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Screening/classification is performed for the separation of particles by their sizes. There are empirical, phenomenological, and numerical models for 
predicting the size distributions of screening/classification products. This paper introduces a new algorithm for the same purpose, which partially mimics 
phenomenological and numerical models. The algorithm iteratively selects the monosize fractions with pre-defined probabilities, then carries particle 
masses from the selected fractions either to the oversize or undersize product. The applicability of the algorithm was validated against the product size 
distributions from some industrial-scale screening/classification equipment - namely rake classifier, sieve bend (0.212 mm), vibrating screen (20 mm), and 
hydrocyclone - which are provided in the literature. The results show that the algorithm is predictive if each particle has a selection probability proportional 
to the mass of its monosize fraction and some power of its diameter. Results also suggest that vibrating screens can provide the sharpest size separation.

Keywords: Screening, Classification, Pseudorandom number generation, Particle selection, Algorithm

Predicting screening/classification products via the pseudorandom number selection routine 

Eleme ve sınıflandırma ürünlerinin sözde rastgele sayı üretme rutiniyle tahmini

Mahmut Camalana,*

https://doi.org/10.30797/madencilik.947610

Geliş-Received: 3 Haziran - June 2021 • Kabul-Accepted: 23 Eylül - September 2021

Introduction

Screening/classification operations include the separation 
of minerals or other particulate materials based on their sizes. 
Comprehensive reviews on the fundamentals of both operations 
are provided in the relevant literature (Gupta and Yan, 2016; Mu-
lar, 2009; Wills and Finch, 2016): The separation in screening is 
achieved by carrying the particles to screen apertures, which are 
either retained over or pass through the apertures. Meanwhile, 
the particles are classified under a moving fluid such that they are 
separated by their velocities in the fluid. The choice for screen-
ing/classification generally depends on the size distribution of 
the feed material: The latter is preferred over the former if the 
feed particles are finer, which may cause blinding at screen ap-
ertures. However, some successful attempts have been made to 
replace hydrocyclones with high-frequency vibration screens 
(Dündar, 2020; Frausto et al., 2021). 

Three main approaches, namely empirical (Austin,  et al., 
1984; Coelho and Medronho, 1992; King, 2012; Mular, 2009; 
Nageswararao et al., 2004; Napier-Munn and Lynch, 1992; Wills 

and Finch, 2016), phenomenological (Elskamp and Kruggel-Em-
den, 2015; Heiskanen, 1996; King, 2012; Muñoz et al., 2017; 
Nageswararao et al., 2004; Napier-Munn and Lynch, 1992; Wills 
and Finch, 2016), and numerical (Elskamp and Kruggel-Emden, 
2015; Heiskanen, 1996; Khoshdast et al., 2017; Mangadoddy et 
al., 2020; Narasimha et al., 2007; Wills and Finch, 2016) models, 
are adopted for predicting the coarse and fine product size dis-
tributions of screening/ classification process.  Empirical mod-
els are the mathematical functions - e.g., partition curves (Gupta 
and Yan, 2016; Svarovsky and Svarovsky, 1992) - to predict the 
process outputs although they cannot describe the separation 
process. Phenomenological models - e.g., first-order screening ki-
netics (Elskamp and Kruggel-Emden, 2015) and particle velocity 
equations in hydrocyclone (Heiskanen, 1996) - are the semi-em-
pirical functions that are based on the fundamental aspects of 
separation. Numerical models use the iterative computation rou-
tines - e.g., (i) Discrete Element Model (Davoodi et al., 2019; Dong 
and Yu, 2012; Elskamp and Kruggel-Emden, 2015; Kruggel-Em-
den and Elskamp, 2014; Zhao et al., 2016) for vibrating screens/
sieve bends, (ii) Computational Fluid Dynamics (Khoshdast et al., 
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2017; Mangadoddy et al., 2020; Narasimha et al., 2007) and their 
coupling (Mangadoddy et al., 2020; Tang et al., 2018) for hydrocy-
clones/hydraulic classifiers - to predict the motion of particles in 
the separation vessels. 

This paper presents a computational algorithm to predict the 
size distributions of oversize (coarse) and undersize (fine) prod-
ucts of different screening/classification operations. The algorithm 
implements a pseudorandom number generator into a particle se-
lection routine, which iteratively distributes particles to the coarse 
or fine product. The proposed algorithm mimics (i) the phenome-
nological models by taking account of the size-mass balance, and 
(ii) the numerical models by iterative carriage of particles to the 
coarse or fine product. However, the algorithm cannot predict the 
percentage of water recovery from feed to undersize (or oversize) 
at wet classification. The applicability of the algorithm was validat-
ed against the coarse and fine product size distributions of some 
industrial-scale separations (Austin et al., 1984; Olson and Turn-
er, 2002) that were performed with the rake classifier, sieve bend 
(0.212 mm), vibrating screen (20 mm), and hydrocyclone. 

1. Experimental methodology

Figure 1 demonstrates the flowsheet for the simulation of 

screening/classification. The algorithm started by selecting a 
size fraction from the initial feed mass, using the pseudorandom 
selection routine through the pre-defined selection probabil-
ities. The mass of the mean particle of the selected size fraction 
was removed from the feed and further moved to the same size 
fraction of the undersize product. Then, the masses and the size 
distributions of the remaining feed and undersize product were 
calculated. The mean particle masses were (i) successively select-
ed from the feed size fractions and (ii) moved to corresponding 
undersize fractions until the simulated 80 % passing size (d80) of 
the remaining feed exceeded the experimental d80 of oversize. The 
remaining feed mass was then assigned to the oversize product. 
Finally, the simulated masses and size distributions of the oversize 
and undersize products were calculated. The simulated data were 
compared with the corresponding data of experimental products. 
During the successive particle selection stage, the masses of parti-
cles were calculated assuming that they were spherical. The mean 
particle size of each size fraction, except the finest unbounded size 
fraction (pan), was taken as the geometric mean of its lower and 
upper screen sizes. Meanwhile, the mean particle size of the pan 
was taken as the average between the aperture size of the finest 
screen and zero.
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Figure 1. The flowsheet for the simulation of screening/classification by selecting and carrying feed particles to undersize 
product

Each particle selection event was simulated 
by using the MATLAB’s built-in DATASAMPLE 
function. The routine used the MATLAB’s built-in 
DATASAMPLE function to generate the integer 
index of a size fraction for particle selection 
(Figure 1). The function used the Mersenne 
Twister algorithm (Matsumoto and Nishimura, 
1998) coupled with a binary search tree 
algorithm (Wong and Easton, 1980) for the 
weighted sampling of the data. The size fractions 
were selected with a probability (𝑝𝑝") being 

proportional to their mass (𝑚𝑚") and a power (𝑛𝑛) 
of its geometric mean diameter (𝑥𝑥"): 
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where 𝑖𝑖 = 1 is the top size fraction, and 𝑧𝑧 is the 
sink size fraction of the feed.  

The algorithm was tested against the coarse 
and fine product size distributions of some 
industrial-scale separations achieved at (i) a 
rake classifier, (ii) a sieve bend (0.212 mm), (iii) 
a vibrating screen (20 mm), and (iv) a 

Figure 1. The flowsheet for the simulation of screening/classification by selecting and carrying feed particles to un-
dersize product
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Each particle selection event was simulated by using the  
MATLAB’s built-in DATASAMPLE function. The routine used the  
MATLAB’s built-in DATASAMPLE function to generate the integer 
index of a size fraction for particle selection (Figure 1). The function 
used the Mersenne Twister algorithm (Matsumoto and Nishimu-
ra, 1998) coupled with a binary search tree algorithm (Wong and 
Easton, 1980) for the weighted sampling of the data. The size frac-
tions were selected with a probability (pi) being proportional to 
their mass (mi) and a power (n) of its geometric mean diameter (xi):
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 (Camalan, 2021)                                                                          (1)

where i=1 is the top size fraction, and z is the sink size fraction of 
the feed. 

The algorithm was tested against the coarse and fine product 
size distributions of some industrial-scale separations achieved at 
(i) a rake classifier, (ii) a sieve bend (0.212 mm), (iii) a vibrating 
screen (20 mm), and (iv) a hydrocyclone. The experimental feed and 
product (oversize, undersize) size distributions at (i)-(ii)-(iii) were 
taken from Austin et al. (1984). Meanwhile, the respective experi-
mental size distributions at (iv) were taken from Olson and Turner 
(2002). However, it was not explicitly stated whether the experimen-
tal size distribution errors were reduced by performing mass bal-
ancing around (i)-(iv). For the purpose of simulation, the feeds for 
(i) and (iii) were assumed as quartz (density = 2.75 g/cm3) while the 
feeds for (ii) and (iv) were coal (1.3 g/cm3) and iron ore (3 g/cm3), 
respectively. The top size fractions that had been unbounded in the 
experimental feed size distributions were discarded from the sim-
ulation and evaluation. The total mass of oversize product after an 
experimental screening/classification process was estimated by av-
eraging mass balances on the experimental size distribution curves:
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hydrocyclone. The experimental feed and 
product (oversize, undersize) size distributions at 
(i)-(ii)-(iii) were taken from Austin et al. (1984). 
Meanwhile, the respective experimental size 
distributions at (iv) were taken from Olson and 
Turner (2002). However, it was not explicitly 
stated whether the experimental size distribution 
errors were reduced by performing mass 
balancing around (i)-(iv). For the purpose of 
simulation, the feeds for (i) and (iii) were 
assumed as quartz (density = 2.75 g/cm3) while 
the feeds for (ii) and (iv) were coal (1.3 g/cm3) 
and iron ore (3 g/cm3), respectively. The top size 
fractions that had been unbounded in the 
experimental feed size distributions were 
discarded from the simulation and evaluation. 
The total mass of oversize product after an 
experimental screening/classification process 
was estimated by averaging mass balances on 
the experimental size distribution curves: 
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where 𝑞𝑞 is the total number of screens around 
which the mass balances are taken. 𝐹𝐹K, 𝑈𝑈K, and 
𝑂𝑂K are the cumulative masses % of feed, 
undersize, and oversize, respectively, which are 
passing through the screen 𝑗𝑗. 

 

2. Results and discussion 
Table 1 shows the simulated and 

experimental masses of oversize (coarse) and 
undersize (fine) products of the different 
screening/classification equipment. The results 
show that simulated masses are comparable to 
experimental masses, indicating the algorithm’s 
success in predicting the separation products. 
Meanwhile, Figure 2 demonstrates the 
experimental and simulated size distributions of 
oversize and undersize products of the rake 
classifier (Figure 2a), the sieve bend (Figure 2b), 

the vibrating screen (Figure 2c), and the 
hydrocyclone (Figure 2d). The experimental feed 
size distributions are also shown with symbols in 
the figure. Figure 2a-d shows that the simulated 
size distributions of oversize and undersize 
products shift downwards and upwards from 
their corresponding feed size distributions, 
respectively. In other words, the simulated 
oversize is qualitatively coarser than its feed, yet 
the simulated fine product is finer. This suffices 
to prove that the algorithm can make logical 
predictions on the separation products. Figure 2 
also shows that all simulated size distributions of 
undersize products agree quite well with the 
respective experimental size distributions. 
However, the simulated size distributions of 
coarse products may deviate from the respective 
experimental curves at the fine size scale. Such 
deviations are visible between the simulated and 
experimental curves of the coarse products of 
rake classifier (Figure 2a), sieve bend (Figure 
2b), and vibrating screen (Figure 2c). A possible 
reason for these deviations may be the 
misclassification of fines to the coarse product in 
the screening/classification operations, which 
may not be reflected in the particle selection 
routine (Section 2). Some operational factors 
that may cause the fines’ misclassification can 
be defined as (i) insufficient drainage and 
passage of fine particles to the screen aperture 
(Dong, Wang, and Yu, 2013), and (ii) bypassing 
of fines with water flow in classifiers (Kelly, 
1991).  

Table 1. The simulated and experimental masses of the 
oversize products of the screening/classification equipment 

Equipment 
Oversize Mass  
(% of the Feed) 

Simulated Experimental 
Rake Classifier 55.49 62.16 

Sieve Bend 50.55 55.45 
Vibrating Screen 32.90 32.89 

Hydrocyclone 66.06 59.97 

 

                                    (2)

where q is the total number of screens around which the mass bal-
ances are taken. Fj, Uj, and Oj are the cumulative masses % of feed, 
undersize, and oversize, respectively, which are passing through 
the screen j. 

2. Results and discussion

Table 1 shows the simulated and experimental masses of oversize 
(coarse) and undersize (fine) products of the different screening/
classification equipment. The results show that simulated masses 
are comparable to experimental masses, indicating the algorithm’s 
success in predicting the separation products. Meanwhile, Figure  
2 demonstrates the experimental and simulated size distributions 
of oversize and undersize products of the rake classifier (Figure 2a), 
the sieve bend (Figure 2b), the vibrating screen (Figure 2c), and the 
hydrocyclone (Figure 2d). The experimental feed size distributions 
are also shown with symbols in the figure. Figure 2a-d shows that 
the simulated size distributions of oversize and undersize products 
shift downwards and upwards from their corresponding feed size 
distributions, respectively. In other words, the simulated oversize 
is qualitatively coarser than its feed, yet the simulated fine product 
is finer. This suffices to prove that the algorithm can make logical 
predictions on the separation products. Figure 2 also shows that all 
simulated size distributions of undersize products agree quite well 
with the respective experimental size distributions. However, the 
simulated size distributions of coarse products may deviate from 
the respective experimental curves at the fine size scale. Such devi-
ations are visible between the simulated and experimental curves 
of the coarse products of rake classifier (Figure 2a), sieve bend 
(Figure 2b), and vibrating screen (Figure 2c). A possible reason for 
these deviations may be the misclassification of fines to the coarse 
product in the screening/classification operations, which may not 
be reflected in the particle selection routine (Section 2). Some op-
erational factors that may cause the fines’ misclassification can be 
defined as (i) insufficient drainage and passage of fine particles to 
the screen aperture (Dong et al., 2013), and (ii) bypassing of fines 
with water flow in classifiers (Kelly, 1991). 

Table 1. The simulated and experimental masses of the oversize products of 
the screening/classification equipment

Equipment
Simulated Experimental

Rake Classifier 55.49 62.16
Sieve Bend 50.55 55.45
Vibrating Screen 32.90 32.89
Hydrocyclone 66.06 59.97

Figure 2. The experimental (symbols) and simulated (lines) size distribu-
tions of oversize and undersize products of (a) rake classifier, (b) sieve bend, 
(c) vibrating screen, and (d) hydrocyclone. The experimental feed size distri-
butions are also included in the figure. The experimental size distributions in 
(a)-(c) and (d) were taken from Austin et al. (1984), and Olson and Turner 
(2002), respectively.

Oversize Mass 
(% of the Feed)
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Table 2 shows the ‘n’ values used to generate the probabilities 
(Equation 1) for the selection of particles to undersize products 
at different screening/classification equipment. The table shows 
that the ‘n’ values required to simulate the products at rake classi-
fier, sieve bend and hydrocyclone are similar to each other. How-
ever, the respective ‘n’ value for the vibrating screen are visibly 
the lowest. Using lower ‘n’ values must provide more chance for 
relatively finer particles to get selected into the undersize product, 
as indicated by Equation 1. Therefore, this result strongly suggests 
that the vibrating screens can outperform sharp separation of fine 
particles from the coarse ones. Some additional evidences are also 
available in the literature showing that the vibrating screens yield 
sharper tromp curves as compared to hydrocyclones (Dündar, 
2020; Wills and Finch, 2016). 

Table 2. The ‘n’ values used to generate the probabilities (Equation 1) for 
particle selection to undersize products of different screening/classification 
equipment

Equipment “n” value (Equation 1)
Rake Classifier -4.5
Sieve Bend -4.25
Vibrating Screen -6.5
Hydrocyclone -4.2

The default form of the algorithm is to select and carry particles 
from feed to undersize product till the simulated d80 of the remaining 
feed is larger than the experimental d80 of oversize product (Figure 
1). Also, the algorithm can be revised in a way that the feed particles 
were selected and carried to the oversize product (Figure 3). In this 
case, the algorithm is executed till the simulated d80 of the remaining 
feed is lower than the experimental d80 of the undersize product. The 
applicability of this revised algorithm was also tested against the ex-
perimental product size distributions of the rake classifier, the sieve 
bend, the vibrating screen, and the hydrocyclone (Section 2). Figure 4 
shows that the simulated and experimental product size distributions 
are in good agreement when the selection probability of feed parti-
cles to oversize product is calculated by the pi formulation (Equation 
1). Table 3 also shows the simulated masses of oversize (coarse), 
which are comparable to the experimental masses (Table 1).

Table 3. The simulated masses of the oversize products of the screening/clas-
sification equipment

Equipment Simulated Oversize Mass
(% of the Feed)

Rake Classifier 62.70
Sieve Bend 57.49
Vibrating Screen 33.18
Hydrocyclone 67.63

Figure 3. The flowsheet for the simulation of screening/classification by selecting and carrying feed particles to oversize product
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Figure 4. The experimental (symbols) and simulated (lines) size distribu-
tions of coarse and fine products of (a) the rake classifier, (b) the sieve bend, 
(c) the vibrating screen, and (d) the hydrocyclone. The simulated size distri-
butions were produced by selecting and carrying feed particles to oversize 
products. The experimental size distributions in (a)-(c) and (d) were taken 
from Austin et al. (1984), and Olson and Turner (2002), respectively.

Table 4 shows the ‘n’ values used to generate the selection proba-
bilities (pi) of particles for the oversize products. These values are 
quite higher than the respective ‘n’ values used to select particles 
for the undersize products (Table 2). Therefore, that coarse and 
fine particles in the feed have more chance to be carried to the 
oversize and undersize products, respectively. More importantly, 
if there is a large difference between the pis, congruently the ‘n’ 
values, for oversize and undersize selection, a sharp size separa-
tion can be achieved. Referring to the ‘n’ exponents in Table 2 and 
Table 4, the greatest differences in the pis are possible at vibrating 
screen, suggesting that it yields the sharpest size separation. When 
a particle is to be separated by a vibrating screen either to oversize 
or undersize fraction, its separation only depends on the particle 
dimensions and the aperture size of the screen. Meanwhile, the 
separation of a particle to oversize or undersize fraction is based 
on its motion (trajectory) in a classifier. However, this trajectory 
is not only affected by the particle size but also particle density 
(Wills and Finch, 2016). Therefore, it is very likely that vibrating 
screen should provide better size separation than the classifiers, 
as supported by sharper partition curves in the former (Dündar, 
2020). 

Table 4. The ‘’ values used to generate the  (Equation 1) for the particle se-
lection to oversize products of different screening/classification equipment

Equipment “n” value (Equation 1)
Rake Classifier -1.8
Sieve Bend -2
Vibrating Screen +2
Hydrocyclone -2.1

Conclusions

An algorithm is presented to predict the size distributions of 
oversize and undersize products of screening/classification op-
erations. The algorithm mimics (i) the phenomenological models 
by taking account of the size-mass balance, and (ii) the numerical 
models by iterative carriage of particles to coarse or fine products. 
The algorithm iteratively (i) selects a monosize fraction, (ii) takes 
a particle from the size fraction, and (iii) carries the particle ei-
ther to oversize or undersize product. The algorithm can predict 
the size distributions of screening/classification products if each 
particle has a selection probability proportional to the mass of its 
monosize fraction and some power of its diameter. Results also 
suggest that vibrating screens can provide the sharpest size sep-
aration.
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