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Abstract 

Gas turbines efficiently produce high amounts of electrical power hence they have been widely 

deployed as dependable power generators. It has been detected that the performance of gas 

turbines is a function of plenty of operational parameters and environmental variables. The 

impacts of those variables on the said performance can be mitigated using powerful monitoring 

techniques. Thus, extra maintenance costs, component defect costs, and manpower costs can be 

illuminated. This paper has enlisted the factors impacting gas turbine efficiency. It has also 

reviewed multiple monitoring solutions for the said impacting factors, It has been concluded that 

all types of sensors have ignored errors in their work, which may exacerbate the problems of 

malfunctions in gas turbines due to the critical environment in which they operate (heat, fumes, 

etc.); however, the machine learning-based monitoring systems excel in addressing such 

problems. The most cost-effective and accurate monitoring task can be achieved by using 

machine learning and deep learning tools. 
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1. INTRODUCTION 

 

Gas turbines convert the working gas, more likely, air into high temperature and high-pressure gas which 

is subsequently used for turning the turbine engine [1]. Thermodynamic energy is converted into 

mechanical energy that is used in electrical power production. Three essential parts participate in the 

production of power in the SPP, namely: gas compressor, combustion chamber, and turbine/engine [2]. A 

gas turbine involves another vital process called combustion energy production that is used for heating the 

so-called working gas. A combustion chamber is a vital part of the GPP; it is used for compensating the 

lost energy of working gas after it departs the compressor [3,4]. The power quality of the gas turbine is 

realised under multiple considerations related to the working mechanisms of each part in the GPP. The 

power enhancement of gas turbines was the focal point of a large number of researchers; it is mainly 

performed by enhancing the pre-turbine process (at the compressor and combustion chamber sections) [5]. 

Inlet air is cooled down before entering the compressor to boost the output power at a high ambient 

temperature which was proposed in [6]. From this point, performance enhancement techniques are imposed 

by adaption of mechanical chillers for cooling down the air before passing to the compressor [7]. It is worth 

saying that the running cost of deploying chillers is relatively high; according to [4], it make up 30% of the 

power production cost. Gas emission from the turbine is another disturbing and performance degrading 

factor. According to [8], gas emission is related to ambient inlet air temperature. It was reported that low 

ambient inlet air temperature leads to an increase in the carbon emission from the turbine. As reported in 

[9], the type of fuel used in the combustion process is of direct impact on the level of gas emission (i.e., 

carbon emission). Since the gas emission is correlated with multiple concerns of turbine output quality, 
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such as ambient inlet air temperature, ambient out air temperature, ambient air pressure, ambient humidity, 

etc., a proactive approach is proposed for forecasting the emission of two gases, i.e., Nitrogen oxides and 

Carbon monoxide. Upon successful forecasting of emissions, troubleshooting can be performed to prevent 

future damages. A natural air gas turbine is preferred since it has a low gas emission level as compared to 

diesel and oil fuels [4,10].  

 

The energy demand has dramatically increased in recent years due to population growth which is linked to 

economic and industrial growth [11]. In other words, the larger the population, the larger the loads rise due 

to factory/industrial and residential power requirements. Gas turbines in GPP/stations are termed by their 

rapid installation and good power outcomes (amount) if the impact of fuel/raw material is neglected. Other 

than the fuel cost, gas power plants are the most rapid and efficient in power demand fulfilment. The 

expansion of power systems is associated with unpleasant occurrences such as maintenance/troubleshooting 

high cost and the redundant disposal outcomes such as burned fuel and gas emission treatment costs. More 

specifically, in gas power plants, gas emission is considered the most disturbing technical problem and is 

participating in many subsequent performance degradations. Risks of gas leakage/emission can include the 

following dangers: poison, fire, and injury casused from machinery performance [12]. In 2003, in the 

Kaixian city of China, 243 people were killed, and 100,000 people evacuated due to gas blowouts [13]. A 

smart/intelligent system was developed in [14] for monitoring the pollution in urban air due to the existence 

of gas power plants. Conventional monitoring systems that depend on human power for diagnosing and 

reporting errors are no longer standing with the tremendous expansion of the power system. Deploying 

sensors made from semiconductor materials for detecting gas leakage has a major drawback in terms of 

poor gas sensitivity [15]. An emission is a sign of low ambient temperature, which leads to a low rotation 

of the turbine blades and, hence, the lowering of the amount of output power. On the other hand, gas 

emission from the GPP is the biggest environment violating factor. Technically, three main strategies have 

been adopted in the literature for controlling the emission in the GPP, namely: Periodic measurements, 

continuous emission monitoring, and proactive emission control. In the first technique (i.e., Periodic 

measurements), costly tools and equipment are to be used for monitoring emissions from the turbine in a 

periodical fashion, more likely every week. This technique is reported by its high cost as well as having no 

sufficiency for tackling the ground reality of the emission problem (emission may occur at any time and 

trigger another bigger issue). On the other hand, continuous emission monitoring may be performed using 

expensive monitoring systems such as SCADA, which itself is susceptible to faults and errors. A proactive 

approach to emission control and prevention is a promising low-cost alternative depending on computer 

vision to tackle such asseverating trouble. The proactive approach is implementable by adopting smart 

machine learning and deep learning paradigms for predicting the future status of emissions. However, the 

problem is yet to be brought to a standstill since the big standard organisations such as the European 

Committee for Standardisation (CEN) have not yet approved the approach despite the existence of 

condensed research activities in the same interest. The performance of proactive forecasting approaches is 

still disputed and susceptible to more developments.  

 

2. GAS TURBINE OPERATIONAL CHALLENGES  

 

Gas turbines (GTs) work under rigid conditions such as fog, dust, salt, etc., moreover, frequent stop-start 

operations are also amongst the harsh environments where GT is functioning as sensors which are meant 

to control and monitor the GT process, it has been widely equipped in different types of machinery and 

sub-systems of GTs. Generally, the performance of sensors undergoing such harsh environments is 

degrading if left to run for long terms. The errors in sensing devices are causing GT malfunctions and 

operational errors. GTs are generally susceptible to various types of faults. More specifically, the fault of 

gas turbine sensors is considered one of the essential operational troubles. This kind of fault is categorised 

into five groups, namely: step fault, drift fault, pulse fault, noise fault, and periodic fault. Those categories 

are discussed in [16–18] and [19]. Fault monitoring is essential to clear the sensor’s fault. Similarly, two 

methods are determined for the sensors' health diagnosis. Those methods are model-originated and data-

originated. The model originated method is based on mathematical analysis that is meant for mathematical 

fault diagnosis model establishment, whereas, the data originated method depends on data technology, such 

as machine learning, for fault type assessment [17], [19–22]. A combination of machine learning, i.e., 

support vector regression (SVR), and an analytical approach, i.e., wavelet energy entropy (WEE), are used 
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for the fault diagnosis of sensors [19]. Features and attributes of faults are extracted from the sensor’s output 

using WEE, whereas SVR is used for classifying the extracted features. A 7000 kW GT is used for 

collecting log data for constructing a sensing database under various operation conditions. The same 

database is used for performance evaluation of the coupling approach; results have shown that WEE is 

contributing to reducing the sensing time by up to 90%. The data mining-based sensor diagnosis approach 

makes use of whole historical sensing information obtained from GT units. Such methods (machine 

learning) are utilised for training on sensing data and, hence, to be used for testing where both results can 

be compared to evaluate the efficiency of the method [23,24]. Figure 1 depicts the process of data-oriented-

based detection of internal faults in GTs. Fault diagnosis using a data-originated approach has multiple 

advantages such as, the model is trained by real data (historical sensing data); hence, it yields a good and 

reliable sensing process close to real-world sensors. In [25], feature extraction is vital for sensing efficacy 

using data-originated approaches. Conventionally, the Fast Fourier Transform (FFT) is used for performing 

frequency analysis of the data and for producing the frequency domain representation of them. Wavelet, on 

the other hand, can produce more reliable features by generating a time-frequency presentation of original 

data so that both information from the time domain and frequency domain are being used for attribution of 

the data. The artificial neural network (ANN) is amongst those tools that outperform sensor fault diagnosis.            

 

 
 

Figure 1. Depicts the process of data-oriented-based detection of internal faults in GTs 

 

In [16], features complexity can be reduced by using the so-call dimensionality reduction approach, which 

eliminates some features to mitigate the load on the classifier and to produce results quickly. The abruptly 

occurring fault and drifting incipient fault are identified using the multi-scale analysis [18].  Sensor faults 
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have be decomposed in [17] using wavelet singular entropy and wavelet energy entropy. The problem of 

the mentioned approach was that both could identify whether the sensing signal was faulty but they could 

not recognise the type of fault.      

 

3. GAS TURBINE INTERNAL FAULTS 

 

The degradation of the GT components is leading to a crucial impact on engine availability, economic worth 

of GTs, as well as the reliability of GTs in power generation. The only way for tracking those degraded 

components is by tracking the gas path inside the GT. Accurate and quick diagnosis of GT degraded 

components (especially when multiple components are degraded at the same time) is a challenging task due 

to the lack of measurement tools and tracking systems that work inside the GT complex. Getting into this 

problem poses another challenge related to the cost of machinery and economic worthiness. They are 

considering that gas turbine life-cycle expenditures are higher than the purchasing budget. For example, 

the initial cost of the gas turbine from a Siemens V94.3A model is 2.86 million Euros, whereas the life 

cycle (forty-year plan of maintenance [26]) of expenditures from the same gas turbine costs 51.34 million 

Euro. The same indicates that GT expenditure might reach 18 times more than the initial budget of the same 

model. Monitoring engine conditions and applying appropriate maintenance schemes are, in turn, reducing 

the maintenance and life cycle expenditures of the GTs [27,28]. The gas path analysis (GPA) demonstrated 

in [29] has remained a sustainable technology for accessing the degraded components of the GT and 

assessing its conditions. The GPA was introduced for the first time in 1969 by Urban [30]. This technique 

is widely used for the condition monitoring of GTs, and is said to have an implicit impact on maintenance 

[26]. Both economic and aerodynamic performances are impacted by the degradation level of turbine 

components; more degradation may yield the so-called loss of performance in GT engines [31]. In [32], 

degradation types that seem popular, such as hot section damage, erosion, fouling, object damage, rubbing 

wear, etc., are demonstrated. Those degradations are common and widely monitored in most of GTs. Some 

of the most common types of gas turbine degradation are fouling, erosion, corrosion, rubbing wear, hot 

section damage, seal damage, and object damage [32]. Moreover, degradations are sub-divided into two 

groups, namely unrecoverable degradations and recoverable degradations [33]. It reported that engine 

(internal) fault diagnosis methods are categorised into three sections as mentioned in [34,35], namely data-

oriented, model-oriented, and a hybrid approach. The model-oriented approach requires broad knowledge 

of the GT model and subsystems where the model for internal faults can be simulated using that exported 

knowledge. This approach is suspected to present different challenges due to the GT model complexity.  

On the other hand, the data-oriented model is reserved for high fault detection accuracy; it has employed 

neural networks [36] or other deep learning approaches [37]. The accuracy of the data-oriented approaches 

is subject to the training phase performance. Other models have gained significant attention in the internal 

fault diagnosis of the GT engine, such as an object-oriented artificial neural network. Such approaches are 

made to pave the road for limited monitoring data availability [33,38]. The hybrid approaches are, on the 

other hand, made to tackle the challenges faced in both model-oriented and data-oriented technologies. It 

is more likely desired for achieving high accuracy in less time where none of the previous models permits. 

Since the hybrid model is made from a combination of two different methods from the previous models to 

meet the desired enhancement of the performance, the trade-off between the performance metrics is termed 

as some methods are more about real-time applications where less processing time is being provided, and 

others are more about the accuracy (throughput) and that is essential for other types of applications that are 

promoting high throughputs. The sensing device fault detection model in GTs based on sensor signal 

monitoring is illustrated in Figure 2.   
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Figure 2. Sensors fault detection through sensors signal monitoring [39] 

 

4. COMBUSTION CHAMBER MONITORING 

 

Gas turbines, along with their noticeable performance in the energy sector, are reliable and fast establishing 

plants. The new century is witnessing a noteworthy expansion in GTs of mini size, which has become 

strategically essential in the energy production sector. The internal units of the GTs are very complex and 

require high-quality export systems for surveillance and control of each, which is practically not possible. 

When considering the costs of expert systems and other considerations, GT internal unit monitoring can be 

said to be complex as per the ground reality. As well, the development of diagnostic and prognostic systems 

is essential for the continuous GT performance to fill the gap of manpower limitation in surveillance tasks. 

Diagnostic and prognostic systems are widely propagated in mini GTs. 

 

GTs work on the principle of combustion operations that include multiple geometrical and physical 

parameters. That makes the combustion process which takes place inside the gas chamber of the turbine a 

very complex process. It is also complicated to be monitored. The heat flux impacting the walls of the gas 

chamber is an integral operand. This heat flux variation impacts the distribution parameters, spatial and 

temporal, which control the combustion process. This variation may lead to undesired occurrences such as 

loss of performance of the combustion process which impacts the generation level of the gas turbine. 

Malfunctioning, such as burner error and flame instability, is caused due to combustion process instability. 

Appropriate monitoring of those changes/variations, in turn, participates in maximising the performance of 

the gas turbine and maintaining high efficiency. Burner and flame distribution monitoring are the most 

targeted operations to maintain a good combustion process.  The research conducted in this regard is 

illustrated in Table 1. 

 

Table 1. GT internal chamber monitoring technologies and their problems 

Reference Challenge    Solution  Research gap 

[40] The complexity of gas 

combustion monitoring in 

GTs  

Using temperature 

profiles of 

downstream gas 

Cost of implementation and 

accuracy defect  

[41] The difficulty of 

combustion modelling 

where a swirl angle cannot 

be accurately measured 

Using laser 

imagining 

operations is used 

for tracking the 

combustor process. 

Cost of implementation and 

accuracy defect 

[42] Swirl angle measurement 

problem 

Numerical 

modelling of the 

Good accuracy but high 

computational cost 
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combustion system 

using (CFD. 

[43] Combustion system 

monitoring  

ANN for 

developing black 

box and white box 

for GT subsystem 

modelling 

High accuracy and still under 

development  

 

5. SWIRL CHARACTERISTICS 

 

Downstream gas temperatures in GTs in different patterns can be compared to maintain smooth operations 

of the combustion system. Theoretically, the essential heat parameter used for monitoring GTs is the outlet 

temperature of the combustor. But, the outlet temperature of the combustor is typically too high and cannot 

be measured directly using conventional sensors, all owing to the secondary parameters being located 

downstream of the combustor outlet, such that the inter-duct temperature (IDT) and exhaust gas temperature 

are considered key variables for the maintaining, monitoring, and controlling of the gas turbine engines 

[44]. In gas path studies in the combustion system, the dynamic complexity is taking place when 

considering gas propagation through the turbine. The turbulence in the motion of the combustion system 

products inside the path of the turbine in the form of spiralling clusters results in the so-called swirl [45]. 

The spiralling cluster's motion inside the gas turbine must be in a straight line to avoid the swirl impact. To 

monitor the back data of the combustion system product movement for judging its conditions and health 

status, it is mandatory to evaluate the swirl angle at the time of using the temperature profiles of the 

downstream gas [40]. In [41], laser imagining operations were used for tracking the combustor process of 

the turbine, which determined the swirl angle. Laser imaging is an expensive approach but, on the other 

hand, does not yield an accurate status of the combustion system conditions. Alternatively, numerical 

modelling of the combustion system is made using the model of computational fluid dynamics (CFD) [42]. 

Other than their high accuracy and performance, CFD models are proven to be high computational cost 

consumers. An artificial neural network (ANN) is used for developing the black box and white box models 

for monitoring the system and achieving good outcomes. The satisfactory result of those approaches is 

owed to their non-paramedical and nonlinear configurations [43]. An artificial neural network (ANN) is 

widely popular as a data-oriented approach for monitoring systems in multiple sections inside the GT, 

yielding high accuracy and satisfactory outcomes wherever it is applied. 

 

6. DYNAMIC BEHAVIOUR MODELLING 

 

So far, the popularity of artificial neural networks has widely increased in mechanical applications and 

industrial areas. A large number of industrial applications are now modelled using the artificial neural 

network. It has been relied upon (ANN) by those applications due to its high-speed approximation and 

capability of learning complex nonlinear problems taking place in the mentioned sector. It is also known 

for its flexibility of solutions provided for industrial applications. A monitoring system is one of those 

interesting applications where ANN is applied. Several methods, including fault diagnosis, modelling, and 

systems optimisations, are illustrated in [46]. Those works were performed between 2007 to 2017; the most 

required material that ANN demands to operate is data in large amounts, and it also demands a proper input 

parameter configuration. Speed and temperature property instantaneous prediction at flow structures are 

proposed in [47] using an ANN-based prediction model. The results obtained from the proposed model are 

shown to be enhanced more than the results of the maxed dynamic model. The dynamic power signature in 

the welding process was monitored using the ANN, and the results were compared with those obtained 

from the regression model. However, the performance of both were compared, and the results showed that 

the ANN model is more reliable in terms of data quality [48]. A locomotive system maintenance approach 

based on ANN is proposed in [49] to monitor the level of lubricating oil in the system.  This approach is 

said to be low-cost and for real-time applications. ANN is used in [50] for monitoring of power grids (smart 

grids) for power system performance enhancement. This approach overcomes the limitations of the 

conventional existing monitoring technologies by providing fast and reliable results.  A hidden output 

feedback-based Elman neural network (OHFEN) is used for the detection of faults in a gas turbine by 

investigating the blade's conditions of the turbine [51]. The approach can state whether the blades are 
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running smoothly or not. In [52,53], the ANN model was made for the implementation of a multi-neural 

network diagnosis model for gas turbine status assessment. Two types of optimisation algorithms were 

applied to the multi-stage neural network to enhance the accuracy of the diagnosis. Those algorithms were 

the Bayesian regularisation and Levenberg–Marquardt. A twin-shaft 18.7 MW gas turbine engine was used 

for the collection of training data used in this experiment. Faults of gas turbines such as pre-chamber 

exhaustion and bearing tilt pad wear early-stage detection was performed using the group of sensors that 

collected the data from the gas turbine in hierarchical form. The collected data were applied to self- 
organised map neural networks (SOMNN) [54]. Other experiments of ANN in industrial applications, more 

specifically in the gas turbine, are illustrated in Table 2. 

 

Table 2. Research of ANN based GT applications 

Reference  Application  Model  

[55] Fault detection and isolation of gas turbine engines Dynamic neural network (DNN) 

with multilayer perceptron 

(MLP) and support vector 

machine (SVM) 

[56] Start-up phase of a single shaft gas turbine simulation Non-linear autoregressive 

models 

[57] Gas transport network Artificial neural networks 

(ANN) and the fuzzy inference 

system (FIS) 

[58] Control the heating process of a steam turbine Artificial neuron system 

[59] Fault detection in a gas turbine and to control their 

dynamic behaviours 

Adaptive neuro-fuzzy 

interference system (ANFIS) 

[60] Fault detection and isolation in an aircraft gas turbine 

engine 

Neural network bank based on 

the time delay neural network 

TDNN and dynamic neural 

model (DNM)  

[61] Operating conditions of a steam turbine optimisation Inverse artificial neural network 

[62] Fault detection and isolation in a dual spool gas turbine 

engine 

Dynamic neural network (DNN) 

[20] Fault diagnosis in a GT engine  Dynamic neural network (DNN) 

[63] Microturbine gas modelling ANN 

[64] GT monitoring with optimal mechanical performance ANN 

[65] Modelling of microturbines.  ANN 

[66] Classifying data for GT validation  ANN 

[8] GT multi-model approach for industrial applications  ANN 

[67] High throughput GT diagnostic system ANN 

 

Presently, the processed monitoring field hung on distinct functions provides a set of solid tools to enhance 

operations of the processed outfit and to guarantee the optimal proportion of cost/ quality. One of the main 

exercises in the processed manufacturing of fault decisions is vibration monitoring in rotating machines 

which is still a hot motif in maximum processed sectors [20, 51, 68]. The plan of the observed configuration 

will give the beginning data for a demonstrative methodology for these machines to guarantee their 

protection against fineness and to assess their energetic conduct precisely. The conventional modelling 

approaches of this type of machine cannot present their dynamic behaviours verbatim due to the 

considerably nonlinear exact complications of comparable systems [53,56], [69–71]; on the other hand, 

they're high procedures. Therefore, there is a fabulous expanded must for creating unused approaches to 

guarantee the exact displaying of the distant inside miracles of comparable configurations. This is the case 

of gas turbines, which are subject to several unstable marvels, which are hourly nasty to interpret because 

of the problems of their dynamic complications and their operating context [52,72].  
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7. APPLICATION SCOPES  

 

The aero-dynamic impacts on the gas turbine are illustrated in [73,74], where there are impacts of various 

aero-dynamics on the engine and other turbine parts causing degradation.  The correlation of aero-dynamic 

factors with the overall efficiency of the gas turbine is listed in [37,75]. Aero-dynamics such as blade 

corrosion, erosion, and fouling [76,77] have been found to affect the performance of the blades' aero-

dynamic behaviours, which affect the turbine tip clearance and triggers the so-called parasitic phenomenon 

[78]. Other degradation impacts can be seen more easily when increasing the flight cycle that damages 

(disturb) the gas path and ruin the gas path components; the same degradation level has remained difficult 

to be realised [33,79]. To tackle those impacts (most of the reported impacts) and increase the life of the 

gas turbine, sensor-based monitoring has been proposed [80-82]. Other researchers have proposed to revise 

the design of the hybrid-electric propulsion and ultra-high bypass ratio [83-85]. In [86], it was found that 

on-board monitoring and control systems may greatly enhance the life and performance of the gas turbine. 

 

8. INTELLIGENT SYSTEMS FOR GAS TURBINE MONITORING 

 

The expansion of data in various fields has incurred the need for smart and lost fewer methods for 

processing. Machine and deep learning tools are feasible options. Table 3 demonstrates the most populated 

AI tools used in different areas for monitoring through smart data processing. Machine learning tools have 

been used to classify the sensor reading features. Feature extraction is required whilst using machine 

learning tools for this purpose. However, with deep learning tools, the feature extraction stage is dispensed. 

Higher accuracy of monitoring is obtained by using deep learning such as a neural network. To adopt any 

machine learning or deep learning tool, insensitive and highly risky applications such as gas turbine 

monitoring, the accuracy of those tools must be optimised to a level that they can be reliable in their allotted 

tasks.    

 

Table 3. Activity monitoring and classification accords with previous research works 

No. Method  Purpose Dataset  Features  Preprocessing Impression 

[87] DNN Customer-firm 

behaviour 

Real data 

from 

customer 

smartwatch 

or computer 

 

Stimuli-

Organism- 

Response 

theory 

-- Conceptual 

framework of 

artificial 

intelligence, 

and both 

solicited and 

unsolicited 

online customer 

engagement  

[88] ANN, 

CNN, LR, 

SVM 

AI 

implementation 

in commercial 

banks 

Loan 

information; 

Credit card 

transactions 

Findings suggest that by using AI, commercial 

banks can reduce losses in lending, increase 

security in processing payments, automate 

compliance-related work, and improve customer 

targeting 

[89] RCNN Improving the 

efficiency of 

IMS to reduce 

road accidents  

Image data: 

CDD [24]; 

HPD [25]; 

SFD [16]; 

WSCD [18] 

Feature 

less 

-- Upon indication 

of the accident, 

feedback is sent 

to Rescuer 

[90] ANN-

FPGA 

Biodiversity 

assessment 

Voice data Vocal 

behaviour

s from 

different 

creatures 

including 

humans 

Data targets are 

population 

model, climate, 

and diversity 

-- 
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and 

animal  

[91] Pilot study The popularity 

of AI in the 

academic 

librarian 

community  

Survey 

questionnair

es resulted 

in data 

-- -- A pilot study is 

considered an 

alternative to 

evaluate human 

response/behavi

ours to a 

particular event  

[92] Pilot study   Intelligent 

personal 

assistants using 

AI for sensing, 

thought, and 

action  

Survey 

questionnair

es resulted 

in data 

-- -- Found that 

artificial 

autonomy-

based AI is 

crucial for IPA 

[93] KNN, 

MLP, RF, 

GSOM 

Detection, 

analysis of 

deep emotional 

intensity, 

emotion 

transitions, 

emotion latent 

representations, 

and profile-

based emotion 

classification 

Digital 

conversation 

platforms 

Anxiety 

(climate 

change 

anxiety, 

panic 

attack), 

Bipolar 

(mood 

stabilizer, 

anger 

outburst  

), Self-

harm 

(suicidal 

thought) 

Word2Vec 

technique to 

capture 

semantically 

similar terms 

used for the 

eight basic 

emotions 

proposed by 

Plutchik 

Unsupervised 

learning 

approach where 

we curate an 

emotion 

vocabulary 

based on the 

emotion 

expressions 

used in a 

related context 

 

 

 

 

 

 

[94] KNN Learning 

activity 

patterns of 

home 

occupants 

Raw sensor 

values 

formatted 

either as 

integer or 

floating-

point data 

types. 

Furthermore

, each data 

value is 

associated 

with a 

timestamp 

(YYYY-

MM-DD 

HH:MM: 

SS) value to 

-- -- -- 
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indicate the 

time point at 

which the 

value was 

recorded  

 

[95] SAE-

OCCCH 

Abnormal 

activity 

detection (e.g., 

fall) using a 

smart watch 

Smartwatch 

dataset 

(private)  

-- SAE for artifact 

reduction in the 

sensing signal  

-- 

[96] Analytical 

study 

Post-

earthquake 

search and 

rescue using a 

wearable 

device  

-- -- -- Remote sensing 

information fed 

from a wearable 

device is used 

for post-

earthquake 

trapped victims' 

search and 

rescue   

[97] HMM, 

SVM, 

KNN, RF  

Sleep disorder 

detection 

Smartwatch, 

smartphone 

Noise 

energy, 

noise 

entropy, 

MFCC 

coeffects  

WT filtering The 

accelerometer 

and heart rate 

monitor sensors 

on the smart 

watch and the 

sound level 

sensor on the 

smartphone are 

activated  

And used for 

data generation 

 

8.1.    Deep Learning Classifier 

 

Alternatively, neural networks have gained special attention in this regard due to their classification 

performance and their diagnosis accuracy; hence, neural networks are widely used for sensor fault 

diagnosis. Figure 3 demonstrates the learning and prediction process of artificial intelligence, i.e., deep 

learning-based monitoring in GTs. Dynamic neural networks have been used for the detection of signal 

abnormality through performing input-output mapping of sensor data. A general regression neural network 

(GRNN) is used for auto-detection network fabrication that represents the optimised architecture of the 

fault diagnosis of sensors through the exhaust inlet temperature of the gas turbine [19]. A Sparse Bayesian 

extreme learning machine (SBELM) is presented in [98], where the multi-output classifier was established 

using a signal-output classifier using the sparse technology of the extreme learning machine. Different kinds 

of activation functions are presented in [99] for designing a mini-cost multi-layer perception model. Such 

a model consists of several hidden layers (can be a single hidden layer also) as well as input and output 

layers. A support vector machine is applied to diagnose faults in GT sensors [100]. It is understood that 

supervised learning algorithms such as SVM differ from the multi-layer perceptron, i.e., artificial neural 

networks (ANN), in terms of accuracy as well as the time of classification. Thus, both types of learning are 
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meant for the classification of features provided by feature extraction paradigms. Knowing that feature 

extraction approaches are enriched with mathematical complexity increases the processing cost, i.e., 

processing time. Another approach is proposed using support vector data description (SVDD) for the 

classification of data without needing most statistical data and feature extraction work. This approach has 

been applied to the error diagnosis of helicopter drive train components [101]. Another application of 

machine learning (coupling) has been used in the aerodynamic modelling of aero-engines. The support 

vector machine is coupled with a stochastic gradient descent to perform the aerodynamic modelling [102]. 

 

 

Figure 3. Monitoring process using AI methods in gas turbines 

 

9. CONCLUSION 

 

Gas turbine performance is limited by internal and external factors. However, sensors are used for remote 

monitoring of the internal gas turbine chamber where harsh environments with high pressure and high 

temperatures exist. The tolerance of the said sensors may not be enough to maintain efficient monitoring. 

The faulty sensors impose error challenges which may worsen the fault problems. On the other hand, the 

pressure and thermodynamic properties of the turbine are also have a noteworthy impact on the 

performance. As illustrated in the previous sections, machine learning-based monitoring systems are 

outperform others in tackling such complex problems. Prediction of future events is the main objective of 

deploying the machine learning predictors. It is also used to track sensor performance as well as the 

prediction of more appropriate parameters and decision-making in gas turbine maintenance and operation 

control. Artificial neural networks provide an interesting solution for tackling problems associated with gas 

turbines. This paper has shown that ANN memorisation, adaptation, and problem learning capacities 

provide strong functions for the control and monitoring system of the gas turbine. In any case, the most 

vital advantage that can be attributed to neural network control and monitoring tasks in gas turbines is the 

estimation and modelling of vibration indicators by problem learning. ANN technology does not demand 

the explicit (straightforward) knowledge of complicated mathematical models; instead, ANN demands 

reliable operating sources of data and a strong optimization approach. This paper has shown that intelligent 

models are having an outstanding impact on gas turbine monitoring. They have been utilised for different 

subsystems; monitoring of internal gas chambers, turbulence analysis, thermodynamic parameter 
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monitoring, and sensor quality monitoring. The most cost-efficient and accurate monitoring task could be 

achieved using machine learning and deep learning tools as illustrated in the previous sections.   
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