 4 
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Task 3b: Explain Multiple Solution Strategies 

Topic Component Description of Coding 

Finding the 

pattern in the 

Hexagon task 

Explains proce-

durally what stu-

dents might have 

done  

• Explains how students get each solution pattern. 

 

For David’s response, indicates that 𝑛 + 4(𝑛 − 1) can be 

found as one tower in the middle and 4 arms in the figure. 

The tower has 𝑛 cubes (𝑛: building number) and each arm 

has 𝑛 − 1 cubes. 

 

For Emily’s response, indicates that 1 +  5(𝑛 − 1) can be 

found by considering 𝑛 as the building number and 1 as the 

middle cube. 

1 + 5(𝑛 − 1) = 5𝑛 − 4 

 

For Mary’s response, indicates that 5𝑛 + 1 can be found by 

adding all sides (𝑛 as the number of arms) plus one cube in 

the middle. 

Explains con-

ceptually what 

students might 

have done 

• Indicates that there is a pattern between the building num-

ber or cubes in the tower in the middle or arms and the total 

number of cubes. 

• Indicates that the pattern consists of both multiplying (by 5) 

and adding (by −5). 
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Scoring Rubric for the Two Storage Tanks task 

Task 1: Identify Concepts Underlying Procedures 

Topic Concept Score Description of Coding 

Two Storage Tanks Task 

Linear 

Equations 

in two 

variables 

0 • Makes no mention of the linear 

equations. 

1 • Makes a general statement that 

students should consider that the 

graphs are linear and there are two 

variables (𝑥: number of hours, 𝑦: 

galloons of water) 

2 • Sees that there is a linear 

relationship between variables 𝑥 

and 𝑦 variables. Provides further 

explanations on what 𝑥 and 𝑦 refers 

to and gives specific examples by 

using the graph provided in the task. 

Initial 

Value of 

the 

function 

0 • Makes no mention of the initial 

value of the function. 

1 • Makes a general statement that 

students should consider the initial 

value of the function for finding the 

intersection point of two equations. 

2 • Sees how the initial value might 

impact the intersection point and 

provides further explanations by 

giving specific numbers from the 

given graph. 

The rate of 

change 

0 • Makes no mention of the rate of 

change. 

1 • Makes a general statement that the 

rate of change impact the 

intersection point of two linear 

equations. 

2 • Sees that the rate of change is the 

slope of the function and how 

different rate of changes might 

impact on the intersection point.  

• Provides examples on how small 

or big rate of change might impact 

the steepness of the graph and what 

it means to be steeper by comparing 

different rates of change. 

 


