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Abstract 
 

Cancer is threatening millions of people each year and its early diagnosis is still a challenging task. Early diagnosis is one of the major 

ways to tackle the disease and lower the mortality rate. Advancements in deep learning approaches and the availability of biological 

data offer applications that can facilitate the diagnosis and characterization of cancer. Here, we aimed to provide a new perspective of 

cancer diagnosis using a deep learning approach on gene expression data. 

In this study, RNA-Seq data of approximately 30 different types of cancer patients the Cancer Genome Atlas (TCGA) study, and 

normal tissue RNA-Seq data from GTEx were used. The input data for the training was transformed to RGB format and the training 

was carried out with a Convolutional Neural Network (CNN). The trained algorithm is able to predict cancer with 97% accuracy, using 

gene expression data. In conclusion, our study shows that the deep learning approach and biological data have a huge potential in the 

diagnosis and identification of tumor samples.  
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Gen İfade Verilerinde Konvolusyonel Sinir Ağı Kullanılarak Tümör 

Örneklerinin Tahmini 

Öz 

Kanser her yıl milyonlarca insanı tehdit eden, erken teşhisi hala mümkün olmayan yaygın bir hastalıktır. Erken teşhis, kanserle baş 

etmenin ve ölüm oranını düşürmenin en önemli yollarından biridir. Derin öğrenme yaklaşımlarındaki gelişmeler ve biyolojik 

verilerdeki artış, kanserin teşhisini ve karakterizasyonunu kolaylaştırabilecek uygulamalar sunmaktadır. Bu çalışmada, gen ifade 

verilerini kullanarak derin öğrenme yaklaşımı ile  kanser teşhisine yeni bir bakış açısı sağlamayı amaçladık.  

30 farklı kanser çeşidine ait RNA-Seq verisi Kanser Genom Atlası (TCGA) adlı kaynaktan  normal dokuların RNA-Seq verileri GTEx 

adlı kaynaktan temin edilip model eğitiminde kullanılmıştır. Gen ifade verileri RGB formatına dönüştürülüp Konvolusyonel Sinir Ağı 

(CNN) eğitimi için kullanıldı. Eğitilen model, gen ifade verilerine dayanarak kanseri %97 doğrulukla tahmin edebilmektedir. Sonuç 

olarak çalışmamız, derin öğrenme yaklaşımının ve biyolojik verilerin tümör örneklerinin tanısında büyük bir potansiyele sahip 

olduğunu göstermektedir. 

 

Anahtar Kelimeler: CNN, Gen İfadesi, Kanser, RNA-Seq, TCGA. 

1. Introduction 

The deep learning approach has emerged by 

designing computer models that can perform the 

learning process as a result of interconnected layers 

based on the human brain, such as neurons. As a result 

of the development of data science and especially the 

rapid increase in biological data in the last decade, 

neural networks have begun to play important roles in 

the interpretation of biological data for the diagnosis and 

treatment of diseases (Esteva et al. 2019). Cancer, one 
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of the biggest health problems in the world, is one of the 

diseases in which deep learning approaches were widely 

applied. 

Since cancer is a disease with high genomic 

heterogeneity and phenotypic plasticity, its diagnosis 

and treatment are quite challenging (Persi et al.2020). 

Thanks to the developments in medical technologies, 

various forms of medical data are abundant for cancer 

patients and these data are suitable for deep learning-

based approaches for diagnosis or treatment of cancer. 

Image-based methods, such as radiology and 

histopathology, are commonly used for cancer diagnosis 

thus image-based deep learning approaches have thrived 

in supervised learning applications of cancer prediction. 

CT, MRI, histopathology data have been used in deep 

learning algorithms for the diagnosis of many types of 

cancers, including breast cancer (Zuluaga-Gomez et 

al. 2020; Gour et al. 2020; Zhang et al.; Hu et al. 2020; 

Bejnordi et al. 2018; Couture, et al. 2018), prostate 

cancer (Swiderska-Chadaj et al. 2020; Hartenstein et 

al. 2020; Duran-Lopez et al. 2020; Yoo et al. 2019; 

Nagpal et al. 2019; Arvaniti et al. 2018), lung cancer 

(Kanavati et al. 2020; Lai et al. 2020; Parnian et 

al. 2020), colon cancer (Jiang et al. 2020), head and 

neck cancer (Fontaine et al. 2020), and skin cancer 

(Tschandl et al. 2020, Esteva et al. 2017). These image-

based studies facilitated clinical decision making 

especially in the detection of tumors in the early stages. 

In addition to the image-based approaches, 

biological data such as gene expression (Dolezal et 

al. 2020) and gene mutations (Jiao et al. 2020) have also 

been used for training deep learning models to diagnose 

cancer. Gene expression data and deep learning 

approaches are integrated to tackle various challenges 

such as estimation of survival times of individuals with 

cancer (Ramirez et al. 2021), determination of 

biomarker genes (Xie et al. 2021), assurance of 

effective therapeutics for cancer treatment (Zeng et 

al. 2021), classification of cancer subtypes (Binder et 

al. 2021, Galili et al. 2021, Ahn et al. 2018). Ahn et al. 

developed a deep learning algorithm using publicly 

available gene expression databases to classify the 

samples as normal or tumor and high predictive scores 

were obtained. All of these studies show that by using 

gene expression data and deep learning approaches 

together, critical information will be revealed about the 

mechanism of cancer. 

In our study, The Cancer Genome Atlas (TCGA) 

dataset with RNA-Seq data of approximately 30 

different types of cancer patients and a dataset obtained 

by curation of GTEx data including RNA-Seq analysis 

of normal tissues was used. The input data for the 

training was converted to RGB format and the training 

was carried out with the CNN algorithm. The trained 

algorithm can predict cancer and normal patients with 

97% accuracy, based on gene expression data.  Our 

results suggest that gene expression data have the 

potential to make inferences on cancer by mapping gene 

expression content to RGB space. 

2. Methods 

2.1 Dataset Preparation 
 

Data was downloaded from the UCSC Xena 

platform (UCSC Xena), which includes RNA-Seq data 

from various resources including, TCGA and GTEx. 

Label distribution of selected datasets is shown in Table 

1. 
Table 1. Distribution of training dataset labels. 

 

Data labels (Normal, Tumor) have been extracted 

from phenotype information of selected samples. Gene 

IDs were converted from Entrez ID to ENSEMBL IDs 

using the BioMart online tool (BioMart). 

The differentially expressed gene list (LINCS 

Harmonizome)(Rouillard et al. 2016) was used to select 

1024 genes that show the highest up-regulation or down-

regulation count throughout the whole dataset. 

Expression data for selected genes have been using as 

input for training. 

 

2.2 Conversion of Inputs to Images 
 

Gene expression values have converted into (R, G, 

B) format before the training step.  RGB values are 

obtained by converting gene expression value into 24-

bit long binary and then using the first 8 bits for R (red), 

second 8 bits for G (green), and third 8 bits for B (blue) 

(Figure 1). For each sample, a 32x32x3 3D Numpy array 

was prepared. 

 

 
Figure 1. Conversion of gene expression value to RGB 

format. 

 

2.3 CNN Architecture 
 

The CNN architecture shown in Table 2 has been 

using for training. The architecture includes eight 

convolution layers, four dropout layers, one global 

average pooling layer. Each convolution layer consists 

of 3x3 kernels.  

ReLU has been using as an activation function and, 

to overcome overfitting, dropout rates of 0.2 or 0.5 used. 

The final layer has a Sigmoid as an activation function. 
 

Datasets  Normal  Tumor 
TCGA  727  9750 

GTEx  7429  0 

https://xena.ucsc.edu/
https://www.ensembl.org/biomart/martview/0e1f514f040b1c9d99124e9c7ddd8210
https://lincsproject.org/LINCS/tools/workflows/find-attributes-about-genes-and-proteins-for-machine-learning
https://lincsproject.org/LINCS/tools/workflows/find-attributes-about-genes-and-proteins-for-machine-learning
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Table 2. CNN Architecture 

 

3. Results 

3.1. Retrieved Input Images 
 

     Since gene expression data have been converted into 

RGB format, visualizing the expression layout for any 

sample as possible. In Figure 2, sample images for 

Normal and Tumor samples are presented. The images 

do not reveal any apparent pattern for the naked eye. 

However, convolutional layers are able to pick regions 

or patterns formed by neighboring pixels so gene 

expression data was passed through convolution layers. 

Please note that gene expression data was converted into 

RGB format but they are not saved as images before 

training. The training was performed on a 32x32x3 3D 

multidimensional array for each sample. 

 

3.2. CNN Training   
 

The deep learning architecture shown in Table 2 has 

been using for the training of 17,906 samples having 

evenly distributed normal and tumor labels. Samples 

were split into Train: Test with 80:20 ratio. After 40 

epochs the accuracy has reached 97.7%. The accuracy 

and loss plots of the test and training samples are shown 

in Figure 3. 

 

3.3 Performance Measurement 
 

Figure 4 shows the ROC curve of the model. The AUC 

value of our model was found to be 0.97. Additional 

performance measures were calculated from the 

confusion matrix generated by test sample predictions. 

Our model had 98% precision and 98% recall for tumor 

prediction (Table 3). 

 
 
Figure 2. Visualization of gene expression data as image. 4 

sample images from (a) Normal tissue data and (b) Tumor 

tissue data generated by converting gene expression levels of 

1024 selected genes using RGB mapping. 

 

 
 

Figure 3. Model accuracy (a) and loss (b) plots. 
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Figure 4. The ROC curve of CNN model test predictions for 

tumor and normal classification. 

 
Table 3. Performance measurements based on confusion 

matrix 

 

 

 

 

 

 

In literature, several different approaches use gene 

expression data to classify tumor and normal samples 

ranging from simpler machine learning approaches to 

complex deep learning networks. These approaches 

usually start with pre-processing the gene expression 

data with an irreversible manipulation (normalization) 

and even mapping data points to a different domain 

(PCA, t-SNE, etc.). Our method involves a minimal and 

reversible change to gene expression data. The RGB 

mapping is reversible and does not require 

normalization or any dimensional reduction techniques. 

Table 4 compares our approach with several different 

approaches both in pre-processing and classification 

steps. Although Elbashir et al. study (Normalization + 

CNN) has the highest accuracy, the sample used in their 

study is problematic so our approach has better results 

overall.  

 

 

     Please note that Elbashir et al uses a smaller and 

unbalanced TCGA dataset (only Breast Cancer dataset, 

containing 113 Normal, 1095 Tumor samples). Their 

accuracy starts from 91% and reaches 98.7% and, due to 

dominating the number of tumor samples, their model 

has a tendency to pick “tumor” as a label irrespective of 

the sample being predicted, explaining their very low 

sensitivity and full precision scores. In our case, our 

dataset is larger and balanced (8156 Normal vs. 9750 

Tumor) and, our accuracy starts from 54% and then 

reaches 97.7%.  

4. Conclusions 

    Due to its complex biological microenvironment, 

cancer has many difficulties in diagnosis and treatment. 

The difficulties caused by this complexity can be 

overcome with ever-increasing RNA-Seq data. The vast 

number of expression data sets combined with deep 

learning models have the potential to help diagnose 

cancer cases.  

In this study, we proposed an approach to process 

gene expression in a reversible manner that does not 

require normalization. After RGB mapping of 

expression data, the processed data can be treated as 

image data and be subject to convolutional neural 

network learning.  

Since our approach retains each pixel as an 

individual gene, segmentation analysis which reveals 

important pixels has the potential to reveal important 

genes for cancer development. Moreover, the strength of 

RGB mapping should be tested for not only tumor 

prediction but also tumor stage prediction. 

 

 

 

 

 

 

 
Table 4. Comparison of our model with other studies. SVM; support vector machine, t-SNE;  t-distrubuted stochastic neighbor 

embedding.  

Expression 

Preprocessing 

Classification Accuracy Sensitivity Specificity Precision F-

measure 
References 

RGB mapping CNN 97,73% 97,66% 97,80% 98,00% 0,975 Our method 
Normalization CNN 98,76% 91,43% 100,00% 100,00% 0,955 Elbashir et 

al. 
Normalization Stacked            

Denoising 

94,78% 94,04% 97,50% 97,20%  Danaee et al. 

Normalization AlexNet 96,69% 96,89% 94,12% 99,54% 0,955 Elbashir et al 
t-SNE SVM 100,00% 100,00% 51,00% 95,96% 0,97 Elbashir et al 
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