
Advances in the Theory of Nonlinear Analysis and its Applications 6 (2022) No. 2, 191�201.
https://doi.org/10.31197/atnaa.947937
Available online at www.atnaa.org

Research Article

Nonexistence results for semi-linear

Moore-Gibson-Thompson equation with nonlocal

operator

Ali Hakema, Svetlin Georgievb

aLaboratory ACEDP, Djillali Liabes university, 22000 Sidi Bel Abbes, Algeria.
bFaculty of Mathematics and Informatics, So�a University, So�a, Bulgaria.

Abstract

We study the nonexistence of global weak solutions to the following semi-linear Moore - Gibson- Thompson
equation with the nonlinearity of derivative type, namely,{

uttt + utt −∆u− (−∆)
α
2 ut = |ut|p, x ∈ IRn, t > 0,

u(0, x) = u0(x), ut(0, x) = u1(x), utt(0, x) = u2(x) x ∈ IRn,

where α ∈ (0, 2], p > 1, and (−∆)
α
2 is the fractional Laplacian operator of order α

2 . Then, this result is
extended to the case of a weakly coupled system. We intend to apply the method of a modi�ed test function
to establish nonexistence results and to overcome some di�culties as well caused by the well-known fractional
Laplacian (−∆)

α
2 .The results obtained in this paper extend several contributions in this �eld.

Keywords: Test functions nonexistenc lifespan estimates.
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1. Introduction

The main goal of this paper is to discuss the nonexistence of global weak solutions to the following
semi-linear Moore-Gibson-Thompson equation{

uttt + utt −∆u− (−∆)
α
2 ut = |ut|p, x ∈ IRn, t > 0,

u(0, x) = u0(x), ut(0, x) = u1(x), utt(0, x) = u2(x), x ∈ IRn,
(1)
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where p > 1, n ≥ 1, α ∈ (0, 2], and (−∆)
α
2 is the fractional Laplacian operator of order α

2 . We extend
our analysis to the case of a weakly coupled system, more precisely,

uttt + utt −∆u− (−∆)
α
2 ut = |vt|p, x ∈ IRn, t > 0,

vttt + vtt −∆v − (−∆)
β
2 vt = |ut|q, x ∈ IRn, t > 0,

u(0, x) = u0(x), ut(0, x) = u1(x), utt(0, x) = u2(x), x ∈ IRn,
v(0, x) = v0(x), vt(0, x) = v1(x), vtt(0, x) = v2(x), x ∈ IRn.

(2)

Recently, the nonexistence of global (in time) solutions to the following system
utt −∆u+ (−∆)δ1ut = |v|p, x ∈ IRn, t > 0,
vtt −∆v + (−∆)δ2vt = |u|q, x ∈ IRn, t > 0,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ IRn,
v(0, x) = v0(x), vt(0, x) = v1(x) x ∈ IRn.

(3)

is investigated in [10]. It was shown that if δ1, δ2 ∈
[
0, 12
]
, u0 = u1 = 0 and u1, v1 ∈ IL1(IRn) satisfy∫

IR
n
u1(x)dx > ε1,

∫
IR
n
u1(x)dx > ε2,

and
n

2
≤

1 + q 1−δ21−δ1 + (pq − 1)δ2

(q − 1) δ1−δ21−δ2 + (pq − 1)
if δ1 ≥ δ2,

n

2
≤

1 + p1−δ11−δ2 + (pq − 1)δ2

(p− 1) δ2−δ11−δ1 + (pq − 1)
if δ2 ≥ δ1,

then there is no global (in time) Sobolev solution (u, v) ∈ C
(
[0,∞)× IL2(IRn)

)
× C

(
[0,∞)× IL2(IRn)

)
to

(3). The critical exponent to the following structurally damped wave equation with the power nonlinearity
|ut|p: {

utt −∆u+ µ(−∆)
α
2 ut = |ut|p, x ∈ IRn,

u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ IRn,
(4)

has been studied by Tuan Anh Dao and Ahmad Z. Fino in [11]. It was shown in [11] that if

1 < p ≤ 1 +
α̃

n
where α̃ = min{1, α},

then there is no global (in time) weak solution to (4). Note that one of the most typical important methods
to verify critical exponent is well-known test function method ( see [13]). Concretely, this method is used
to prove the nonexistence of global solutions by a contradiction argument. However, standard test function
method seems di�cult to be applied to (1) containing pseudo-di�erential operators (−∆)

α
2 for any α ∈ (0, 2].

The di�culty is caused by the nonlocal property of the fractional Laplacian operator. D' Abbicco and Reissig
in [2] investigated the structurally damped wave equation with the power nonlinearity |u|p. The critical
exponent has been studied and they proposed to distinguish between (parabolic like models) in the case
σ ∈ (0, 1], the so-called e�ective damping, and (hyperbolic like models) in the remaining case σ ∈ (1, 2],
the so-called none�ective damping according to expected decay estimates (see more [3]). In the former case,
they proved the existence of global (in time) solutions when

p > pc = 1 +
2

(n− σ)+

for the small initial data and low space dimensions 2 ≤ n ≤ 4 by using the energy estimates. Last years,
the Moore-Gibson-Thompson (MGT) equation, a linearization of a model for wave propagation in viscous
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thermally relaxing �uids has been studied by several authors (see [14],[6], [7], [16], [8],[17] and references
therein). This model is realized through the third order hyperbolic partial di�erential equation

τuttt + utt − c2∆u− b∆ut = 0,

where the unknown function u denotes a scalar acoustic velocity, c denotes the speed of sound and τ denotes
the thermal relaxation. Besides, the coe�cient b = βc2 is related to the di�usivity of the sound with τ ∈ (0, β].
Let us underline that, to our knowledge, the MGT equation has not been widely investigated in the case of
presence of non-local operators. For other contributions related to the semi-linear Moore-Gibson-Thompson
equation with the power nonlinearity of derivative type we refer the reader to [7],[8] and references therein.

Motivated by the above contributions, our goal in this paper is to investigate problems (1) and (2). The
paper is organized as follows. In the next section, we give some auxiliary results and formulate our main
results. In Section 3, we prove our main results.

2. Auxiliary Results

Before to formulate our main results, we need the following de�nitions.

De�nition 2.1. ([15],[18]) Let s ∈ (0, 1). Let X be a suitable set of functions de�ned on IR
n. Then, the

fractional Laplacian (−∆)s in IR
nis a non-local operator given by

(−∆)s : f ∈ X → (−∆)sf(x) = Cn,s P.V

∫
IR
n

f(x)− f(y)

|x− y|n+2s
dy,

as long as the right-hand side exists. Here P.V stands for the Cauchy's principal value and Cn,s =
4sΓ

(
n
2 + s

)
π
n
2 Γ(−s)

is the normalization constant and Γ denotes the Gamma function.

De�nition 2.2. (Weak solution for (1)) Let T > 0, p > 1, and (u0, u1, u2) ∈ H2(IRn) × H1(IRn) ×
IL

2(IRn). We say that u ∈ C
(
[0, T ), H2(IRn)

)
∩ C1

(
[0, T ), H1(IRn)

)
∩ C2

(
[0, T ), IL2(IRn)

)
, satisfying ut ∈

IL
p
loc ([0, T )× IRn), is a local weak solution to (1) if∫ T

0

∫
IR
n
|ut(x, t)|pϕ(t, x)dxdt+

∫
IR
n

(u1(x) + u2(x))ϕ(0, x)dx

−
∫
IR
n
u1(x)ϕt(0, x)dx =

∫ T

0

∫
IR
n
ut(x, t)ϕtt(t, x)dxdt

−
∫ T

0

∫
IR
n
ut(x, t)ϕt(t, x)dxdt−

∫ T

0

∫
IR
n
ut(x, t)(−∆)

α
2 ϕ(x, t)dxdt

−
∫ T

0

∫
IR
n
u(x, t)∆ϕ(x, t)dxdt,

(5)

for any test function ϕ ∈ C∞0 ([0, T )× IRn) such that its support in time is compact and ϕ(x, T ) = ϕt(x, T ) =
ϕtt(x, T ) = 0 for all x ∈ IRn. If T =∞, we say that u is a global weak solution to (1).

De�nition 2.3. (Weak solution for (2)) Let p, q > 1 and T > 0. We say that (u, v) is a local weak solution
to the problem (2) if (ut, vt) ∈ ILqloc([0, T )× IRn)× ILploc([0, T )× IRn) and satis�es the equations∫ T

0

∫
IR
n
|vt(x, t)|pϕ(t, x)dxdt+

∫
IR
n

(u1(x) + u2(x))ϕ(0, x)dx

−
∫
IR
n
u1(x)ϕt(0, x)dx =

∫ T

0

∫
IR
n
ut(x, t)ϕtt(t, x)dxdt

−
∫ T

0

∫
IR
n
ut(x, t)ϕt(t, x)dxdt−

∫ T

0

∫
IR
n
ut(x, t)(−∆)

α
2 ϕ(x, t)dxdt

−
∫ T

0

∫
IR
n
u(x, t)∆ϕ(x, t)dxdt,

(6)
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and ∫ T

0

∫
IR
n
|ut(x, t)|qϕ(t, x)dxdt+

∫
IR
n

(v1(x) + v2(x))ϕ(0, x)dx

−
∫
IR
n
v1(x)ϕt(0, x)dx =

∫ T

0

∫
IR
n
vt(x, t)ϕtt(t, x)dxdt

−
∫ T

0

∫
IR
n
vt(x, t)ϕt(t, x)dxdt−

∫ T

0

∫
IR
n
vt(x, t)(−∆)

β
2ϕ(x, t)dxdt

−
∫ T

0

∫
IR
n
v(x, t)∆ϕ(x, t)dxdt,

(7)

for any test function ϕ ∈ C∞0 ([0, T )× IRn) such that its support in time is compact and ϕ(x, T ) = ϕt(x, T ) =
ϕtt(x, T ) = 0 for all x ∈ IRn. If T =∞, we say that (u, v) is a global weak solution to (2).

Now, we are ready to state the main results of this paper.

Theorem 2.4. Let α ∈ (0, 2] and α̃ = min{1, α}.We assume that (u0, u1, u2) ∈ H2(IRn)×H1(IRn)×IL2(IRn)
satisfy the following condition: ∫

IR
n

(u1(x) + u2(x))ϕ(0, x)dx > 0. (8)

If

1 < p ≤ 1 +
α̃

n
, (9)

then there is no global (in time) weak solution to problem (1). Moreover, the sharp behavior of the lifespan
Tε of local (in time) solutions to (1) with respect to a su�ciently small parameter ε > 0 is given by

Tε ≤ Cε−
α̃(p−1)

α̃−(p−1)n , for all small positive constant ε. (10)

Theorem 2.5. Let α, β ∈ (0, 2], α̃ = min{1, α}, and β̃ = min{1, β}. We assume that (u0, u1, u2) ∈
H2(IRn)×H1(IRn)×IL2(IRn) and (v0, v1, v2) ∈ H2(IRn)×H1(IRn)×IL2(IRn) satisfy the following conditions:

∫
IR
n

(u1(x) + u2(x))ϕ(0, x)dx > 0,

∫
IR
n

(v1(x) + v2(x))ϕ(0, x)dx > 0.

(11)

If

n ≤ 1

pq − 1
max

{
β̃ + α̃p, α̃+ β̃q

}
, (12)

then there is no global (in time) weak solution to (2). Moreover, the blow-up time Tε is estimated by

Tε ≤ Cε
− α̃
α̃+β̃q
pq−1 −n for all small positive constants ε. (13)

The proofs of our main results are given in the next section. For the proofs of Theorems 2.4 and 2.5,
we shall use the nonlinear capacity method combined with the following pointwise estimate (see Dao and
Reissig [12]).

Lemma 2.6. ([12]) Let 〈x〉 =
(
1 + (|x| − 1)4

) 1
4 . Let s ∈ (0, 1) and φ : IRn → IR be the function de�ned by

φ(x) =


〈x〉−n−2s if |x| ≥ 1,

1 if |x| ≤ 1.
(14)
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Then φ ∈ C2(IRn), and the following estimate holds

|(−∆)sφ(x)| ≤ Cφ(x), x ∈ IRn, (15)

where C is a constant independent of x.

Lemma 2.7. ([12]) Let s ∈ (0, 1). Let ψ be a smooth function satisfying ∂2xψ ∈ IL∞(IRn). For any R > 0,
let ψR be a function de�ned by

ψR(x) = ψ
( x
R

)
, for all x ∈ IRn.

Then, (−∆)sψR satis�es the following scaling properties:

(−∆)s(ψR)(x) = R−2s(−∆)sψ
( x
R

)
for all x ∈ IRn.

Remark 2.8. Throughout, C denotes a positive constant, whose value may change from line to line.

2.1. Proof of Theorem 2.4

Let u be a global weak solution to (1), then for all ϕ ∈ C
(
[0,∞);H2(IRn)

)
∩ C1

(
[0,∞); IL2(IRn)

)
, one

has ∫ +∞

0

∫
IR
n
|ut(x, t)|pϕ(t, x)dxdt+

∫
IR
n

(u1(x) + u2(x))ϕ(0, x)dx

−
∫
IR
n
u1(x)ϕt(0, x)dx =

∫ +∞

0

∫
IR
n
ut(x, t)ϕtt(t, x)dxdt

−
∫ +∞

0

∫
IR
n
ut(x, t)ϕt(t, x)dxdt−

∫ +∞

0

∫
IR
n
u(x, t)∆ϕ(x, t)dxdt

−
∫ +∞

0

∫
IR
n
ut(x, t)(−∆)

α
2 ϕ(x, t)dxdt.

(16)

Now, we introduce the function φ = φ(x), de�ned in (14) with s = α
2 , and the function η = η(t) having the

following properties:

1. η ∈ C∞0 ([0,∞)) and


1 if 0 ≤ t ≤ 1

2 ,

decreasing if 1
2 ≤ t ≤ 1,

0 if t ≥ 1.

2. η
− 1
p (t) (|η(t)|+ |η′(t)|+ |η′′(t)|) ≤ C for any t ∈ [12 , 1].

Let R be a large parameter in [0,∞). We de�ne the following test function:

ϕR(x, t) = ηR(t)φR(x),

where ηR(t) = η(R−α̃t)) and φR(x) = φ(R−1K−1x) for some K ≥ 1 which will be �xed later. Moreover, we
check easily that supp(η) ⊂ [0, Rα̃]. We de�ne the functionals

I1 =

∫ +∞

0

∫
IR
n
|ut(x, t)|pϕR(t, x)dxdt =

∫ Rα̃

0

∫
IR
n
|ut(x, t)|pϕR(t, x)dxdt,

and

I2 =

∫ Rα̃

Rα̃

2

∫
IR
n
|ut(x, t)|pϕR(t, x)dxdt, I3 =

∫ Rα̃

0

∫
{|x|≥RK}

|ut(x, t)|pϕR(t, x)dxdt.
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From (16), one obtains

I1 +

∫
IR
n

(u1(x) + u2(x))φR(x)dx =

∫ Rα̃

Rα̃

2

∫
IR
n
ut(x, t)η

′′
R(t)φR(x)dxdt

−
∫ Rα̃

Rα̃

2

∫
IR
n
ut(x, t)η

′
R(t)φR(x)dxdt−

∫ Rα̃

0

∫
{|x|≥RK}

u(x, t)ηR(t)∆φR(x)dxdt

−
∫ Rα̃

0

∫
IR
n
ut(x, t)ηR(t)(−∆)

α
2 φR(x)dxdt.

Using integrating by parts, one has

I1 +

∫
IR
n

(u1(x) + u2(x))φR(x)dx+

∫
IR
n
u0(x)ΨR(0)∆φR(x)dx

=

∫ Rα̃

Rα̃

2

∫
IR
n
ut(x, t)η

′′
R(t)φR(x)dxdt

−
∫ Rα̃

Rα̃

2

∫
IR
n
ut(x, t)η

′
R(t)φR(x)dxdt

+

∫ Rα̃

0

∫
{|x|≥RK}

ut(x, t)ΨR(t)∆φR(x)dxdt

−
∫ Rα̃

0

∫
IR
n
ut(x, t)ηR(t)(−∆)

α
2 φR(x)dxdt = J1 − J2 + J3 − J4,

(17)

where

ΨR(t) =

∫ Rα̃

t
ηR(τ)dτ.

Applying Hölder's inequality with 1
p + 1

p′ = 1, we can proceed the estimate for J1 as follows:

|J1| ≤ C
∫ Rα̃

Rα̃

2

∫
IR
n
|ut(x, t)||η′′R(t)|φR(x)dxdt

≤

(∫ Rα̃

Rα̃

2

∫
IR
n

(
|ut(x, t)|ϕ

1
p

R(t, x))

)p
dxdt

) 1
p

×

(∫ Rα̃

Rα̃

2

∫
IR
n

(
|η′′R(t)|φR(x)ϕ

− 1
p

R (t, x)

)p′
dxdt

) 1
p′

≤ CI
1
p

2

(∫ Rα̃

Rα̃

2

∫
IR
n
η
− p
′
p

R (t)|η′′R(t)|p′φR(x)dxdt

) 1
p′

.

Using change of variables t̃ = R−α̃t and x̃ = R−1K−1x, we get

|J1| ≤ CI
1
p

2 R
−2α̃+n+α̃

p′ K
n
p′

(∫
IR
n
〈x̃〉−n−αdx̃

) 1
p′

≤ CI
1
p

2 R
−2α̃+n+α̃

p′ K
n
p′ . (18)

Now, let us turn to estimate J2, J3, and J4. Applying Hölder 's inequality again, as we estimated J1, leads
to

|J3| ≤ CI
1
p

3

(∫ Rα̃

0

∫
{|x|≥RK}

Ψp′

R(t)η
− p
′
p

R (t)φ
− p
′
p

R (x)|∆φR(x)|p′dxdt

) 1
p′

≤ CI
1
p

3 R
−2+α̃+n+α̃

p′ K
−2+ n

p′ ,

(19)
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|J2| ≤ CI
1
p

2

(∫ Rα̃

Rα̃

2

∫
IR
n
η
− p
′
p

R (t)|η′R(t)|p′φR(x)dxdt

) 1
p′

≤ CI
1
p

2 R
−α̃+n+α̃

p′ K
n
p′

(∫
IR
n
〈x̃〉−n−αdx̃

) 1
p′

≤ CI
1
p

2 R
−α̃+n+α̃

p′ K
n
p′ ,

(20)

and

|J4| ≤ CI
1
p

1

(∫ Rα̃

0

∫
IR
n
ηR(t)φ

− p
′
p

R (x)|(−∆)
α
2 φR(x)|p′dxdt

) 1
p′

≤ CI
1
p

1 R
−α+n+α̃

p′ K
−α+ n

p′ .

(21)

Combining the estimates from (18) to (21) we may arrive at

I1 +

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤
∫
IR
n
|u0(x)||ΨR(0)||∆φR(x)|dx

+ C

(
I

1
p

2 R
−2α̃+n+α̃

p′ K
n
p′ + I

1
p

2 R
−α̃+n+α̃

p′ K
n
p′ + I

1
p

3 R
−2+α̃+n+α̃

p′ K
−2+ n

p′

+ I
1
p

1 R
−α+n+α̃

p′ K
−α+ n

p′

)
.

Moreover, it is clear that

ΨR(t) =

∫ Rα̃

t
ηR(τ)dτ = Rα̃ − t then ΨR(0) = Rα̃.

We can easily check that |∆φR(x)| ≤ R−2φR(x). Therefore, this implies that

I1 +

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ Rα̃−2
∫
IR
n
|u0(x)|φR(x)dx

+ C

(
I

1
p

2 R
−2α̃+n+α̃

p′ K
n
p′ + I

1
p

2 R
−α̃+n+α̃

p′ K
n
p′ + I

1
p

3 R
−2+α̃+n+α̃

p′ K
−2+ n

p′

+ I
1
p

1 R
−α+n+α̃

p′ K
−α+ n

p′

)
.

(22)

Since u0 ∈ IL1(IRn), it implies immediately that

lim
R→∞

[
Rα̃−2

∫
IR
n
|u0(x)|φR(x)dx

]
= 0.

Invoking the assumption (8), one obtains

Rα̃−2
∫
IR
n
|u0(x)|φR(x)dx <

1

2

∫
IR
n

(u1(x) + u2(x))φR(x)dx.

From (22), we easily see that

I1 +
1

2

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ C
(
I

1
p

2 R
−2α̃+n+α̃

p′ K
n
p′

+ I
1
p

2 R
−α̃+n+α̃

p′ K
n
p′ + I

1
p

3 R
−2+α̃+n+α̃

p′ K
−2+ n

p′ + I
1
p

1 R
−α+n+α̃

p′ K
−α+ n

p′

)
.

(23)
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By choosing K = 1 and noticing the relations I2 ≤ I1 and I3 ≤ I1, we may arrive at

I1 +
1

2

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ C
(
I

1
p

1 R
−2α̃+n+α̃

p′

+ I
1
p

1 R
−α̃+n+α̃

p′ + I
1
p

1 R
−2+α̃+n+α̃

p′ + I
1
p

1 R
−α+n+α̃

p′

)
≤ CI

1
p

1 R
−α̃+n+α̃

p′ .

(24)

Thanks to the following ε-Young's inequality:

ab ≤ εap + C(ε)bp
′
, for all a, b > 0 and for any ε > 0,

we conclude

CI
1
p

1 R
−α̃+n+α̃

p′ ≤ εI1 + C(ε)R−α̃p
′+n+α̃.

Consequently, from (24) we derive

(1− ε)I1 +
1

2

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ C(ε)R−α̃p
′+n+α̃,

which follows that
I1 ≤ CR−α̃p

′+n+α̃, (25)

and ∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ CR−α̃p′+n+α̃. (26)

It is clear that the assumption (9) is equivalent to −α̃p′ + n + α̃ ≤ 0. For this reason, we will split our
consideration into two cases.
Case 1:In the subcritical case −α̃p′ + n+ α̃ < 0, letting R→∞ in (26), we easily deduce∫

IR
n

(u1(x) + u2(x))φR(x)dx ≤ 0,

which contradicts the assumption (8).
Case 2: For the critical case −α̃p′ + n + α̃ = 0, from (25), we can see that I1 ≤ C. Using Beppo Levi's
theorem on monotone convergence, one obtains∫ ∞

0

∫
IR
n
|ut(x, t)|pdxdt = lim

R→∞

∫ Rα̃

0

∫
IR
n
|ut(x, t)|pϕR(x, t)dxdt

= lim
R→∞

I1 ≤ C.

We conclude that ut ∈ IL
p((0,∞) × IR

n). By the absolute continuity of the Lebesgue integral, it follows
that I2 → 0 and I3 → 0, as R →∞. Using again the fact that α̃ = n+α̃

p′ , we obtain from (23) the following
estimate:

I1 +
1

2

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ C
(
I

1
p

2 R
−α̃K

n
p′ + I

1
p

2 K
n
p′

+ I
1
p

3 R
−2+2α̃K

−2+ n
p′ + I

1
p

1 R
−α+α̃K

−α+ n
p′

)
,

(27)

for all K ≥ 1.

1. If α ∈ (0, 1], then α = α̃. Consequently, from (27), we have

I1 +
1

2

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ C
(
I

1
p

2 R
−αK

n
p′ + I

1
p

2 K
n
p′

+ I
1
p

3 R
−2(1−α)K

−2+ n
p′ + I

1
p

1 K
−α+ n

p′

)
.

(28)
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Letting R→∞ in (28), we get∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ CK−α+
n
p′ for all K ≥ 1. (29)

It is obvious that −α + n
p′ < 0. We can �x a su�ciently large constant K ≥ 1 in (29) to gain a

contradiction to (8).

2. If α ∈ (1, 2], then α̃ = 1. As a result, choosing K = 1, we may conclude from (27) that

I1 +
1

2

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ C
(
I

1
p

2 R
−1 + I

1
p

2 + I
1
p

3 + I
1
p

1 R
1−α
)
. (30)

Since α > 1, letting R→∞ in (30) we obtain a contradiction to (8) again.

Let us now consider the case of subcritical exponent to prove the estimate for lifespan Tε of solutions to (1).
We assume that u = u(x, t) is a local solution to (1). In order to prove the lifespan estimate, we replace
the initial data (0, u1, u2) by (0, εf1, εf2) with a small constant ε > 0, where (f1, f2) ∈ H1(IRn) × IL2(IRn)
satisfy the assumption (8). Invoking the fact that∫

IR
n
(f1(x) + f2(x))φR(x)dx ≥ c > 0,

and repeating the steps in the above proofs we arrive at the following estimate:

ε ≤ CR−α̃p′+n+α̃.

Let R = T
1
α̃ , then a standard calculation lead to

Tε ≤ ε−
α̃(p−1)

α̃−(p−1)n .

Summarizing, the proof of the Theorem 2.4 is completed.

2.2. Proof of Theorem 2.5

First, we introduce the same test function as in the proof of Theorem 2.4. Let us assume that (u, v) is
the global weak solution to (2). We de�ne the functionals

J1 =

∫ +∞

0

∫
IR
n
|ut(x, t)|qϕR(t, x)dxdt =

∫ Rα̃

0

∫
IR
n
|ut(x, t)|qϕR(t, x)dxdt,

and

J2 =

∫ Rα̃

Rα̃

2

∫
IR
n
|ut(x, t)|qϕR(t, x)dxdt, J3 =

∫ Rα̃

0

∫
{|x|≥RK}

|ut(x, t)|qϕR(t, x)dxdt,

I1 =

∫ +∞

0

∫
IR
n
|vt(x, t)|pϕR(t, x)dxdt =

∫ Rα̃

0

∫
IR
n
|vt(x, t)|pϕR(t, x)dxdt,

and

I2 =

∫ Rα̃

Rα̃

2

∫
IR
n
|vt(x, t)|pϕR(t, x)dxdt, I3 =

∫ Rα̃

0

∫
{|x|≥RK}

|vt(x, t)|pϕR(t, x)dxdt.

From (6) and (7), one has

I1 +

∫
IR
n

(u1(x) + u2(x))ϕ(0, x)dx =

∫ Rα̃

Rα̃

2

∫
IR
n
ut(x, t)η

′′
R(t)φR(x)dxdt

−
∫ Rα̃

Rα̃

2

∫
IR
n
ut(x, t)η

′
R(t)φR(x)dxdt−

∫ Rα̃

0

∫
{|x|≥RK}

u(x, t)ηR(t)∆φR(x)dxdt

−
∫ Rα̃

0

∫
IR
n
ut(x, t)ηR(t)(−∆)

α
2 φR(x)dxdt,
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and

J1 +

∫
IR
n

(v1(x) + v2(x))ϕ(0, x)dx =

∫ Rα̃

Rα̃

2

∫
IR
n
vt(x, t)η

′′
R(t)φR(x)dxdt

−
∫ Rα̃

Rα̃

2

∫
IR
n
vt(x, t)η

′
R(t)φR(x)dxdt−

∫ Rα̃

0

∫
{|x|≥RK}

v(x, t)ηR(t)∆φR(x)dxdt

−
∫ Rα̃

0

∫
IR
n
vt(x, t)ηR(t)(−∆)

β
2 φR(x)dxdt.

Repeating the steps of the proof from (18) to (24), we may conclude the following estimates:

I1 ≤ J
1
q

1 R
−α̃+n+α̃

q′ . (31)

In the analogous way, one obtains

J1 ≤ I
1
p

1 R
−β̃+n+β̃

p′ . (32)

From (31) and (32), we obtain

I
pq−1
pq

1 ≤ R
(
−β̃+n+β̃

p′

)
1
q
−α̃+n+α̃

q′ = Rδ1 , (33)

J
pq−1
pq

1 ≤ R
(
−α̃+n+α̃

q′

)
1
p
−β̃+n+β̃

p′ = Rδ2 . (34)

It is clear that the assumption (12) is equivalent to max{δ1, δ2} ≤ 0. For this reason, we will split our
consideration into two cases.
Case 1:In the subcritical case max{δ1, δ2} < 0, letting R→∞ in (33)and (34) we easily deduce∫

IR
n

(v1(x) + v2(x))φR(x)dx ≤ 0 and

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ 0,

which contradicts the assumption (11).
Case 2: For the critical case δ2 = 0, from (25) we can see that J1 ≤ C. Using Beppo Levi's theorem on
monotone convergence, one obtains∫ ∞

0

∫
IR
n
|ut(x, t)|qdxdt = lim

R→∞

∫ Rα̃

0

∫
IR
n
|ut(x, t)|qϕR(x, t)dxdt

= lim
R→∞

J1 ≤ C.
(35)

Repeating the steps of the proof from (22) to (24), we may conclude the following estimates:

J1 +
1

2

∫
IR
n

(v1(x) + v2(x))φR(x)dx ≤ C

(∫ Rα̃

0

∫
IR
n
|vt(x, t)|pϕR(t, x)dxdt

) 1
p

R
−β̃+n+β̃

p′ ,

and

I1 +
1

2

∫
IR
n

(u1(x) + u2(x))φR(x)dx ≤ C

(∫ Rα̃

0

∫
IR
n
|ut(x, t)|qϕR(t, x)dxdt

) 1
q

R
−α̃+n+α̃

q′ .

Since δ2 = 0 and invoking the above estimates, we easily deduce that

J1 +
1

2

∫
IR
n

(v1(x) + v2(x))φR(x)dx

≤

(∫ Rα̃

0

∫
IR
n
|ut(x, t)|qϕR(t, x)dxdt

) 1
pq

.

(36)
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Letting R→∞ in (36) and using (37), one obtains∫ +∞

0

∫
IR
n
|ut(x, t)|qdxdt+

∫
IR
n

(v1(x) + v2(x))φR(x)dx = 0,

which is a contradiction to (11). In the case δ1 = 0 we repeat the same arguments as in δ2 = 0.
Let us now consider the case of subcritical exponent to prove the estimate for lifespan Tε of solutions to (2).
We assume that (u, v) = (u(x, t), v(x, t)), is a local solution to (2). In order to prove the lifespan estimate, we
replace the initial data (0, u1, u2), (0, v1, v2) by (0, εf1, εf2), (0, εg1, εg2) with a small constant ε > 0, where
(f1, f2), (g1, g2) ∈ H1(IRn)× IL2(IRn) satisfy the assumption (11). Repeating the steps in the above proofs,
we arrive at the following estimate:

I1 + cε ≤ J
1
q

1 R
−α̃+n+α̃

q′ , (37)

and

J1 + cε ≤ I
1
p

1 R
−β̃+n+β̃

p′ . (38)

If we plug (37) in (38), we �nd

J1 + cε ≤ CJ
1
pq

1 R

(
−β̃+n+β̃

p′

)
+
(
−α̃+n+α̃

q′

)
1
p . (39)

We easily obtains that

cε ≤ CJ
1
pq

1 R

(
−β̃+n+β̃

p′

)
+
(
−α̃+n+α̃

q′

)
1
p − J1,

which leads to

ε ≤ CR−
[
α̃+β̃q
pq−1

−n
]
.

Let R = T
1
α̃ . Then with a standard calculation, one has

Tε ≤ ε
− α̃(pq−1)

α̃+β̃q−n(pq−1) .

Summarizing, the proof of the Theorem 2.5 is completed.
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