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ABSTRACT 

While tools modelling spatial autocorrelation have been unanimously 
adopted in the housing prices literature, there is still no consensus on the 
appropriate methodology to identify submarkets, i.e. on how to count for spatial 
heterogeneity. In this paper we propose an innovative methodology that 
endogenously detects submarkets while counting for spatial autocorrelation across 
housing prices. The advantage of an endogenous detection is to avoid arbitrariness 
in the sense that submarkets are defined by the variables of our model only. We 
apply our methodology to Tucson’s housing market for which our results provide a 
strong evidence of spatial heterogeneity. 
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1. INTRODUCTION 

The importance of location as a determinant of housing prices is 
widely recognized and housing market researchers are increasingly 
incorporating spatial effects into hedonic house price models.  While the 
method to account for spatial dependence is generally agreed upon, there is 
no consensus regarding the best way to account for spatial heterogeneity. 
Spatial heterogeneity concerns variation in parameter estimates over space.  
Housing researchers have long recognized that housing parameters may not 
be constant within metropolitan areas due to inelastic supply and demand of 
housing characteristics that are spatially concentrated.  A failure to 
incorporate spatial heterogeneity may result in biased parameter estimates 
and obscure important housing market dynamics.  Researchers have long 
recognized that parameter estimates may vary between housing submarkets 
(Straszheim, 1974; Schnare and Struyk, 1976).  More recent methods that 
allow housing parameter estimates to vary continuously over space also find 
evidence for spatial heterogeneity within housing markets (Bitter et al., 
2007). 

This paper proposes an innovative methodology that endogenously 
detects submarkets while accounting for spatial autocorrelation across 
housing prices. The advantage of an endogenous detection is to avoid 
arbitrariness in the sense that submarkets are defined by the variables of our 
model only. We apply our methodology to Tucson’s housing market for 
which our results provide a strong evidence of spatial heterogeneity. 

The remainder of the paper is organized as follows:  A review of the 
relevant literature on housing market segmentation is presented in Section 1.  
Section two describes our model and data while section three develops the 
spatial endogenous methodology.  Section four presents the estimation 
results and the final section draws conclusions and avenues for further 
research. 

2. DEFINING HOUSING SUBMARKETS: A LITERATURE 
REVIEW  

The importance of location in determining housing prices is 
universally recognized, but many hedonic price studies have failed to 
adequately consider the spatial complexity of housing markets (Palmquist, 
2005).  Two key elements of spatial structure, spatial dependence and spatial 
heterogeneity, are recognized in the econometrics literature (Anselin, 1988).  
There are strong reasons to expect that both effects will characterize housing 
markets.  The issue of spatial dependence has received growing attention in 
the literature and the application of the technique has gained consensus (Pace 
and Gilley, 1997; Kim et al., 2003; Beron et al., 2004; Brasington and Hite, 
2005; Anselin and LeGallo, 2006; Anselin and Lozano-Garcia, 2007).  
However, the best way to deal with spatial heterogeneity is still an 
unanswered question.   

The issue of spatial heterogeneity centers on whether the marginal 
prices of housing attributes are constant throughout a metropolitan area or 
whether they vary with locational context (Ordford, 1999).  If marginal 
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implicit prices vary with geographic context, then a failure to segment the 
model or otherwise incorporate parameter variation may result in biased 
parameter estimates. 

There is good reason to expect the prices of housing site and structural 
attributes (including environmental features) to exhibit spatial heterogeneity 
within large housing markets due to localized supply and demand 
imbalances (Goodman, 1998).  Demand by households for specific structural 
and locational attributes is known to vary based on socioeconomic status, 
household status, race and ethnicity (Quigley, 1985).  Due to the phased 
nature of the urban development process the supply of specific housing 
characteristics often exhibit strong spatial patterns within a metropolitan 
area.  Housing is a unique good due to its fixed location and durability, and 
the characteristics of the housing stock within a particular area may be 
difficult to change in response to changing demands.   

Household budgets and the location of household activities such as the 
work place may constrain individual households from participating in all 
segments of a large market.  In addition, access to information and the “gate 
keeping” role played by market participants such as realtors, lenders, and 
appraisers may also constrain participation (Michaels and Smith, 1990).  
Thus all housing within a large metropolitan area will not be substitutable 
and independent hedonic price schedules may arise. 

There is no general consensus regarding the best manner in which to 
incorporate spatial heterogeneity into hedonic house price models.  Two 
broad categories of approaches have been used, which differ conceptually in 
the manner in which marginal implicit prices vary over space.  The first 
approach allows parameter estimates to vary continuously over space by 
using variants of the expansion method which involves interacting housing 
characteristics with neighborhood attributes or absolute location (Theriault et 
al., 2003, Fik et al., 2003, Bitter et al., 2007) or by estimating a set of unique 
parameter estimates at each observation location using techniques such as 
geographically weighted regression (Bitter et al., 2007; Pavlov 2000).  These 
studies find strong evidence that marginal implicit price estimates vary 
within housing markets.   

The second approach, market segmentation, posits that parameter 
estimates vary between discrete regions within a metropolitan housing 
market (Straszheim 1974; Schnare and Struyk 1976; Can 1990; Goodman 
1998; Michaels and Smith 1990; Bourassa et al., 2003).  This form of spatial 
heterogeneity may arise due to inelastic demand for characteristics such as 
school quality or municipal services.  For instance, inelastic demand for 
good schools may result in differing marginal implicit prices between 
adjacent school districts.  Advocates of this idea attempt to segment the 
housing market into discrete submarkets, which are typically defined as 
geographic areas with similar price structures, and to estimate separate 
hedonic equations for each.   

A number of approaches to market segmentation have been applied 
within the hedonic literature.  One utilizes the expert opinions of local real 
estate market participants to segment the housing market.  For example, 
Michaels and Smith (1990) classified suburban Boston communities into 
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market segments defined based on a survey of local realtors.  The second, 
and simplest approach, is to use predefined boundaries such as census tracts, 
real estate reporting districts, zip codes or school districts to represent 
housing submarkets and to estimate independent hedonic price schedules for 
each (Can 1990; Fik et al., 2003).  These ad hoc approaches have the benefit 
of simplicity but can not insure that the resulting submarkets are accurately 
capturing the spatial structure of the housing market.  

More sophisticated approaches to segmentation attempt to statistically 
delineate areas or individual properties into groupings in which parameter 
estimates are internally consistent.  Goodman and Thibodeau (1998) use a 
hierarchical modeling approach that nests school districts within 
municipalities in a study of the Dallas housing market.  School quality is 
assumed to be capitalized into the coefficient for dwelling size.  Adjacent 
school districts are grouped into the same submarket if the coefficients for 
the dwelling size-test interaction term are not significantly different from 
zero.  The results indicate that housing quality plays an important role in 
determining submarkets.  The author’s identify one drawback of this method 
- submarket definitions may depend upon the spatial starting point 
employed. 

Bourassa et al. (1999) use principal component analysis and cluster 
analysis to delineate housing submarkets within Sydney and Melbourne.  
One set of submarkets is defined by grouping local government authority 
(LGA) areas to submarkets based on the characteristics of these areas.  A 
second set of submarkets is defined by grouping individual properties to 
submarkets based on characteristics of the LGA’s and the individual 
dwellings.  The author’s estimate hedonic models for each submarket and 
compare the predictive accuracy of the statistically defined submarkets to 
realtor defined housing submarkets.  They find that all submarket 
delineations perform better than an unsegmented model, however, with only 
one exception, the a priori submarket classifications performed as well as 
those defined based on the statistical methodology. 

Goodman and Thibodeau (2003) compare submarket delineations 
based on aggregations of zip codes, census tracts, and the hierarchical 
method developed by Goodman and Thibodeau (1998).  They find that all 
three methods perform better than a “pooled” model with all possible 
prediction criteria.  The more sophisticated statistical method generally out 
performs the ad hoc specifications in terms of prediction accuracy, but by 
only a narrow margin.   

In sum, there is no generally accepted method to delineate housing 
submarkets.  The statistical methods applied to date have produced 
submarket delineations that are only slightly superior to ad hoc methods.  
Moreover, we are not aware of any market segmentation studies that also 
consider spatial dependence. 
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3.  MODEL AND DATA 

The model we use is based on previous work by Bitter et al. (2007) on 
Tucson’s housing market. The model they use is as follows: 
 




21 765

43210

factorafactorastorya

ageaqualityalotsizeasqftaahouseprice
 

with 2~ (0, )N I              (1) 

  
 

Where housing prices are expressed in log terms, sqft is the square 
footage, lotsize is the size of the lot, quality is an index of quality, age 
represents the age, story is the number of floors, and factor1 and factor2 are 
the results of a principal component analysis performed in Bitter et al. 
(2007) on 8 variables (the number of bathroom fixtures per room in the 
house, the presence of refrigerated air conditioning, the presence of a 
swimming pool, the total number of rooms divided by dwelling size, the 
quality and the age of the dwelling, the number of patios, the presence of an 
enclosed garage). Overall, while factor 1 represents homes with modern 
features, factor 2 represents another specific style of housing, with a 
spacious design and outdoor amenities.  As usual, � is an error term. 

The matrices we use are based on the number of k nearest neighbors, 
with k=10, 15, 20 neighbors.  Each matrix is row standardized so that it is 
relative and not absolute distance which matters.  In addition, we use the 
inverse of the square distance between observations in order to reflect a 
gravity model.  The weight matrices can therefore be written as follows: 
 

2/ 10,15

ij

ij ij i

ij ij i

w (k)= 0  if  i = j

w (k)= 1 d   if  d D (k)              for k =

w (k)= 0  if  d > D (k)








, 20 

 

Where ijd  is the great circle distance between centroids of region i 

and j. )k(Di  is the critical cut-off distance defined for each region i, above 

which interactions are assumed to be negligible.  )k(Di  is the thk  order 

smallest distance between regions i and j such that each region i has exactly 
k neighbors.  The choice of the weight matrix is somehow always arbitrary. 
Therefore, in order to test the robustness of our results, we build three other 
weight matrices based on the great circle distribution and three different 
distance cut-offs .  

We start with the OLS estimation of model (1). Estimation results 
displayed in column 1 of table 1 show that all the variables have the same 
sign as in the Bitter et al. (2007) study which also deals with Tucson’s 
housing market. All the variables but age are significant. The quality of the 
house seems to be the most important factor in determining housing prices. 
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Looking at the diagnostic tests, the Jarque-Bera test rejects the assumption of 
normality of the residuals (p-value = 0.000). This is due to the presence of 
spatial effects which will be identified below. We note also that the White 
test clearly does reject homoskedasticity (p-value = 0.000) as well as the 
Koenker-Bassett test (p-value = 0.000).  

We use Anselin (1988) and Anselin et al. (1996) tests to detect the 
presence of spatial effects. In order to identify the form of the spatial 
dependence (spatial error model or spatial lag), the Lagrange Multiplier tests 
(resp. LMERR and LMLAG) and their robust version are performed.  The 
decision is subject to Anselin and Florax (1995) rule: if LMLAG (resp. 
LMERR) is more significant than LMERR (resp. LMLAG) and R-LMLAG 
(resp. R-LMERR) is significant whereas R-LMERR (resp. R-LMLAG) is 
not, then the most appropriate model is the spatial lag model (resp. the 
spatial error model).   
As seen in table 1, all the Lagrange Mutlipliers and their robust version are 
significant. However, the value of the LM (and robust LM) for the spatial 
error model is greater. This result is confirmed with other weight matrices. 
Thus, this is the form of spatial autocorrelation we adopt. This is a quite 
common form in the hedonic literature. Indeed, Pace and Gilley (1997) as 
well as Beron et al. (2004) use a spatial error model to account for the 
influence of neighboring houses on housing prices. 
The model can be written as follows: 
 




21 76

543210

factorafactora

storyaageaqualityalotsizeasqftaahouseprice
 

with eW    and 2~ (0, )ee N I            (2) 

 
 
 

Where all the variables have the same meaning as before, and the 
matrix W is based on the 10 nearest neighbors. Following Bernat’s (1996) 
interpretation of a spatial error model, this form of spatial autocorrelation 
indicates that the price of a house is affected by the price of neighboring 
houses only to the extent that neighboring houses have above or below 
normal prices.  

The second column of table 1 shows the estimation results of model 
(7) by ML (those results are confirmed by GMM-two steps). In this case, all 
the coefficients are significant. The age and the number of floors of a house 
still influence negatively its price. Quality is still the variable which 
influences prices the most. The coefficient of the spatial error term is 0.774 
and is highly significant, indicating that the presence of positive spatial 
autocorrelation. The two tests against heteroskedasticity (the unadjusted and 
spatially adjusted Breusch-Pagan statistics) are significant (p-value = 0.000) 
indicating the presence of remaining heteroskedasticity. The LR-test on the 

spatial autoregressive coefficient ̂  is highly significant (p-value = 0.000), 
indicating that the spatial error model is indeed the appropriate specification.   
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Table 1: Estimation results of our hedonic model with K=10 
 

 OLS ML Diagnostic tests OLS ML 

Constant 
11.000 
(0.000) 

11.171 
(0.000) 

J-B test on 
normality 

210.602 
(0.000) 

- 

Sqft 
4.29.10-4 
(0.000) 

0.37. 10-4 
(0.000) 

K-B test on 
heteroskedasticity 

142.901 
(0.000) 

- 

Lot size 
3.06.10-6 
(0.000) 

3.58.10-6 
 (0.000) 

White test 
188.579 
(0.000) 

- 

Quality 
0.132 

(0.000) 
0.091 

(0.000) 
Moran’s I 

8.366 
(0.000) 

- 

Age 
-1.5.10-4 
(0.823) 

-0.004 
(0.000) 

LM (error) 
651.971 
(0.000) 

- 

Story 
-0.121 
(0.000) 

-0.092 
(0.000) 

Roust LM (error) 
407.982 
(0.000) 

- 

Factor 1 
0.112 

(0.000) 
0.051 

(0.000) 
LM (lag) 

341.857 
(0.000) 

- 

Factor 2 
0.077 

(0.000) 
0.056 

(0.000) 
Robust LM (lag) 

97.868 
(0.000) 

- 

 - 
0.774 

(0.000) 
B-P test on 

heteroskedasticity 
- 

371.434 
(0.000) 

LIK 267.778 502.293 
Spatial B-P test on 
heteroskedasticity 

- 
371.617 
(0.000) 

AIC -519.556 -988.586 LR test on spatial 
error dependence 

- 
469.029 
(0.000) SC -480.302 -949.332 

Notes: see notes table 2.  IV stands for Instrumental Variables.  
 

4. SPATIAL ENDOGENOUS METHOD 

The significant results of the B-P tests against heteroskedasticity in table 1 
may come either from the presence of structural instability, groupwise 
heteroskedasticity or both. We will start with a focus on the first form of 
spatial heterogeneity, more especially on the determination of the clubs at 
the origin of structural instability. As described in section 1, various 
methodologies have been used in the literature to consider spatial 
heterogeneity in hedonic models. The reason for which we do not follow any 
of them is because they do not pay attention to the spatial effects described 
in section 2. Indeed, because of the important geographical component of the 
data upon which our analysis is based, we want the methodology we use for 
the detection of spatial heterogeneity to take spatial dependence into account 

 
The methodology we use here combines a spatial approach with an 
endogenous club detection based on the work of Berthelemy and Varoudakis 
(1996) who apply it to economic growth and the detection of per capita 
income clubs. In order to avoid the a priori exogenous choice of the number 
of clubs as in Durlauf and Johnson (1995), Berthelemy and Varoudakis 
(1996) perform successive F-tests on coefficients stability (Chow tests) on 
the entire sample by moving the sample break’s point forward by one 
observation each time. However, when the first club has been detected, they 
should repeat their process on the remaining sample to verify whether it is 
also composed of two sub-groups.  Finally, the degree of homogeneity 
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between the first and all the other groups remains to be analyzed.  This is 
what we propose in this methodology which is based on previous work by 
Dall’erba et al. (2007). In addition to the topic of application, the difference 
with this work relies in the systematic estimation of the degree of 
homogeneity between successive regimes (i.e., regime 1 with regime 2 and 
3, not only with regime 3).   

The successive steps of our detection method are as follows: 
1) We sort the entire sample according to the increasing distance from the 
most South-West location.  
2) We estimate model (2) with spatial regimes (structural instability treated 
with dummy variables per regime in model 2) defined as follows: regime 1 is 
made of the 26 houses near the most South-West location (in order to have a 
sufficient degree of freedom and because the cross-product of spatially 
weighted explanatory variables is singular with a lower number of 
observations in regime 1), regime 2 is made of the other houses.  
3) We perform the spatial Chow-Wald test (developed by Anselin, 1995) 
also called F-test on the overall stability and add one more house in regime 1 
(therefore on eless in regime 2) if the test reveals stability between regimes 
(at 5% significance level). 
4) As soon as the Chow-Wald test reveals instability, the regime 1 houses 
are eliminated from the sample and steps 2 to 4 are repeated on the 
remaining sample. Observations are re-organized according to their distance 
to the new most South-Western (or most Southern) observation, and a new 
weight matrix, still based on k-10 nearest neighbors, is built in order to 
match the size of the new sample.  
5) If multiple regimes are found (say regimes 1, 2 and 3), we need to test 
how the coefficients of regime 1 are similar to those of regime 2 and 3.  

 
Table 2 below reports the results of the Chow-Wald test of overall 

stability. We are aware that the process we describe here must be taken with 
caution because the recursive properties of this test are unknown at finite 
distance. All the calculations rely on a k-10 nearest neighbors, but have been 
confirmed with other weight matrices. All of them are based on the great 
circle distance between centroids. 
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Table 2- P-values of the spatial Chow-Wald test for different breakpoints 
 Overall 

stability 
 Overall 

stability 
 Overall 

stability 

Regime 1: 51 houses 
Regime 2: 948 houses 

(0.059) Regime 7: 15 houses 
Regime 8: 301 houses 

*** Regime 13: 30 houses 
Regime 14: 84 houses 

(0.062) 

Regime 1: 52 houses 
Regime 2: 947 houses 

(0.050) Regime 7: 16 houses 
Regime 8: 300 houses 

(0.000) Regime 13: 31 houses 
Regime 14: 83 houses 

(0.010) 

Regime 1: 53 houses 
Regime 2: 946 houses 

(0.042) Regime 7: 17 houses 
Regime 8: 299 houses 

(0.000) Regime 13: 32 houses 
Regime 14: 82 houses 

(0.012) 

Regime 2: 187 houses 
Regime 3: 760 houses 

** Regime 8: 21 houses 
Regime 9: 279 houses 

** Regime 14: 25 houses 
Regime 15: 58 houses 

(0.839) 

Regime 2: 188 houses 
Regime 3: 759 houses 

(0.000) Regime 8: 22 houses 
Regime 9: 278 houses 

(0.001) Regime 14: 26 houses 
Regime 15: 57 houses 

(0.000) 

Regime 2: 189 houses 
Regime 3: 758 houses 

(0.000) Regime 8: 23 houses 
Regime 9: 277 houses 

(0.001) Regime 14: 27 houses 
Regime 15: 56 houses 

(0.000) 

Regime 3: 74 houses 
Regime 4: 685 houses 

** Regime 9: 17 houses 
Regime 10: 261 houses 

*** Regime 15: 15 houses 
Regime 16: 42 houses 

(0.191) 

Regime 3: 75 houses 
Regime 4: 684 houses 

(0.021) Regime 9: 18 houses 
Regime 10: 260 houses 

(0.012) Regime 15: 16 houses 
Regime 16: 41 houses 

(0.002) 
 

Regime 3: 76 houses 
Regime 4: 683 houses 

(0.022) Regime 9: 19 houses 
Regime 10: 259 houses 

(0.007) Regime 15: 17 houses 
Regime 16: 40 houses 

(0.000) 

Regime 4: 102 houses 
Regime 5: 582 houses 

(0.067) Regime 10: 78 houses 
Regime 11: 182 houses 

(0.057) Regime 16: 19 houses 
Regime 17: 22 houses 

*** 

Regime 4: 103 houses 
Regime 5: 581 houses 

(0.034) Regime 10: 79 houses 
Regime 11: 181 houses 

(0.013) Regime 16: 20 houses 
Regime 17: 21 houses 

(0.000) 

Regime 4: 104 houses 
Regime 5: 580 houses 

(0.027) Regime 10: 80 houses 
Regime 11: 180 houses 

(0.012) Regime 16: 21 houses 
Regime 17: 20 houses 

(0.000) 

Regime 5: 101 houses 
Regime 6: 480 houses 

(0.062) Regime 11: 47 houses 
Regime 12: 134 houses 

(0.054)   

Regime 5: 102 houses 
Regime 6: 479 houses 

(0.030) Regime 11: 48 houses 
Regime 12: 133 houses 

(0.049)   

Regime 5: 103 houses 
Regime 6: 478 houses 

(0.030) Regime 11: 49 houses 
Regime 12: 132 houses 

(0.042)   

Regime 6: 162 houses 
Regime 7: 317 houses 

(0.055) Regime 12: 18 houses 
Regime 13: 115 houses 

**   

Regime 6: 163 houses 
Regime 7: 316 houses 

(0.045) Regime 12: 19 houses 
Regime 13: 114 houses 

(0.000)   

Regime 6: 164 houses 
Regime 7: 315 houses 

(0.036) Regime 12: 20 houses 
Regime 13: 113 houses 

(0.000)   

 
Notes: **: Cross-product of spatially weighted explanatory variables is 

singular; ***: Singular or not positive definite variance matrix. Note: results are 
obtained by ML estimation. The Chow – Wald test of overall stability is also based 
on a spatially adjusted asymptotic Wald statistic, distributed as 2  with 2 degrees of 
freedom (Anselin 1988). 

 
Appendix A displays a map of the 17 regimes found in table 2. 

 
The results of the Chow-Wald tests above indicate the presence of 17 

regimes in our sample. However, as indicated in point 5 above, one needs to 
test how the coefficients of each regime are different from one another. The 
results of these tests are displayed in table 3 below. 28 of the 120 results 
below (in bold) indicate that two regimes are not statistically different one 
from another. The weight matrices that have been used for the calculation 
are still based on the k-10 nearest neighbors. 

 
 
 
 
 
 
 
 
 

 



 
 
 
 
 

Akademik Araştırmalar ve Çalışmalar Dergisi  / Journal of Academic Researches and Studies 
Cilt 2 ● Sayı 3 ● Kasım 2010  /  Volume 2 ● Number 3 ● November 2010 

_________________________________________________________________________________________________ 
 

  

( 10 )

Table 3- Spatial Chow-Wald test results for the regimes defined above. 
 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1 0.0

60 
Si
ng. 

Si
ng. 

0.0
78 

0.0
03 

0.0
00 

0.0
00 

0.0
00 

0.3
91 

0.0
02 

0.0
00 

0.0
10 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

2  0.1
70 

0.0
11 

0.0
08 

0.0
00 

0.0
04 

0.6
85 

0.0
59 

0.0
48 

0.0
56 

0.0
10 

0.5
07 

0.6
62 

0.4
53 

0.0
47 

0.2
21 

3   0.0
00 

0.1
02 

0.2
99 

0.0
00 

0.0
16 

0.0
01 

0.1
81 

0.0
02 

0.0
00 

0.0
69 

0.0
06 

0.0
05 

0.0
00 

0.0
00 

4    0.0
13 

sin
g 

0.0
00 

0.0
88 

0.0
07 

0.0
02 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

sin
g 

0.0
00 

5     0.0
09 

0.0
08 

0.0
37 

0.0
69 

0.0
00 

0.0
00 

0.0
00 

0.0
50 

0.0
24 

0.0
40 

0.0
00 

0.0
06 

6      0.0
00 

0.0
00 

0.0
00 

0.0
75 

0.0
48 

0.0
01 

0.3
13 

01
85 

0.1
08 

0.0
00 

0.0
07 

7       0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

8        0.0
07 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
05 

0.0
00 

0.0
00 

0.0
00 

9         0.0
00 

0.0
00 

0.0
00 

0.0
12 

0.0
00 

Si
ng. 

0.0
00 

0.0
00 

1
0 

         0.0
23 

0.0
00 

0.4
59 

0.0
69 

0.0
06 

0.0
00 

0.0
13 

1
1 

          0.0
00 

0.7
97 

0.0
91 

0.0
73 

0.0
00 

0.0
00 

1
2 

           0.0
00 

0.0
00 

0.0
00 

0.0
00 

0.0
00 

1
3 

            0.2
76 

0.0
85 

0.0
00 

0.0
00 

1
4 

             0.0
26 

0.0
00 

0.0
00 

1
5 

              0.0
00 

0.0
00 

1
6 

               0.0
00 

Note: p-value into brackets.  
 

With so many non-significant Chow-Wald test, the question of what 
regimes should be aggregated first arises. Indeed, the way the aggregation is 
performed influence our results. Therefore, we propose to aggregate first the 
two regimes that display the least significant Chow-Wald p-value and to test 
the degree of homogeneity of this new regime with all the previously 
existing regimes. This process has been repeated 9 times before all the 
regimes appear not to be significantly similar with each other. As table 4 
below indicates, the final number of regimes is 8. The numbers in the top 
row (or first column) rely on the regimes’ name displayed in table 3. For 
instance, previous regimes 1 and 10 now belong to the same regime.  

 
Table 4- Spatial Chow-Wald test results for the regimes defined above. 

 3-6 4 5-9 7 2-8-11-13-14-15-17 12 16 
1-10 0.031 Sing. Sing. 0.000 0.003 0.000 0.000 
3-6  Sing. Sing. 0.000 0.000 0.000 0.000 
4   Sing. 0.000 0.015 0.000 Sing 

5-9    0.023 0.000 0.000 0.000 
7     0.000 0.000 0.000 

2-8-11-13- 14-15-17      0.000 0.010 
12       0.000 

Note: p-value into brackets. 
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The 8 regimes defined above are represented in figure B below. The 
most surprising result is to see that clusters do not follow the basic North-
South divide which has often been documented in Tucson, because it is 
based on housing prices only. Our results indicate that regime 2 (houses 
located in the downtown area of Tucson) is now in the same group as 
regimes 8-11-13-14-15-17 which are located in the North, i.e. regroup 
houses which are, on average, much more expensive. However, regime 2 
includes the CBD of Tucson (as well as the UofA?) which are two of the 
biggest employers in town. Without the presence of activity in these 
locations, other activities would not take place in other parts of the 
agglomeration, i.e. it may happen that housing prices in regime 2 determine 
very closely those in the Northern part of the city. 

Another interesting result is the group constituted of regimes 1 and 10. 
They correspond to the most southern and northern parts of the Tucson area 
and are located along the I-10. These lots have been developed more recently 
to answer to the increasing demands in housing by newcomers.  

It is obvious from the map below that the houses that belong to one 
particular regime are not always contiguous. This indicates that some houses 
may have similar dynamics even if they are not geographically clustered. In 
the methodology used above, space is controlled for in the determination of 
the regimes, but it is not the only factor at the origin of the regimes.  

 5. ESTIMATION  WITH BOTH SPATIAL EFFECTS 

Now that we have clearly defined the regimes that are present in our 
sample, we turn to a cross-section estimation of model (2) to which we add 
spatial heterogeneity. Indeed, the significance of the BP and spatial BP tests 
in table 1 clearly indicates the presence of spatial heterogeneity. This may 
take the form of spatial regime, groupwise heteroskedasticity or both. Let us 
start with the estimation of the presence of spatial regimes. The model we 
estimate can be written as follows: 
 




21 76

543210

factorafactora

storyaageaqualityalotsizeasqftaahouseprice

ii

iiiiii  

with eW    and 2~ (0, )ee N I            (2) 

 
with subscript i= 1 to 8, according to the regime the region belongs to. The 
results of this estimation are displayed below. 
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Table 5- Estimation results with spatial regimes (ML estimation) 
Regime 1-10 3-6 4 5-9 7 

2-8-11-13-
14-15-17 

12 16 

Constant 
11.117 
(0.000) 

11.198 
(0.000) 

11.244 
(0.000) 

11.271 
(0.000) 

11.746 
(0.000) 

11.078 
(0.000) 

10.899 
(0.000) 

11.135 
(0.000) 

Sqft 
3.65.10-4 
(0.000) 

3.17.10-4 
(0.000) 

3.83.10-4 
(0.000) 

3.44.10-4 
(0.000) 

2.62.10-4 
(0.057) 

4.01.10-4 
(0.000) 

2.27.10-4 
(0.235) 

3.41.10-4 
(0.000) 

Lot size 
1.00.10-5 
(0.006) 

5.79.10-6 
 (0.000) 

4.55.10-6 
(0.000) 

3.08.10-6 
 (0.000) 

2.14.10-6 
(0.100) 

7.40.10-6 
 (0.000)

7.52.10-5 
(0.164) 

2.30.10-5 
 (0.001) 

Quality 
-0.024 
(0.609) 

0.132 
(0.000) 

0.078 
(0.085) 

0.069 
(0.088) 

0.115 
(0.165) 

0.100 
(0.000)

-10.171 
(0.171) 

-0.030 
(0.864) 

Age 
-0.007 
(0.005) 

-0.003 
(0.015) 

-0.007 
(0.001) 

-0.001 
(0.168) 

-0.012 
(0.148) 

-0.004 
(0.000)

-0.003 
(0.783) 

0.017 
(0.200) 

Story 
-0.044 
(0.338) 

-0.030 
(0.606) 

0.013 
(0.798) 

-0.063 
(0.141) 

-0.060 
(0.739) 

-0.120 
(0.000)

-0.045 
(0.660) 

-0.165 
(0.105) 

Factor 1 
-0.011 
(0.745) 

0.036 
(0.102) 

0.004 
(0.895) 

0.114 
(0.000)

0.045 
(0.720) 

0.076 
(0.000) 

0.096 
(0.445) 

0.040 
(0.659) 

Factor 2 
0.049 

(0.014) 
0.031 

(0.027) 
0.037 

(0.082) 
0.056 

(0.000)
0.012 

(0.879) 
0.058 

(0.000) 
0.014 

(0.838) 
0.108 

(0.061) 

 
0.760 

(0.000)
Sq. corr. 0.871 

LIK 585.290 
AIC -1042.58 
SC -728.548 

LR test on 
spatial 
error 

dependenc
e 

355.207 
(0.000) 

LM test on 
spatial lag 
dependenc

e 

33.954 
(0.000) 

 
Comparing the results that include spatial heterogeneity with those of 

table 1, it appears that the fit of the model has improved. The spatial lag 
coefficient is again positive and very significant. All the coefficients are in 
the range of what the corresponding coefficient was (see table1). Square 
footage is the variable which is the most often significant, while story is 
significant only once. No coefficient is significant in regime 12 while all the 
coefficients are significant in regime 2-8-11-13-14-15-17.  

Finally, the last model tested includes both spatial regimes and 
groupwise heteroskedasticity. However, the results of this model are not 
presented here because the fit of the model is much lower than the one of the 
previous model and only 10 coefficients are significant. 

 

6. CONCLUSION 

This paper has brought an innovative way to look at the detection and 
definition of heterogeneity in the housing market. Indeed, we use an 
endogenous methodology that pays attention to spatial autocorrelation when 
identifying sub-markets. This is the first time this methodology is applied on 
housing prices.  

Our results, based on a cross-sectional estimation, shed some light on 
the dynamics of Tucson’s real estate market. Some groups of houses which 
are not necessarily located close to each other display similar patterns 
indicating they belong to the same sub-market. Overall, while Tucson’s 
housing prices increase from South to North, our results indicate that some 
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groups of houses on the Easter and Western part of the city show similar 
dynamics and that the most historic houses, located in the downtown area 
and close to the University of Arizona, display a similar pattern than some of 
the expensive and more recent houses located close to the Catalina foothills. 
This is an outcome we would have never reached would we have focused 
only on housing prices. 
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Appendix A 
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