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Abstract

Robust Airline Crew Pairing Problem is a proactive planning approach, which includes considering
delays and disruptions that could happen in the operations. The main objective is to create crew
pairings that are less prone to disruptions or easier to reschedule once disrupted. We model the
problem as a Bi-Objective General Set Covering Problem to minimize the estimated propagated delay
while at the same time maintaining a cost effective solution. We exploit historical information on
disruptions and separate dataset into two subsets. We optimize the expected propagated delays based
on the first portion of the dataset, and limit the price of robustness using g-constraint method. We
develop a branch-and-price based solution algorithm that column generation is applied at each node
of the branch-and-bound tree. A field-collected actual schedule dataset for a small-scale Turkish
airline which operates short-haul domestic flights on a hub-and-spoke network, is used for the
experiments in evaluating the model and the proposed solution method. We also conduct simulation
experiments to verify optimization results and to determine the robustness of the obtained solutions,
where the second part of the historical data is used as an input. The computational results obtained are
encouraging, which show that on average the proposed methodology attains optimal solutions for the
obtained dataset and solution times are reasonable enough to conduct several different scenarios for a
final decision.

Keywords: Robust Crew Pairing Optimization, Branch-and-Price Algorithm, Column Generation,
Robustness, Delay Propagation.

Aksakliklara Karsi Dayanikh Ekip Esleme Problemi i¢cin

Bir Dal-Ucret Algoritmasi
Oz
Aksakliklara Karg1 Dayanikli Ekip Esleme Problemi, klasik ekip esleme probleminin ¢izelgelerin
uygulanmasi sathasinda meydana gelebilecek gecikme ve aksakliklari dikkate alarak yapilan proaktif
bir planlama yaklagim ile ele alinmig halidir. Yaklagimda esas amag, aksakliklara daha az maruz
kalabilecek veya aksakliklara maruz kalindigi zaman tekrar cizelgelenmesi daha kolay ekip
eslemelerinin tretilmesidir. S6z konusu problem, yayilan gecikmelerin beklenen degerinin
enazlanmasi ve ayn1 zamanda maliyet-etkin bir ¢6zliimiin muhafaza edilmesini amaglayan Cift-Amaglt
Genel Kiime Kapsama modeli olarak formiile edilmistir. Calismada, aksaklik bilgilerini igeren gegmis
veri setlerinin kullanilmas1 ve bu veri setinin iki alt par¢aya ayrilmasi 6nerilmistir. Veri setinin birinci
parcasinin yayilan gecikmelerin beklenen degerinin eniyilenmesinde kullanilmast 6ngoriilmiis ve
dayanikliligin bedeli, e-yontemi kullanilarak simirlandirtlmaya ¢aligilmistir. Coziim yaklasimi olarak
dal-smir agacinin her bir diigiimiinde siitun olusturma ydntemi uygulanan Dal-Ucret algoritmast esaslt
bir algoritma gelistirilmistir. Onerilen model ve ¢dziim yaklagimmin degerlendirilmesi igin yapilan
deneylerde; Tiirkiye’de yerlesik, ana dagitim iissii-kenar iis ugus ag yapisini uygulayan, kiiciik 6lgekli
bir havayolu sirketine ait gergek veriler kullanilmigtir. Ayrica, gegmis veri setinin ikinci pargas girdi
olarak kullanilarak elde edilen eniyileme sonuglarinin gecerlemesi ve ¢ozlimlerin dayanikliliginin
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belirlenmesi icin ¢esitli benzetim deneyleri yapilmistir. Gergek veri seti kullanilarak elde edilen
deneysel sonuglar umut verici olup onerilen yaklagimin ortalamada eniyi sonuglar iiretebildigi ve son
karar oncesi birgok degisik senaryonun degerlendirilmesine imkan verecek Olgiide, kabul edilebilir
¢Oziim zamanlarinda ¢6ziimlerin elde edilebildigi gdzlenmistir.

Anahtar Kelimeler: Dayanikli Ekip Esleme Eniyilemesi, Dal-Ucret Algoritmasi, Siitun Olusturma
Yontemi, Dayaniklilik, Gecikme Yayilimu.

Introduction

Since 1950s, operations research techniques have been applied in the
airline industry, especially in airline scheduling problems, which belong to a
broad class of large-scale, network-based resource allocation problems and
form a decision making process that plays a crucial role in the industry.
Airline scheduling problems consist of constructing schedules for the airline
companies’ scarce resources in such a way as to use that resources available
in an efficient manner, both in schedule planning and execution (operations)
stages. The most expensive resources for airlines are the aircrafts and crew
members, and effective scheduling of these two resources can lead to huge
amount of savings.

Airline Schedule Planning process is too large and complex to be
solved as a whole, single problem; so it is typically divided into four
sequential sub-problems — flight schedule design, fleet assignment, aircraft
routing and crew scheduling. In flight schedule design, considering the
marketing needs, a flight schedule, which consists of a set of flight legs
having specific origin/destination airports and departure/arrival times, is
determined that offers the highest potential revenue. In fleet assignment,
each fleet, an aircraft type such as Boeing 777 or Airbus 380, is assigned to
each flight leg. The specific aircraft in the pre-determined fleet, which will
actually operate that flight leg is decided in the aircraft routing stage. Also
in this stage the maintenance requirements of each aircraft is taken into
account. Small-scale and sometimes middle-scale airlines might merge fleet
assignment and aircraft routing into a single problem.

Lastly, in crew scheduling, crew members are assigned to flights in
the least expensive way possible, assuring that each flight is covered and
that government/safety regulations regarding crew scheduling are met
(Barnhart, Cohn, Johnson, Klabjan, Nemhauser, & Vance, 2003). Crew
scheduling forms a critical phase in this schedule planning process, since
crew costs are the second largest component of direct operating costs for
airlines, amounting approximately 15-20% of the total costs.

Crew scheduling is traditionally divided into two stages: crew
pairing and crew rostering, and solved with a sequential approach. Crew
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pairing (Tour-of-duty planning) is done in order to construct anonymous
pairings, which are the sequences of flight legs that start and end at a crew
base, to partition the given flight schedule in a cost-effective way. In crew
rostering the fixed pairings are assigned to individual crew members,
considering the leave times, training periods etc. in order to construct work
schedules, usually for a month. Crew pairing is generally accepted as the
most significant stage of crew scheduling, because the most of the cost
improvements can be achieved by optimizing pairings (Barnhart, Cohn,
Johnson, Klabjan, Nemhauser, & Vance, 2003). In this paper, only the crew
pairing problem is dealt with.

In the airline crew scheduling context, there are substantial
differences between the way that domestic and international operations are
scheduled. International flight networks have a tendency to be relatively
sparse with a limited number of flight legs (Barnhart, Cohn, Johnson,
Klabjan, Nemhauser, & Vance, 2003). On the other hand, domestic flight
networks are characterized by hub-and-spoke networks, which are a system
of flight connections arranged like a wheel, in which all air traffic moves
along low activity airports (spokes), connected to the high activity airports
(hubs). Most of the airlines use the hub-and-spoke network structure for
their domestic flights to develop a wider network and to increase
profitability. However, in this kind of network the flight connections are
highly increased, so inbound and outbound flights are tightly timed and
coordinated to maximize flying time (McShan & Windle, 1989). However,
this aspect leads to explosion in the number of probable pairings and
exacerbate the sensibility of the schedules to disruptions, and as a
consequence the problem becomes more intractable and prone to delays.

Previously mentioned flight schedule design step typically begins
one year prior to operations of the flight schedule and lasts nearly nine
months (Lohatepanont & Barnhart, 2004). Fleet assignment step is
performed as early as three months in advance, aircraft routing and crew
scheduling stages are conducted two weeks to one month in advance.
Approximately two or three weeks before the day of operations all the
schedules are passed to the unit that is responsible for the operations,
airline's Operations Control Center (OCC) or Flight Dispatch Office.

OCC monitors and analyses all irregular events, which is defined as
disruption that is unavoidable to result in rescheduling. Also OCC conducts
coordination with the other internal/external entities and rescheduling
actions to ensure seamless execution of the planned schedules. To resolve
the crew-related disruptions in operations, OCC implement essential
changes to the planned crew schedules, in order to return to original crew
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schedule as soon as possible. In airline operations when disruptions occur,
crew rescheduling typically functions as a bottleneck for the whole airline
rescheduling process, because of convoluted and tight crew schedules, and
the fact that most crew members are operating at near-capacity. Most of the
time this tight connections lead to brittle schedules that can be easily
destroyed even by a minor delay.

Flight delays’ negative impacts are comprehensive, increasing flight
delays pose a major threat on the whole air travel system and cost airlines at
billions of dollars each year. As stated in a research made by Airlines for
America (A4A), in 2012 it is estimated that delays driven $7.2 billion in
direct operating costs for scheduled U.S. passenger airlines, and considering
that crew costs are estimated as $16.26 per minute, the total crew related
cost is approximately $1.5 billion, see Table 1.

Table 1: Cost of Delays to U.S. Airlines (Airlines for America, 2013)

Calendar Year 2012 Direct Aircraft Avs. 2011 2012 Delay
Operating Costs
Cost per Block Minute ($ millions)
Fuel $39.26 5.3% $3,603
Crew $16.26 1.7% $1,492
Maintenance $12.02 3.1% $1,103
Aircraft Ownership $7.92 -1.1% $727
Other $2.71 5.0% $249
Total Direct Operating
Costs $78.17 3.5% $7,175

With every passing year, flight disruptions become more prevalent in
airline operations. Basically there are two approaches to deal with the
uncertainties related to flight disruptions. Rescheduling crews in operations
Is a reactive approach to handle uncertainty in real time after disruptions
occur. Main drawback of this approach is the fact that solution is expected
immediately. Additionally, rescheduling requires considering several
complex constraints and these aspects leads to intractability issues. Because
of the need of immediate response, airlines currently employ manual or
heuristic methods that yield sub-optimal solutions. Unlike the reactive
approach, which includes dealing with disruptions on the day of operations;
robust airline scheduling is a proactive approach, which involves
considering disruptions and delays that could happen in operations. The
main objective in robust scheduling is to reduce the total realized costs,
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including both planning and rescheduling costs. Thus, schedules that are
less susceptible to disturbances or easier to repair once disrupted, could be
created. Considering the crew scheduling stage, robustness is often
considered in the pairing problem instead of rostering problem.

The root causes of the airline disruptions may be inclement weather,
equipment failure, crew sickness, late passengers, airport congestion etc.
Such disruptions most probably may result with flight delays and
cancellations that could not only considerably increase the operational crew
costs, but also may negatively impact airline’s goodwill. In recent years
importance of robust crew pairing problem is highly understood, because
even a little improvement in solution can save millions of dollars for large-
scale airlines.

Main challenge of constructing robust schedules is to define and find
abstract measures of robustness that can make possible to formulize
mathematically the scheduling problems. In airline schedule planning
context, robustness has two components; flexibility, the ability to recover
easily and timely in the face of disruptions; and resilience, the ability to
continue to operate as planned by absorbing minor disruptions.

In case of delays it is essential to identify if it is a primary delay or
if it is a propagated delay, which is a consequence of another earlier event.
Primary delay is the one that is not affected by any earlier or accumulated
delay. However, a propagated delay is the accumulated one and it is
identified as the largest delay cause (Guest, 2007). Because of higher
additional operational costs incurred by delay propagation, nowadays
airlines are interested beyond just crew schedules with optimal planned crew
cost, they are interested in robust schedules with low operational crew cost,
in which optimal planned cost is not considered as necessary.

In this paper, we attempt to approach the robust crew pairing
problem from both ends, including methodology, mathematical model and
solution algorithm. The contributions of this paper are threefold: First, we
develop a new bi-objective formulation for robust ACP, which aims to
minimize propagated delays in case of disruptions while at the same time
maintaining a cost effective solution. Second, we build a Branch-And-Price
solution algorithm to deal with the additional complexity introduced by the
consideration of robustness to the already NP-hard problem. In order to
construct operationally robust crew schedules, the proposed model
computes optimal schedules for flight schedules depending on enough and
accurate historical data related to propagated delays. Third, we partition the
historical data into two separate sets, and both for optimization and
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evaluation, and we employ Sample Average Approximation method, where
the expected value is approximated by the average over samples. This
mitigates the side effects of using the same data or distribution functions
while building robust schedules and evaluating the performance of them.

The remainder of the paper is organized as follows. Section 2
presents a brief literature review of related work in the area. Section 3
defines basic terminology and contains a detailed description of the robust
ACP problem, including the concept of robustness and methods for
incorporating a measure of robustness into the crew scheduling. Section 4
presents the proposed methodology, bi-objective formulation as well as
Branch-and-Price based solution approach. The results of computational
experiments for the proposed model based on real data from a Turkish
airline are discussed in Section 5. Finally, the concluding remarks and
outlining possible research extensions are presented in Section 6.

Literature Survey

Well-designed airline crew scheduling algorithms can lower the
crew cost of an airline company, enabling the company to stay competitive.
In the 1960s most researchers tried to develop efficient exact methods that
are essentially non polynomial-time algorithms. With the advent of the
complexity theory, researchers began to realize that many of these problems
may be inherently difficult to solve. In the 1970s, many scheduling
problems including the ACP problem were shown to be NP-hard and
researchers started to focus on heuristic or meta-heuristic methods. But for
the last ten years, thanks to improvements on computational technology,
exact mathematical methods such as Column Generation (CG),
decomposition and approximation algorithms, have been come into use
heavily.

The ACP problem has a set of specific terms (Barnhart, Cohn,
Johnson, Klabjan, Nemhauser, & Vance, 2003). A flight schedule is the list
of flight legs including the origin/destination airports and departure and
arrival times. A flight or a flight leg is a non-sop direct flight from an origin
airport to a destination airport with specified departure and arrival times.
Block time is the time between arrival time to the gate and departure time
from the gate. Crew base is the home base where crew members must start
and end their job. Most of the airlines have several crew bases.

A crew pairing (tour-of-duty), similar to aircraft routing, is a
sequence of connected flight legs, which start and end at the same crew base
that could be conducted by the same crew. In order to be legal, a crew
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pairing must satisfy Directorate of Civil Aviation, labor union, contractual
rules and some safety requirements (e.g. the 8-in-24 rule), and airline’s own
constraints. Some of these restrictions include, but are not limited to,
maximum daily working hours, minimum overnight rest period, maximum
number of operating flights, and maximum time away from base. For crews
that fly in domestic flights, pairings tend to last one to three days depending
on those legality constraints. Normally, airlines heuristically opt for short
pairings, because it is generally believed that short pairings are more robust
to disruptions than long ones.

Crew pairings are usually separated into duty periods which are
divided by layover or rest period. Similarly duty periods consist of one or
more flight legs separated by ground times. Deadheading is the practice of
positioning crew members as a passenger to a particular destination to
assume a flight or back to a crew base. The total duration of a pairing, that is
the total time from departure to return back to crew base is called Time
Away From Base (TAFB). Minimum Turn Time is the minimum time
interval between two consecutive flights that belong to the same pairing.
Flying time is the total duration of a pairing spent in flying.

One of the important factors that require to be considered when
constructing a pairing is the cost of it. The cost of a pairing is typically
calculated as a maximum value of flying time, total elapsed time of the duty
periods and TAFB, which is a nonlinear function. Usually, the cost of a
crew pairing is not measured in monetary terms, but it is determined in
terms of time.

Existing crew pairing formulations in literature can be classified into
two main categories, namely the set partitioning (covering) and the network
flow models. Desaulniers et al. formulate the problem as an integer,
nonlinear multi-commodity network flow model with additional resource
variables, and pairing generation is performed by the approach of resource
constrained shortest path sub-problem (G. Desaulniers, J. Desrosiers, et al.
1997). Hoffman and Padberg propose both pure set partitioning and set
partitioning formulation with side constraints, and present a Branch-and-Cut
solution approach to optimality (Hoffman & Padberg, 1993). Because of the
difficulty in dealing with complex and various constraints, set partitioning
(covering) models are much preferred by the researchers (Barnhart and
Shenoi 1998).

The Set Partitioning Problem (SPP) is to partition elements into a
number of subsets and each binary variable (column) represents a subset of
elements defined by the coefficients. In ACP problem each variable
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(column) is a pairing with a given cost and the set partitioning constraints
represent the flight legs that must be flown. Set Covering Problem is the
enhanced version of the SPP to allow the possibility of deadheading. The
number of variables in the problem is usually very large in practice. Thus, a
special method such as dynamic (delayed) CG is typically employed to
solve the Linear Programming (LP) relaxation of the problem (Vance, et al.
1997) (Anbil, Forrest, & Pulleyblank, 1998).

The ACP problem is generally enlarged with additional crew base
balancing constraints, which restricts the number of crews involved from
each crew base. Because of specified lower and upper bounds, this form of
constraints is known as two-sided knapsack constraints. Since these two-
sided knapsack constraints have non-unit right hand side values, the ACP
problem is often modelled as a Generalized Set Covering Problem (GSCP).
GSCP model can be formulated as;

minimize c¢Tx (1)
subjectto Ax =1 (2)
=
Mx {:} b (3)
<
x € {0,1}" (4)

In this GSCP formulation, each decision variable (column) x refers
to a feasible pairing and c is the cost of each pairing in terms of time. The
objective function (1) minimizes the cost of the required crews. The
decision variable x is equal to 1 if the pairing is included in the solution and
0 otherwise. The set of constraints in (2) referred to as flight leg constraints
that guarantee flight coverage that each flight leg is included in at least one
pairing, which means that deadheading is allowed. The set of constraints in
(3) referred to as crew base balancing constraints and confirm that crews
contained in the solution which start/end at a crew base must be between
stated lower and upper bounds. And (4) ensures that the decision variables
are integral.

In order to enumerate variables in other words generate pairings, two
main types of network structures are used in the literature, duty period
network and flight (time-space) network. The duty period network has an arc
for each possible duty period and arcs demonstrating possible layover
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connections between the duties. The flight (time-space) network has an arc
for each flight leg in the given flight schedule and arcs representing possible
connections between the flights. In domestic or short-haul international
flights, the flight network is preferred, because the flight times are tend to be
short and there are large number of flight legs in duty periods. On the other
hand, in long-haul international flights, duty period network is preferred,
because the flight times are long and there are only several flights in duty
periods (Barnhart, Cohn, Johnson, Klabjan, Nemhauser, & Vance, 2003).

Usually CG technique is employed to solve large-scale ACP,
because of the extremely large number of variables, complexity of the
constraints that must be satisfied for each pairing, and non-linear cost
structure of the pairings. In CG technique the master problem is the LP
relaxation of the original integer programming model and the pricing sub-
problem is typically formulated as a resource constrained shortest path
problem in which the resource constraints ensure that only legal pairings
that satisfy all legality constraints are generated.

CG technique is one of the most common methods for solving large-
scale integer programming problems, in which only a restricted version of
the problem is solved with only a subset of the columns. A general reference
on CG is the book edited by Desaulniers et al. (Desaulniers, Desrosiers, &
Solomon, 2005). The basic idea on CG is to formulate the problem as an
integer programming problem, solve the underlying LP relaxation to obtain
an optimal fractional solution, and then round the fractional solution to a
feasible integer solution in such a way that the error can be bounded.

In CG approach only a subset of pairings needs to be dealt with in
order to solve the problem, because in the optimal solution most of the
columns will be non-basic with a value of zero. In CG process, only the
columns which have the potential to improve the objective function are
used. When implementing CG first, the problem is divided into two sub-
problems, the Restricted Master Problem (RMP) and the Pricing Sub-
Problem (PSP). RMP is the LP relaxation of the original problem and
consist of only the initial columns to start with. Then, LP relaxation of the
RMP is solved so as to find the dual variables and these duals are passed to
PSP. The objective of the PSP is to find potential new columns relating to
the current dual variables obtained from RMP. And then the new columns
with the reduced cost value are passed to the RMP until no such column is
found.

After CG process, in order to find integer solutions, a Branch-and-
Bound (B&B) or Branch-and-Cut (B&C) method must be applied to the
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original problem which has only the columns generated in the previous step.
However, this process does not guarantee a globally optimal solution,
because at the B&B or B&C stage, there may be a pairing that would have
more reduced cost value than the current one but is not present in the master
problem. Thus, to find a globally optimal solution, columns have to be
generated after branching and this leads to Branch-and-Price (B&P) method
(Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998). B&P is
similar to the B&B technique, but CG is used at each node of the B&B tree
dynamically.

The traditional ACP approach requires that all the data related to
flights and resources be fully known and deterministic. But airline
operations are prone to suffer disruptions caused by several reasons, and in
case of disruptions optimal crew pairings easily become sub-optimal.
Traditional approaches have proved to be not capable to address such
disruptions adequately, and furthermore tight schedules created by
deterministic approaches lead to propagation of the delays, because globally
optimized deterministic solutions have short buffer times between flights
and also easily rescheduling is not taken into account.

Even though usually external factors, such as inclement weather or
airport congestion, are held responsible for delays, certain delays especially
propagated delays are predictable and avoidable with incorporating
robustness to the schedules at the planning stage. Most of the flight delays
are caused by propagated delay, which converts a minor flight disruption to
a major one. This translates into that decrease in propagated delay leads to
an operationally robust schedule (M. B. Tam 2011). Propagated delay often
occurs in the domestic or short-haul international flights because of
relatively short flight times. In operations stage the effect of an individual
primary delay may be negligible, but its effect on the overall schedule,
namely the propagated delay may lead significant negative complications. In
order to reduce operational costs and improve punctuality, robustness has to
be integrated into the models by decreasing the propagated delay.

Despite the fact that there are extensive publications dealing with
traditional ACP problem, there is small fraction of research related
specifically to robust ACP problem. Some different robust crew scheduling
approaches are as follows;

Schaefer et al. propose an approach in which the planned cost of
pairings are substituted with expected operational cost of pairings, which is
calculated by the simulation of individual pairings. In the simulation they
use only push-back recovery, which assume that departure of each flight leg
is delayed until the crew and the aircraft are available. Hence, the main
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drawbacks of this approach are the lack of consideration of the interactions
between pairings, especially the delay propagation, and the complex
estimation of the expected operational cost of each pairing (Schaefer,
Johnson, Kleywegt, & Nemhauser, 2005).

Ehrgott and Ryan present a bi-objective optimization approach
which attempts to generate Pareto-optimal solutions. The bi-objective is to
minimize both the planned cost and the non-robustness penalty, in which
non-robustness penalty is used to penalize the aircraft changes when the
crew ground time is short. They develop a model based on e-constraint
method and a set partitioning algorithm to solve the model (Ehrgott & Ryan,
2002).

Yen and Birge introduce a two-stage stochastic programming model
with recourse, in which recourse problem is employed to calculate the cost
of delays. In this two-stage approach non-robust flight connections are
discarded on at a time until the operational crew cost is minimized. The
calculation of the operational crew cost is done by adding expected recovery
cost to planned crew cost. The robustness measure is similar to Ehrgott and
Ryan’s, except the assumption that the flight time is a random variable.
Main shortcoming of the proposed approach is the computationally
intractability of the solution method (Yen & Birge, 2006).

Shebalov and Klabjan propose a bi-objective optimization approach
to generate crew schedules that has increased flexibility in case of crew
recovery. One of the two objective functions is to maximize the number of
move-up crews, which are the crews that can be possibly swapped during
operations. The other objective is to minimize the crew costs and it is
incorporated as a constraint into the model. Also, a solution method based
on the combination of CG and Lagrangian relaxation for the
computationally difficult problem is introduced (Shebalov & Klabjan,
2006).

Tam and Ehrgott suggest a bi-objective optimization approach with
an additional objective to maximize unit crewing connection with
minimizing the planned crew cost. The unit crewing is to construct crew
schedules to facilitate crew members operate the same sequence of flight
legs within the duty periods as much as possible. Robustness is considered
as the utilization of unit crewing (Tam & Ehrgott, 2007).

Lucian and Natalia formulate the problem as a two-stage stochastic
programming model with recourse with regard to swapping opportunities of
crews. As a solution method a CG based framework with a constraint
generation extension is proposed. So as to evaluate the robustness of the
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schedules, a scenario based simulation model with improved recovery
actions is used (Lucian & Natalia, 2011).

However, in most of the researches mentioned above, the interaction
and interdependence between pairings and propagated delays have not been
captured literally; there are still opportunities for further enhancements.
Additionally, to our knowledge, there is no crew pairing optimization
approach available yet which uses separate sets of historical data during
robust schedule optimization and evaluation.

Robust Airline Crew Pairing Problem

Disruptions are inevitable in airline operations due to irregular
events such as inclement weather, equipment failure, crew sickness, late
passengers, airport congestion etc. In case of these irregular operations,
flight legs, aircrafts and crews required to be rescheduled. In practice, it is
done in an iterative way similar to schedule planning process. Possible
course of actions for flight rescheduling are delaying or cancelling flights,
swapping or ferrying aircrafts, using reserve crew or swapping crew.
Disruptions effect crew schedules in different ways depending on the
robustness of the planned crew schedule.

Traditional airline scheduling models usually end up with highly
utilized aircrafts and crews. Solutions to these models include short turn and
ground times in order to maximize aircraft utilization and crew flying hours.
But in the face of operations when disruptions occur, these solutions could
render operational schedules fragile. Even short delays in flights may cause
a snowball effect on the schedules and lack of slack times between flights
may cause propagation of delays across the whole schedule. This snowball
effect usually can be described by delay propagation.

So taking into consideration the disruptions, which may occur in
operations, it is of paramount importance to construct robust schedules,
because they can cause to suffer large recovery and rescheduling costs.
Hence, most of the descriptions of robust schedule involve minimizing the
operational costs rather than the planned costs. However, there is still no a
clear and common definition of robustness in airline scheduling.

Robustness

There are several difficulties related to robustness. First of all, it is
really hard to define robustness in the problem context and incorporate it
into the model, and unfortunately there is no methodological way in the
literature to define and incorporate robustness for the airline schedule
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planning problems. Robustness is generally distinguished into two
characteristics; flexibility, the ability to recover easily and timely in the face
of disruptions; and resilience (stability), the ability to continue to operate as
planned by absorbing minor disruptions. Flexibility is generally achieved by
providing recovery opportunities such as maximizing swapping
opportunities of resources. Resilience is largely attained by reducing delay
propagation reducing aircraft and crew changes per pairing and adding slack
(buffer) times into ground and turn times. With incorporating these aspects
of robustness into the schedules, a delay on a flight leg may be confined to
that pairing and have no overall impact on the whole schedule.

Secondly, measuring the robustness of a schedule in advance of
operations is really challenging. Because it is hard to estimate what kind of
disruptions may happen and when will happen. This also depends on the
airline’s disruption recovery strategy. A realistic way to measure the
robustness of schedules is the On-Time Performance (OTP) of operated
flights in a real or simulation environment (Lucian & Natalia, 2011). OTP is
the most practically valid and well-known indicator of punctuality of the
schedules, which is the fraction of flights arriving on-time at their
destination airport. OTP is a key measure for all stakeholders especially for
airlines, because they are related to direct costs due to the loss of efficiency
additionally to indirect costs due to the loss of time and goodwill (Wu &
Caves, 2003). Also it must be noted that propagated delays have a great
impact on OTP.

Finally, it is difficult to compromise between cost and robustness,
because of quantifying the additional cost of robustness and uncertainty.
Thus, most of the research in the literature related to robust scheduling
consider using bi-objective optimization approach to obtain a schedule that
operates relatively well concerning different robustness measures.

Propagated Delay

Flight delays can be separated into two components: primary delay,
which is the delay which originates at the destination or during the course of
the fly, and propagated delay, which is the delay that is caused by snowball
effect from a primary delay and generally referred to be caused by late
arriving flight. Propagated delay, which has a minimum value of O, is
calculated as the difference between delay time and the slack time, is the
difference between provided ground time and minimum turn time. Crew
schedules that have reduced level of propagated delay appear to be more
robust when confronted with unforeseen volatility in the operations, largely
due to their capability to adapt better and more quickly.
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According to European Organization for the Safety of Air
Navigation (EUROCONTROL) records, average delay per flight in Europe
increased 134 % from 12 minutes in 2006 to 28 minutes in 2009. And more
than 24% of arrivals were over 15 minutes late in 2010. Propagated delays
have shown a general upward trend since 2003 and constitute nearly half of
all delay minutes in Europe (Cook & Tanner, 2011).

In the past it was limited to better comprehend and handle
propagated delay in practice and usually primary delays were taken into
account as the main factor for better OTP (Guest, 2007). Propagated delays
create significantly greater impact than the primary delays and an individual
primary delay can create snowball effect through the entire schedule,
affecting a large number of subsequent flights (AhmadBeygi, Cohn, Guan,
& Belobaba, 2008).

Modeling Approaches

At present, there are two common modeling approaches that
consider robustness in ACP. First one is the bi-objective optimization
approaches, in which a deterministic measure is defined for the propagation
of delays in the schedule. Considering the conflicting nature of the cost and
robustness objective functions, constraint scalarisation techniques are
usually employed, in which one of the objective functions is transformed
into a constraint (Tam, Ehrgott, Ryan, & Zakeri, 2011).

The other one is the two-stage stochastic integer programming
approaches with recourse, in which sampling from the determined delay
distributions are used to evaluate the propagation of delays. This is captured
with a recourse cost added to the crew cost. Therefore, the intention of
employing the recourse cost is similar to the robustness objective in the bi-
objective approaches (Tam, Ehrgott, Ryan, & Zakeri, 2011).

However, in stochastic programming approaches, usually unrealistic
assumptions are made in order to reduce the complexity of the scheduling
problem, such as flight delays are considered independent or flights are
delayed until all resources (crews and aircraft) are available. Additionally, it
is unlikely to determine a single probability density function with certain
parameters that can reflect the flight delay distribution completely, and they
require significantly higher solution times compared to bi-objective models.

Methodology and Solution Approach

We develop a bi-objective optimization model, in which we attempt
to minimize propagated delay while a certain level of cost is preserved with
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the help of a given set of historical data. In the proposed model, there is a
compromise between the crew cost and delay propagation minimization,
because in order to obtain low level delay propagation, crew costs becomes
higher and vice versa. Thus, we employ e-constraint method to transform
one of the constraints into a constraint. As an initial stage for our
methodology, deterministic ACP problem must be solved in order to find
the minimum crew cost level, and propagated delays must be calculated
from the given historical data.

Calculating the Propagated Delays

Flight delay decomposition that is demonstrated in Figure 1
illustrates the relationship between departures, arrivals, and delays of two
flights in the same pairing. The solid lines with arrows show the planned
flight and the dotted ones display the actual flight, for flight legs i and j.
PDT, ADT, PAT and AAT are the Planned Departure Time, Actual
Departure Time, Planned Arrival Time and Actual Arrival Time,
respectively. The Planned Turn Time between flights i and j (PTT;) is the
time between PAT of flight i and PDT of flight j, see Equation (5). ATT
(Actual Turn Time) is the ADT of flight leg j minus the AAT of flight leg i.
If ATT is smaller than Minimum Turn Time (MMT) the crew is considered
disrupted. It is assumed that the same crew is assigned to flight leg i and j.
As shown in Figure 1, when flight leg i is delayed, the Slack time (Slackj)
between two flights completely and some part of the MMT is consumed, and
this causes Propagated Delay (PD). Hence, the Total Departure Delay
(TDD) of flight j is consist of the PD;; and the Independent Departure Delay
(IDD) of flight j itself. Likewise, the Total Arrival Delay (TAD) of flight j
comprises PD;; and the Independent Arrival Delay (IAD). Although IDD
includes only the independent delay before a flight departs, IAD includes
both IDD and the additional independent delay in the air or at the origin and
destination airports.

PTT;; = PDT; — PAT, (5)
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Figure 1: Flight Delay Decomposition

As shown in Figure 1, when flight leg i is delayed, the Slack time
(Slack;;) between two flights is consumed completely and also some part of
the MMT is consumed, and this causes Propagated Delay (PD). Hence, the
Total Departure Delay (TDD) of flight j is consist of the PDj and the
Independent Departure Delay (IDD) of flight j itself. Likewise, the Total
Arrival Delay (TAD) of flight j comprises PDj; and the Independent Arrival
Delay (IAD). Although IDD includes only the independent delay before a
flight departs, IAD includes both IDD and the additional independent delay
in the air or at the origin and destination airports. We can calculate the
following relationships in order to find the propagated delay:

TDD; = max(ADT; — PDT},0) = max(PD;; + IDD;,0) (7)
PDy; = max(TAD; — Slack;;, 0) )

We split our historical dataset into two separate parts as past data
and future data. We use the Sample Average Approximation method, which
IS a non-parametric approach, in order to make use of past data to generate
the solution, and then the future data is used to evaluate the solution. We
consider each day of operation in the historical data as one instance of a
delay scenario (®), assuming that each delay scenario is equally likely.
Therefore, the set of delay scenarios () cardinality is equal to total day of
operations in the set. Each pair of consecutive flight legs i and j in delay
scenario () is the TAD of flight leg i, which is obtained from historical
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dataset, and Slack;; is the crew ground slack time between flight legs i and j,
which is obtained from the original flight schedule calculated simply by
subtracting the MMT from the PTT. Propagated delay for each pairing must
be calculated by taking into account each consecutive flight legs in any
given pairing.

For each day of operation, we can obtain PDs using IADs, which
assumes that the first flight of each day has zero propagated delay. We then
solve the proposed robust model over each day of operation to obtain a
planned schedule. Next, we use the actual delay information from future
data to evaluate performance of the robust schedules. After that, we conduct
simulation experiments in order to evaluate the performance of the obtained
solutions.

Mathematical Model
All required notations are defined in follow:

Nomenclature

Indices

] flight leg index

K pairing index

m crew base index

1) delay scenario index
Sets

F set of flight legs

P set of pairings

M set of crew bases

Q set of delay scenarios
[ set of delay scenario probabilities (w € 2)
Parameters

Ck cost of pairing k

pd"ijc propagated delay from flight i to j in pairing k in delay scenario ®
aik 1 if flight leg i is covered by pairing k, O otherwise

hkm 1 if crew base m is the crew base for pairing k, 0 otherwise

In minimum number of crew who serve in crew base m

Um maximum number of crew who serve in crew base m

Zo  optimal solution value of the deterministic problem

e robustness factor , which measures how much extra crew cost we
are ready to compromise

Variable

Xk 1 if pairing k is involved in the solution, 0 otherwise
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As mentioned before, we attempt to make crew pairings robust by
minimizing expected propagated delay. Using the notation introduced
above, we assume that the total propagated delay of each paring is
independent. Then, the objective function for minimization of expected
propagated delay can be written as;

minimize E[Yxep{Xi jexPdiji) k] (10)

minimize Zkep{xk Zi,jex E (pdijk)} (11)

By assuming that each delay scenario (o) is equally likely and
probable set of delay scenarios (Q2) has finite cardinality, the expected value
of the total propagated delay in a pairing can be calculated as follows;

E(pdijik) = Zwea P"pdlji (12)

In order to capture the compromise between two conflicting
objectives, the problem is formulated as a bi-objective optimization model.
Specifically, the objective functions are;

minimize Zkep(xk Zi,jeK Ywea D" Pd}?k (13)

minimize Yjep CiXk (14)

We try to minimize the propagated delay while simultaneously
conserving a cost-effective solution. Thus, we employed e-constraint
method that crew minimization objective function is transformed into a
constraint limited by an upper bound. The compact formulation after
applying e-constraint method is shown below;

minimize ZkeP(xk Zi,jeK Yweab” pd}t{k) (
15)
subject to  YpepiXx = 1 VieF (
16)

ZkEP hkmxk Zlm vmeM (17)
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Yker MemXx < Uy, vmeM (18)
Ykep CkXk < (1+¢€) Zoy (19)
x, € {0,1} vk € P (20)

pd, =0 Vi, j€F,Vk€PVwEQ (21)
Ln, =0 vmeM (22)

Uy =0 YmeM (23)

aij =0 Vie F,Vk e P (24)

him =0 Vk € P,YmeM (25)

The original compact formulation is a GSCP-based formulation
consisting of a binary decision variable. The objective function of the model
is to minimize expected propagated delays (15) with the flight leg covering
or set covering constraints (16), crew base balancing constraints (17,18) and
robustness-cost objective limit constraint (19). There is one flight leg
covering constraint for each flight leg and there is one crew base balancing
constraint for each crew base.

The flight leg covering constraints (16) ensure that every flight in the
given flight schedule is covered by at least one pairing. Thus, a pairing can
only be flown by a crew member. In our approach set covering formulation
is preferred to set partitioning one, because LP relaxation of set covering is
mathematically far steadier and thus easier to solve, and it is easier to
construct a feasible integer solution from a LP relaxation solution (Barnhart,
Johnson, Nemhauser, Savelsbergh, & Vance, 1998).

The crew base balancing constraints (17, 18) ensure that the number
of crews included from each crew base are in the specified limits. Each such
constraint represents a crew base limitation for that crew base. The
robustness-cost objective limit constraint (19) consists of variables of all the
pairings and control the crew cost that it is not exceeding the minimum crew
cost too much. But first of all, we have to solve the deterministic ACP
problem in order to obtain the minimum crew cost of the deterministic
problem. With the help of the robustness factor (g) it is possible to generate
multiple solutions with various degrees of robustness. Constraint (20)
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ensures that decision variables have integer value, and constraints (21-25)
assures that the parameters are non-negative.

There are two main underlying assumptions in the proposed model.
First, the previous planning stages (flight schedule, fleet assignment and
aircraft routing) are done and given. Second, because of the fact that any
delay caused by an unavailable aircraft is highly likely to cause delay in
multiple pairings, it is assumed that the aircrafts are always available.

It is evident that the estimation of the real performance of a crew
schedule in advance of operations is really challenging. Also it is difficult to
estimate the operational cost and indirect delays that will take place during
operations, because they all heavily depend on the strategy an airline uses to
recover from disruptions. The decisions made in the recovery process
include delaying or cancelling flights, and swapping or re-routing aircraft
and crew. These recovery options are required to be taken into consideration
when delays are forecast for a planned crew schedule.

Solution Approach

A CG-based approach seems to be the only practical approach to
solve the proposed model. Because, first of all, there are numerous numbers
of variables (pairings) with propagated delays related to them and majority
of the variables are non-basic in the optimal solution, therefore it is not
necessary to use all variables which has non-negative reduced costs.
Secondly, the storage requirements for the compact formulation are
massive, thus optimizing only reduced version of the compact problem
would yield higher performance in terms of solution time.

The compact formulation which is introduced above is reformulated
via the CG technique. In the reformulation structure, the flight legs covered
by pairings and balanced crew bases are maintained. A pairing is a unique
path in the flight network as governed by the constraints (16-18) which
ensure that at least one pairing covers the flight legs and pairings conform to
crew base limitations. Therefore, the decomposition of the compact
formulation can be written is as;

Master Problem:
minimize  Yyep(Xk X jex ZweaP” PAi) (26)

subject to  YepQiXx = 1 Vi EF (27)

ZkEP hkmxk Zlm vmeM (28)
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ZkEP hkmxk Sum VvmeM (29)
x, €[0,1] Vk € P (30)

Pricing Sub-Problem:

minimize Zkep{xk (Zi,jex YweaP" pd‘i/‘]/'k - ”A)} (31)
Ykep kX < (1+¢€) Zope (32)
x, € {0,1} Vk € P (33)

The master problem for robust ACP problem is defined with (26-30)
linear program where the columns of constraints (27-29) are some initial
subset of pairings. If we compare the master problem formulation with the
compact formulation, the integer restriction on the solution of decision
variables has been relaxed, robustness-cost objective limit constraint
removed, and the number of variables has been restricted to a reasonable
sized subset of all pairings. By applying strong duality theorem, we obtain
dual values (m) for the optimal solution of the master problem. These dual
values () are used in the objective function of the PSP to generate columns
which will be added to the RMP to improve solution value (31). The
constraint of the PSP ensure that the columns obey the robustness-cost
objective limit constraint (32).

Pairing Generation:

The necessity to calculate total propagated delays for each pairing,
dictates us to enumerate all the legal pairings. A recursion based Depth-First
Search (DFS) procedure is used as the search engine in order to enumerate
all feasible pairings explicitly on a flight network. In flight network each
flight is represented by an arc and there are also arcs representing legal
connections between flights. Two flights will have a connection arc, if the
arrival airport of the first flight is the same as the departure of the second
one, and the time between them is legal.
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Figure 2: Flight Network Example

In addition to the flight and connection arcs shown in Figure 2, the
directed flight network has two additional nodes per crew base representing
the source and sink of each complete crew base-to-crew base pairing. For
each flight departing from a crew base, there is a connecting arc from the
source node to the departing flight, and similarly for each flight arriving at a
crew base, there is a connecting arc from the arriving flight to the sink node.
By defining the flight network in such a manner that legality constraints are
satisfied including Directorate of Civil Aviation, labor union, contractual
rules and some safety requirements, and legality constrains related to that a
pairing have to start and end at the same crew base and the flights must be
sequential in space and time. It assures that every source to sink path in the
flight network with the limited length is a legal pairing. All feasible pairings
are enumerated for each crew base and in every step of the DFS, the latest
generated pairing is checked for legality. Also the cost of each pairing is
calculated based on the components of flying time, elapsed time of the duty
period and time-away-from-base.

Branch-and-Price Approach:

The problem instances we study are small enough that lets us to
generate all pairings before the optimization process begins. Classical CG
approach does not guarantee the optimal integer solution to the original
problem by optimally solving the LP relaxation of the RMP, because it may
not generate the columns needed for an optimal integer solution. However,
Branch-and-Price (B&P) approach is capable of yielding optimal integer
solutions via applying CG within the B&B search tree.



Savunma Bilimleri Dergisi, Mayis 2014, 13 (1), 37-74. | 59

Actually, B&P is the dual version of the Branch-and-Cut (B&C),
while B&C focuses on row generation, B&P focuses on column generation,
where valid inequalities (rows) instead of columns are added to the node
problems. B&P methods are previously applied to classical ACP problem
(Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998), but now we
have to deal with additional complexity introduced by the consideration of
robustness in the classical problem. Figure 2 illustrates the flowchart of the
proposed B&P algorithm for the robust ACP problem and the main steps of
the algorithm are given below:

Step 1 - Compact Formulation and read all input files: Construct the
Compact Formulation and read all the data including the flight leg covering,
crew base balancing constraints, propagated delays, robustness factor,
optimal solution of the deterministic ACP problem, crew rules etc.

Step 2 - Flight network construction: Build flight networks in line
with the flight schedule and crew rules.

Step 3 - Pairing generation with Depth-First Search (DFS)
procedure: Construct pairings considering the feasibility rules and calculate
the related cost for each feasible pairing.

Step 4 - Construct GSPC: Construct the GSPC with the objective of
minimizing propagated delay, flight leg coverage constraints, crew
balancing constraints and robustness-cost objective constraint. Set Zyp (the
upper bound of the tree) to infinity.

Step 5 - Solve the LP relaxed RMP: Solve and find the optimal
solution of the LP relaxed RMP.

Step 6 - Get the dual values from the RMP and solve the PSP: Get
the dual values from the RMP and solve the PSP with the exact or greedy
method in order to generate columns with negative reduced cost. From each
PSP solution generate certain amount of columns that satisfies the minimum
reduced cost threshold. If no such column exist GOTO Step 8, the optimal
solution for the LP relaxed RMP is found.

Step 7 - Add such columns to the RMP: Add new columns generated
by the PSP to the RMP and GOTO Step 5.

Step 8 - Check the feasibility of the current solution: If the current
solution is not feasible, prune the node and GOTO Step 13.

Step 9 - Compare current objective with the upper bound: If the
current objective is not lower than Zyp, prune the node and GO TO Step 13.
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Step 10 - Check if the current solution is integral: If the current
solution is integral, switch Zyp with the current solution objective value,
prune any node that has objective value higher than this upper bound and
GO TO Step 13. Otherwise, record the current node as the parent node.

Step 11 - Branch: Implement constraint (follow-on) branching.

Step 12 - Modify the flight network and GSCP: Modify the flight
network and GSCP by removing the related arcs and columns in line with
the branch selected and GOTO Step 5.

Step 13 - Check if there is unexplored node: If there is unexplored
node, select a recently created unexplored node and GOTO Step 12.

Step 14 - Check if the current solution is integral: If the current
solution is integral, all tree is explored and the latest solution is the optimal
solution. Otherwise, the problem is infeasible.

As an improvement to the B&P technique we apply a heuristic
pricing, particularly a greedy algorithm as an acceleration technique,
because most of the time in CG process is spent in pricing. This heuristic
pricing repeatedly executes a procedure, which initially sorts all the pairings
by the reduced costs in ascending order and then in the previously
determined order, assigns each pairing until the robustness-cost objective
limit constraint is violated. At each pricing step, we stop the pricing
algorithm as soon as a fixed number of negative reduced cost columns is
found. Also at every specified number of CG iterations, all columns with
reduced cost above a given threshold are eliminated to improve the solution
time.

In B&P process, branching rule must be compatible with the PSP so
as to prevent columns that have been branched on from being regenerated.
The main difficulty in determining a branching strategy is to find one that
excludes the current solution, partitions the solution space of the problem
reliably and provides a PSP that is still easy to solve. Therefore, on
branching step we use constraint branching, particularly follow-on
branching, in which certain two fights are fixed or deleted that could operate
as a consecutive connection in a pairing (Ryan & Falkner, 1988). For
example, if two flight legs i and j are assigned to same pairing with no other
flights between these two flights. On one branch, all pairings that include
only one of the flights i and j are removed, and on the zero branch, all
pairings that include both of the flights i and j are removed.

Simulation Model

Due to the complex nature of airline operations it is not practical to
verify optimization results, and assess the robustness of the obtained
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solutions and the performance of the proposed approach in an analytical
way. Thus, we employed an open-source discrete-event simulation model,
SIMAIR (Simulation of Airline Operations), which is a C++ based research
tool to simulate airline operations and various unexpected disruptions that
are faced during daily airline operations (Lee, et al., 2003). The simulation
model is used as a trace-driven simulation, where the second part of the
historical (future) data is used as an input.

After inputting the schedule to SIMAIR, we specify empirical
distributions that constructed from future data to describe propagated delays
as random elements. In order to convert historical data into empirical
distribution, the data is transformed into a cumulative probability
distribution function. In order to make this transformation, first of all data is
sorted into ascending order and the identical values are grouped into classes,
and then the relative frequency of each class and cumulative probability of
each class is calculated.

The main assumption underlying the simulation model is that real
rescheduling methods are not able to be integrated into the simulation
model. In the model when a flight is delayed, either a push-back recovery is
applied, in which flights are kept waiting until all the resources (aircrafts,
crews etc.) are available regardless of their lateness or reserve crews are
used, in which infinite number of reserve crews are assumed. Even though
push-back recovery heuristic is easier to analyze than other recovery
methods, it is not practical except in delays of short duration. Also the
infinite number of reserve crew assumption is not realistic. Hence, results of
the simulation study are descriptive and should be interpreted cautiously.

Computational Results

The proposed approach is tested on actual historical data provided by
a small-scale Turkish airline, which operates short-haul domestic flights on
a hub-and-spoke network with one hub. The provided historical data
consists of flight data (the flight number, origin, destination,
scheduled/actual date and time of arrival) from 1% of January 2013 to 30" of
July 2013, with 22,680 flights in total. All domestic flights serve 23 airports
with two of them as the crew bases.

We implement the solution algorithm using the SCIP (Solving
Constraint Integer Programs) libraries, in which these specific libraries
provide the basic framework for the B&P algorithm (Achterberg, 2009)
along with IBM ILOG CPLEX 12.2 version as a solver. Because the
commercial solvers are not yet capable of implementing B&P approach, we
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opted for a specialized approach and coded the algorithm in a high level
programming language, namely in C++. All computational experiments are
performed on a standard PC machine with a 64 bit 2.50 GHz Intel(R)
Core(TM) i5-3210 CPU and 6 GB of RAM running on Windows 8.1
operating system.

Initially the historical dataset is divided into two parts, first 3 months
representing past data and the remaining 3 months is considered as future
data. In order to approximate the expected value of propagated delay, we
use the Sample Average Approximation method and consider each day of
operation in the historical data as one instance of a delay scenario (). It is
assumed that each delay scenario is equally likely, and therefore the set of
delay scenarios () has cardinality 90. When a flight is not included in some
scenarios, we use the average historical propagated delay over the scenarios
containing the flight. In order to calculate propagated delays, 428 flights
which does not have any predecessor flight (first flight of the day, flights
after cancellation etc.) are excluded. 10,326 number of flights delayed with
total time of 134,238 minutes and out of these delayed flights 6,723 flights
include propagated delay with total time of 62,059 minutes, which is
approximately the % 46 of total delay time. And we can conclude from the
data that the major contribution to total arrival delay is from propagated
delays from preceding flights.

Major rules mandated by both Directorate of Civil Aviation and
labor union related to crews are listed below:

J The maximum duty time in any given 24-hour period is eight
hours (480 minutes),

. The turnover time between two flights in a non-crew base
airport is minimum 10 minutes,

o The turnover time between two flights in a crew base airport
IS minimum 20 minutes,

o The turnover time cannot exceed 60 minutes,

o Crews have a 120 minutes minimum guarantee pay,

o Crews have a guaranteed 0.5 percentage of duty time or full

percentage of flying time.

The performance of the B&P algorithm is evaluated according to the
solution times and the quality of the final solution attained from the classical
Column Generation and Branch-and-Cut (CG and B&C) algorithm, that is
to say CPLEX defaults are used. In CG and B&C approach CG is used to
solve the LP relaxation of the RMP and then the generated columns are used
to formulate an integer problem. In the next phase B&C algorithm is
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applied to obtain integer solution and solved by the IBM ILOG CPLEX 12.2
commercial solver.

The flight schedule available for the optimization tests consists of
376 flight legs. For both of the algorithms (the benchmark and the proposed
algorithm) we executed 5 runs and generated 3 million pairings in the 1st
run, and in each additional run 1 million extra pairings are generated until
the 5th run, in which nearly 6.9 million pairings is generated. This number
is the maximum number of pairings that could be generated for the given
flight schedule. The results are summarized in Table 2.

Table 2: Results of the Computational Experiments

Column Generation

CG Phase and Branch-and-Cut
Branch-and-Price
DFS Phase (Root Node CG Phase (CG and B&C) B&P)
for B&P) B&C Total
Run Phase

1D Pairings |CPU| CG CG CG |B&C| CG CG B&P | B&P | B&P

Gener. |Time| Iter. Columns Solve Iter. and and |Columns| Solve | Obj.

Gener. CPU B&C B&C | Gener. | CPU
Time Solve  Obj. Time

CPU

Time

Runl| 3000000 |2700| 166 2475 710 | 613 | 3458 523.35| 493 718 |523.35
Run2| 4000000 |3071| 148 2191 1040 | 826 | 4185 462.15| 608 1053 |462.15
Run3| 5000000 |[3398| 149 2207 1218 | 840 | 4996 458.55| 762 1488 | 458.1
Run4| 6000000 |3820| 150 2221 1559 | 763 | 5576 453.6 | 1252 | 1646 | 453.6
Run5| 6893365 |5068| 242 3615 2461 | 1077 | 7847 445.95| 1308 | 2600 (445.95

In Table 2, all CPU Times are in seconds and Objective (Obj.) values
are in minutes. Under DFS Phase column, Pairings Gener. and CPU Time
show the number of parings generated and the CPU time for this phase,
respectively. CG Phase column corresponds to the Column Generation
phase for the CG and B&C algorithm, and root node Column Generation
phase for the B&P algorithm. CG lIter. represents the number of iterations
executed in CG phase, CG Columns Gener. displays the total number of
columns that were added by solving the pricing problem from all iterations.
Under CG and B&C column, B&C lter. represents the number of iterations
executed in B&C phase. CG and B&C Solve CPU Time and Obj. show the
total consumed CPU time and the objective function value. Under B&P
column, B&P Columns Gener. shows the number of columns that are added
in the non-root nodes of the B&P tree. B&P Total Solve CPU Time and Obj.
represent the solution CPU times and the globally optimal values obtained
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by the B&P method. Both CG and B&C Solve CPU Time and B&P Total
Solve CPU Time do not include DFS Phase as well as CG Phase CPU Time.
The performance of the algorithm is evaluated according to the solution
times and the quality of the final solution attained. With respect to solve
times, the algorithm achieved up to 4.8 times improvement over the CG and
B&C algorithm. Objective function values are same except for the 3rd run.
The experimental results show that the proposed B&P algorithm is able to
find globally optimal solutions in lesser solution times. Thus, the proposed
approach performs fine on the real-world instance.

Next, we employ a simulation model in SIMAIR, in which the actual
data that represents future operations to evaluate the performance of the
robust crew schedules is used. First we input the flight schedule to the
simulation model and specify empirical distributions that constructed from
future data. We execute one week (7 days) simulation of the flight schedule
and perform 1000 runs. The results are shown in Table 3.

Table 3: Simulation Results

Parameter Result
Flight cancellation 5 out of 376
8-in-24 rule violation 0

Flight delay statistics

Total propagated delay (min) 4327
15-Min On-Time Performance (%) 78.6
60-Min On-Time Performance (%) 92.71

The results of this experiment show that the solution times obtained
from the proposed B&P approach are reasonable enough to conduct several
different scenarios for a final decision. Thus, decision maker will have
enough options and time choose the best course of action. They also show
that the enhancements for B&P approach is crucial for finding solutions in
reasonable solution times.

Conclusions

The whole airline schedule planning process is traditionally
decomposed into several optimization problems, not only due to its
computationally intractability but also in practice each phase is dealt by
different sections of an airline. ACP problem is of the most important one,
because the fact that crew costs are the second largest component of direct
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operating costs for the airlines. Considering the large-scale airlines even
small amount of improvement in crew scheduling could result in huge
savings. Due to the fact that ACP problem is solved at the planning stage,
all flights are assumed to have departure/arrival times that are both fixed and
known. And solutions to ACP problem usually lead to schedules that have
tight connections which makes the whole schedule fragile in case of
disruptions. A minor delay may have a significant impact on the entire crew
schedule due to the snowball effects.

In our proposed approach, the deterministic ACP problem must be
solved first in order to get the minimum planned crew cost. Then the
propagated delay objective is minimized with an additional constraint to
control the crew cost. This additional constraint form an upper bound to the
planned crew cost and force the crew cost not exceed the minimum crew
cost to an extent. For the solution of the model we propose a solution
algorithm based on the B&P approach.

For all the experiments a field-collected actual schedule dataset for a
Turkish domestic airline is employed. The experimental results indicate that
B&P performs better on classical CG and B&C (using CPLEX defaults)
approach. Also, we conduct experiments to simulate the robustness
performance of the solutions. The simulation results show that the proposed
approach provides the ability to decrease delay propagation of a crew
schedule.

Consequently, it is apparent that a robust crew schedule could lead to
fewer delays and disruptions, providing smaller operational costs. We
believe that cost savings from reduced propagated delay could compensate
the probable increase in planned crew costs and result in smaller operational
crew costs, compared to those of non-robust schedules. Nevertheless, the
advantages of robust crew schedules attained from the proposed model can
differ from airline to airline, since each one practice different levels of
disruptions in their operations and have different crew cost structures.

This paper attempt to point out the importance of taking historical
analysis into consideration in developing robust schedules and also it could
provide general conceptual framework for further robust optimization
studies in similar problem areas. The next step could be to conduct research
on integration of robust crew pairing and aircraft routing problems, such as
a sub-problem with the objective of maximizing the flexibility of the
schedules or rescheduling procedures could be integrated into scheduling.
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Genisletilmis Ozet

Aksakliklara Karsi Dayamkl Ekip Esleme Problemi i¢in
Bir Dal-Ucret Algoritmasi

Giris

Yoneylem arastirmasi tekniklerini kullanilmasi, son 20-30 yil
icerisinde havayolu endiistrisinde daha 6nce goriilmemis bir etki yaratmistir.
Havayolu sirketlerinin yiiksek kalitede, diisitk maliyetli hizmet iiretebilmesi
icin eniyileme tabanl karar destek sistemleri kullanarak ugus tarifeleri, filo
planlari, ucak rotalari, ekip ¢izelgeleri ve atamalar1 gibi kaynak
planlamalarini maliyet-etkin ve kar saglayacak sekilde yapabilmesini gerekli
kilmaktadir.

Yolcu tasimaciligi yapan bir havayolu sirketinin ucak ve ugus ekibi
olmak tizere iki temel kaynagi bulunmaktadir. Havayolu sirketlerinin
rekabete dayali ortamda hayatta kalabilmesi icin bu iki kaynagi c¢ok iyi
planlamas1 gerekir. Yakit maliyetlerinden sonra en biiylik ikinci maliyet
kalemi olan ekip maliyetleri, yillik sirket giderlerinin yaklasik %20-25’ini
olusturmaktadir. Yakit maliyetlerinin aksine kontrol edilebilir bir maliyet
kalemi oldugundan, kiigiik bir iyilestirme dahi 6nemli biiyiikliikte kazanglar
saglayabilmektedir. Ayrica, ekiplerin etkili olarak ¢izelgelenmesi sadece
maliyet degil, ugus emniyeti a¢isindan da ¢ok dnemlidir.

Gergek diinya eniyileme problemlerinden olan havayolu ekip
cizelgeleme problemi; en basit tanimi ile ucus ekiplerinin, bir havayolu
sirketinin belirli bir donem i¢in belirledigi ucgus tarifesinde yer alan tiim
ucuslara atanmasi problemidir. Problem, ilk 6nce ucus ayagi dizilerinin
(isimsiz eslemelerin) olusturulmasi icin ¢oziilen ekip esleme ve olusturulan
eslemelere her bir ekip iiyesinin atanmasi i¢in ¢oziilen ekip atama problemi
olmak tizere genellikle iki alt probleme ayrilarak ¢oziiliir.

Ekip iiyesinin ikamet ettigi ana iisten baslayip ugus tarifesinde yer
alan uguslarin olusturdugu sebekede bir yol izleyerek tekrar ana iisse donen
ucus dizileri ekip eslemesi olarak adlandirilmaktadir. Bir ekip eslemesinin
uygulanabilir olabilmesi igin havacilik otoritelerinin koydugu ugus
emniyetine yonelik kurallara, toplu sozlesmelerin getirdigi yiikiimliiliiklere
ve havayolu sirketinin uyguladigi 6zel uygulamalardan gelen tim
kisitlamalara uygun olmast gerekir. Her bir eslemeye bir maliyet
tanimlanarak, ekiplerin ucus tarifesinde yer alan tiim ucuslara en uygun
olarak atanmasi, tiim uguslarin eslemeler tarafindan en az maliyetle
kapsanmasi ile gergeklestirilebilir.
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Ancak, kotii hava kosullari, mekanik ucak arizalari, havaalam ve
hava sahasindaki sikisiklik, ekibin ge¢ kalmasi gibi kontrol dis1 aksakliklar
nedeniyle ucuslarin gecikmesi kaginilmazdir. Gecikmelerin en olumsuz
etkisi, havayolu operasyonlariin birbirine bagli bir¢ok faaliyetten olugmasi
sebebiyle, gecikmelerin ¢1g etkisi yaratarak sonraki ucuslarin gecikme veya
iptal edilmesi ile sonuc¢lanmasidir.

Bu calismada; biiyiik boyutlu, sebeke esasli kaynak planlama
problemlerinden olan havayolu ekip esleme probleminin, ge¢mis veri
setlerini  kullanarak havayolu operasyonlart esnasinda olusabilecek
aksakliklara karsi dayanikli olarak modellenmesi ve ¢oziimii amaglanmustir.
Bu maksatla; Genel Kiime Kapsama Modeli olarak formiile edilen problem
icin dal-licret esashi bir ¢6ziim algoritmasi gelistirilmistir. Ayrica, ge¢mis
veri setleri kullanilarak elde edilen ¢6ziimlerin dayaniklilik performansini
Olemek i¢in bir benzetim modeli gelistirilmistir.

Aksakliklara Kars1 Dayanikhi Havayolu Ekip Esleme Problemi

Havayolu planlama siireci, ¢ogunlukla wucus plant tasarimi, filo
atama, ugak rotalama Ve ekip c¢izelgeleme olmak lizere dort asamaya
ayrilarak c¢oziiliir. Birbiri ardi sira gelen asamalarin her birinin ¢iktisi
miiteakip agamanin girdisini olusturur.

Havayolu ekip esleme problemi; girdi olarak verilen ugus tarifesinde
yer alan tiim ugus ayaklariin, ekibin yasadigi ana iiste baslayip yine ayni
iiste biten ve yasal kurallara uyan ekip eslemeleri tarafindan en az maliyet
ile kapsanmasini igerir. Problem, dogrusal olmayan maliyet yapisi, ¢c6zim
uzayimnin bulytikligl, karmasik kisitlarin varligi, c¢esitli kombinatoriyel alt
problemden olusmasi, tamsayili ¢Oziim bulunmasi zorunlulugu ve
isletmelerin uyguladigi Ana Dagitim Ussii-Kenar Us (ADU-KU) ucus ag1
yapisina sahip olmasi nedenleriyle NP-Hard yapidadir.

Ekip c¢izelgelerinin planlandig1 sekilde uygulanacagi varsayimi
altinda ¢oziilen klasik ekip esleme modeli, kisa baglant1 siireleri (mola ve
dinlenme siireleri) kullanarak diisiik planlama maliyetlerini amaglar; ancak
bu yasanabilecek gecikmelere karsi hassasiyet olusturur. Klasik modelde
sik1 olarak hazirlanan ekip eslemeleri, herhangi bir ugusta gecikme
oldugunda bu gecikmenin sonraki tiim uguslara artarak yayilmasina sebep
olur. Ugus gecikmelerinin yayilma nedenlerinin basinda, baglantili ugusun
gec kalmasi sebebiyle olusan ekip eksikligi gelmektedir. Isletmeler
acisindan gecikmeler, ek maliyetlere ve miisteri memnuniyetsizliginden
dolayu itibar kayiplarina neden olmaktadir.
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Pratikte aksaklik ve gecikme maliyetlerinin enazlanmasi ig¢in iki
temel yaklasim uygulanmaktadir. Birincisi; ¢izelgelerin uygulanmasi
safhasinda, aksakliklar olustuktan sonra etkili yeniden ¢izelgeleme
yapilmasidir  (reaktif yaklagim). Ikincisi ise; planlama safhasinda,
aksakliklara kars1 dayamikli ¢izelgelerin  olusturulmasidir  (proaktif
yaklasim). Dayanikli planlama yonteminde, sadece planlama maliyetleri
degil operasyonel maliyetlerin beklenen degeri de enazlanmaya calisilir.

Bir ugus gecikmesi, bagimsiz ve yayilan gecikme olmak iizere iki
pargaya ayrigtirilabilir. Bagimsiz gecikme, daha 6nce meydana gelen veya
birikmis  bir gecikmenin sebep olmadigi, Onceki uguslardan
kaynaklanmayan gecikmedir. Yayilan gecikme ise, onceki (baglantil)
ucusun ge¢ kalmasi ve gecikmeyi absorbe edecek kadar ek siire olmamast
nedeniyle, maruz kalinan gecikmedir. Ekip eslemeleri ile aksaklik ve
gecikmeler arasindaki iliski, yayilan gecikme ile agiklanabilir.

Gecikmelerin ¢1g etkisi yaratarak sonraki uguslara yayilmasi
durumunda, gecikmelerin havayolu operasyonlarina olan olumsuz etkisi ¢ok
daha artar. Bu nedenle; gecikmenin yayilmasi, bir havayolu ¢izelgesinin
aksakliklara kars1 dayanikliliginin en iyi gostergelerinden birisidir.

Konu ile ilgili literatiirde yer alan ¢alismalar ¢ogunlukla ge¢mis
verileri dikkate almadan ¢izelge dayanikliligini artirmaya yonelik
metodolojiler icermektedir. Calismalarin c¢ogu, aksakliklar ile 1ilgili
belirsizligin  modellenmesinden ziyade aksakliklara karsi koruma
imkanlarinin  artirilmast  veya aksakliklarin  etkilerinin  azaltilmasini
amaglamaktadir. Yapilan literatiir taramasinda, dayanakli ekip c¢izelgeleme
problemlerinde gegmis verileri kullanarak belirsizligi modelleyen bir
calismaya rastlanmamistir. Bu ¢alisma ile literatiirde yer alan bu bosluklarin
doldurulmasi amaglanmistir.

Matematiksel Model ve Coziim Yaklasimi

Aksakliklara karst dayanikli ekip esleme problemi, ¢ift-amagh
eniyileme problemi olarak ele alinmistir. Cift-amagli eniyileme, birbiri ile
celisen iki amag¢ fonksiyonu degerinin kisitlar1 da gozeterek eszamanh
olarak eniyilenmesi siireci olarak tanimlanabilir. S6z konusu amaglar;
yayilan gecikmelerin ve ekip maliyetlerinin enazlanmasidir. Birbiri ile
celisen amacglardan maliyet enazlanmasi, e-kisit yontemi ile kisit haline
dontistiirilmiistir. Tiim ugus ayaklarinda olusan yayillan gecikmenin
enazlanmasi ise havayolu isletmesinin Tam-Zamaninda Performasinin
lyilesmesini saglamaya yoneliktir.
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Tiim ucgus ayaklarindaki yayilan gecikmelerin beklenen degeri;
miimkiin gecikme senaryo kiimesi (€2) sonlu kardinaliteye sahip oldugu i¢in
senaryolardan elde edilen uguslar arasi yayilan gecikme degerlerinin,
senaryo olasiliklar1 ile ¢arpilmast ve bu islemin biitiin degerler {izerinden
toplanmasiyla elde edilebilir. Model kesikli oldugundan ve kisitlarda rassal
degisken olmadigindan, yayilan gecikmelerin beklenen degerinin senaryo
olasiliklar1 iizerinde toplanmis hali, ama¢ fonksiyonuna dogrudan
eklenebilir.

Dayanikli Havayolu Ekip Esleme Problemi, tek amagli eniyileme
problem olarak ele alinmasim1 miiteakip Genel Kiime Kapsama modeli
olarak formiile edilmistir. Model genel olarak; yayillan gecikmelerin
enazlanmasini amaglayan, klasik kiime kapsama kisitlari olan ugus kapsama
kisitlari, ekip dengeleme kisitlar1 ve dayaniklilik-maliyet sinirlama
kisitindan olusan bir Tamsayilt Programlama modelidir. S6z konusu model
biitiin halde ¢ok fazla degiskenden olusmasi sebebi ile Siitun Olusturma
yontemi ile Sinirli Ana Problem ve Ucretlendirme Alt Problemi olarak
ayristirtlmistir.

Model olusturulurken verilen bir ugus tarifesi tizerinde filo atama ve
ucak rotalama agamalarinin tamamlandigi ve degismeyecegi; ayrica,
ucaklarin her zaman planlandig: sekilde hazir oldugu varsayim olarak kabul
edilmistir.

Matematiksel modelin ¢oziimii igin dal-iicret esasli bir algoritma
onerilmistir. Onerilen algoritma kisaca, baslangicta tiim eslemelerin
tamsaymm icin 6zyinelemeli Derin Oncelikli Arama sezgiseli ile tiim
eslemeleri tiretmekte ve miiteakiben dal-iicret algoritmas1 uygulanmaktadir.
Dal-ticret algoritmas1 ise, her bir diigimde Dogrusal Programlama
gevsetmesi olan Sinirli Ana Problemi ¢6zmekte ve amag fonksiyonu
degerini iyilestirme potansiyeli olan yeni degisken/degiskenleri
ticretlendirerek dal-iicret agacina eklemektedir.

Deneysel Calismalar

Onerilen yaklagim, Tiirkiye’de faaliyet gosteren ve ADU-KU ag
yapisinda yurt i¢i uguslar gergeklestiren kiigiik boyutlu bir havayolu
sirketine ait veriler kullanilarak test edilmistir. Elde edilen ge¢cmis veri seti,
planlanan ve gerceklesen toplam 6 aylik ugus verisini icermektedir. Ugus ag
yapist, iki tanesi ekip issii olmak {izere toplam 23 havaalanindan
olusmaktadir. Cozlim algoritmasi, dal-licret algoritmasi i¢in temel bir
gergeve saglayan SCIP  (Solving Constraint Integer Programs)
kiitiiphanelerinden faydalanilarak uygulanmis ve IBM ILOG CPLEX 12.2
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siirimii  ¢Oziicli olarak kullanilmistir. Ticari ¢oziiciilerin  dal-iicret
algoritmasin1 uygulama yetenegi olmadigi icin algoritmanin yiiksek seviye
programlama dili olan C++ ile kodlanmasi tercih edilmistir.

Oncelikle gercek veri seti, ilk ii¢ ay gegmis verileri ve geriye kalan
iic ay gelecek verileri temsil etmek iizere iki pargaya ayrilmistir. Gergek
verilerde yer alan her bir giin, bir gecikme senaryosu (w) olarak ele
alimmugtir. Eger bir ucus ayagi bazi senaryolarda yer almiyorsa, o ugus ayagi
icin ortalama ge¢mis yayilan gecikme degerleri kullanilmistir. Gergek
verilerin tiimii lizerinde yapilan analiz sonucunda, toplam varig gecikmesine
en biiyiik katkinin bir 6nceki ugustan yayilan gecikmelerden kaynakladigi
sonucuna varilmistir.

Onerilen dal-iicret algoritmasinin  performansi, klasik ~ Siitun
Olusturma ile dal-kesme algoritmasindan elde edilen ¢6ziim zamanlar1 ve
¢Oziim kalitesi ile karsilastirarak elde edilmistir. Elde edilen ¢6ziimlerin
kalitesi hemen hemen ayn1 iken ¢6ziim zamani agisindan Onerilen algoritma
daha iyi bir performans gostermistir.

Sonug¢

Bu ¢alismada; havayolu ekip eslemelerinin uygulanmasi esnasinda
olusabilecek yayilan (tepkisel) gecikmelerin enazlanmasi ve planlama
asamasinda ekip ¢izelgesinin istikrar ve esnekliginin diisiik bir maliyet ile
artirllarak aksakliklara karsit daha dayanikli ekip eslemelerinin olusturulmasi
tizerinde durulmustur. Bu maksatla; problem g¢ift amagli eniyileme problemi
olarak modellenmis ve ¢6ziimii igin dal-iicret esasli bir algoritma
Onerilmigtir.  Ayrica, ekip eslemelerinin dayanikliik performasinin
degerlendirilmesi igin bir benzetim modeli gelistirilmistir. Problemin
¢ozlimiinde ve sonuglarin degerlendirilmesinde ugus gecikmeleri arasindaki
korelasyonu da dikkate almak i¢in gegmis veri setleri kullanan ve
parametrik olmayan bir yontem kullanilmigtir.

Yapilan deneysel ¢alisma sonucunda; sadece maliyet enazlanmasi ile
elde edilen eniyi maliyette ¢ok az bir artisa izin verilerek tim ekip
eslemelerinin aksakliklara karsi daha dayanikli olarak olusturulabilecegi
gozlenmistir.



