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Abstract

In this paper, we construct a new hybrid iteration, called SR-iteration, and prove its stability and convergence
analysis for weak contraction mappings in a Banach space. We compare the rate of convergence between
the SR-iteration and other iterations. Moreover, we provide numerical comparisons for supporting our main
theorem and apply our main result to prove the existence problem of mixed type Volterra-Fredholm functional
nonlinear integral equation.
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1. Introduction and preliminaries

Let C be a nonempty convex subset of a Banach space X, and T : C' — C be a mapping. The fixed point
set of T is denoted by F(T'), that is, F(T) = {z € C : * = Tx}. Fixed point theory plays very important
role in solving various nonlinear equations. Many iteration methods were introduced extensively by a huge
number of mathematicians for approximating solutions of the studied problems, see [II, 2] B]. For a class of
contraction mappings, Picard iteration is a powerful and efficient method for approximating a fixed point of
a contraction mapping. Renowned Picard iteration [4] is formulated as follows: x; € C' and

Tpt1 = Txy,

for all n € N,
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In 1953, Mann [5] introduced an iteration as follows: z; € C' and
Tnt1 = (1 — ap)zy + anTxy,

for all n € N, where {a,} is a sequence in [0, 1].
In 1974, Ishikawa [6] introduced an iteration as follows: z; € C and

Yn = (1 - ﬁn)xn + /BnTxm
Tnt1 = (1 — ap)xn + anTyn,

for all n € N, where {a,,} and {5, } are sequences in [0, 1].
In 2000, Noor [7] introduced a there-step iteration as follows: hy € C and

ln = (1 - Vn)hn + VnThn’
hny1 = (1 —ap)hy + anTky, (1)

for all n € N, where {a,}, {8,}, and {7, } are sequences in [0, 1].

In 2011, Phuengrattana and Suantai [8] introduced an iteration, called SP-iteration, and studied compar-
ison of the rate of convergence between this method and Mann, Ishikawa, Noor iterations. After that they
[9] also introduced a new iteration as follows: w; € C' and

Un = (1 - 'Yn)wn + T wnp,
Un = (1 - ﬁn)un + 6nTuna
Wp4+1 = (1 — Op — /\n)vn + oy Ty + AT uy, (2)

for all n € N, where {a,.}, {8}, {m}, {M\}, and {a, + A\, } are sequences in [0,1]. We will call it here
Phuengrattana iteration.

Remark 1.1. The Phuengrattana iteration reduces to the SP-iteration when we take A\, = 0 for all n € N.

A mapping T : C — C is said to satisfy condition (x) if there exist 6 € (0,1) and some Lj > 0 such that
[Tz — Tyl < 0llz -yl + Lif|z — Tz, (3)
for each z,y € C.
Remark 1.2. Note that, by the symmetry of the distance, (@ 1s satisfied for all x,y € C if and only if
[Tz =Tyl < 0lle =yl + Lally — Tyl
also holds, for all x,y € C.

In 1995, Osilike [10] proved several stability results of some iteration methods for a class of mappings
satisfying the condition (x). Those results are generalizations and extensions of those of Rhoades [11].

In order to study the order of convergence of a real sequence {a,} converging to a, we usually use the
well-known terminology in numerical analysis, see [12], for example.

Definition 1.3. [12] Suppose {a,} is a sequence that converges to a, with a, # a for all n. If positive
constants A and o exist with

lim |an+1 - CL| —

n—00 |an — a|a ’

then {a,} converges to a of order «, with asymptotic error constant A\. If « =1 (and A\ < 1), the sequence
1s linearly convergent and if o = 2, the sequence is quadratically convergent.
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In 2002, Berinde [13] employed above concept for comparing the rate of convergence between the two
iterative methods as follows:

Definition 1.4. [13] Let {a,,} and {b,} be two sequences of positive numbers that converge to a, b, respectively.
Assume there exists
|an —al _

l.

li =
00 [by — b|
(i) If | = 0, then it is said that the sequence {ayn} converges to a faster than the sequence {b,} to b.
(1) If 0 < | < oo, then we say that the sequence {a,} and {b,} have the same rate of convergence.

Definition 1.5. [13] 9] Let C' be a nonempty closed convex subset of a Banach space X and T : C — C be
a mapping. Suppose {x,} and {wy,} are two iterations which converge to a fized point p of T. We say that
{zp} converges faster than {wy} to p if

i |1, —p” _

n=o0 [lwn —p||

0.

He also introduced a new class of operators which is more general than that of Zamfirescu operators.

Definition 1.6. [13] Let C be a nonempty closed convex subset of a Banach space X. A mappingT : C — C
is said to be weak contraction if there exist a constant § € (0,1) and some L > 0 such that

[Tz = Tyll < 6llz -yl + Llly — T[],
forall x,y € C.
The following existence and uniqueness results can be found in [I3].

Proposition 1.7. [13] Let C be a nonempty closed convex subset of a Banach space X and T : C — C be a
weak contraction with condition (x). Then T has a unique fized point. Further, the Picard iteration converges
to a unique fized point of T'.

Remark 1.8. [t is known that only weak contraction does not guarantee the uniqueness of fixed point of T.
But if T also satisfies the condition (x), its fized point must be unique.

In 2013, Phuengrattana and Suantai [9] proved the strong convergence of the Phuengrattana iteration
to a fixed point of a weak contraction, and this iteration converges faster than Mann, Ishikawa and Noor
iterations.

Recently, Giirsoy [14] used a Picard-S iteration, which was introduced by Giirsoy and Karakaya [15]
in 2014, to approximate the unique solution of mixed type Volterra-Fredholm functional nonlinear integral
equation. Many contributions on fixed point outcomes with different contractive conditions have recently
been published, see also [17, 18] [19].

In this work, we introduce a new iteration, called the SR-iteration, as follows:

Zn = (1 - ’Yn)l'n + T xy,
Yn = (1 - Bn)TZn + BnTQZna
Tpt+1 = (1 - an)Tyn + anTQyna (4)

for all n € N, where z1 € C, {an}, {6n}, and {7, } are sequences in [0,1]. We prove strong convergence
theorems of the SR-iteration for approximating fixed points of weak contractions in a Banach space, and also
compare the rate of convergence of this iteration with Phuengrattana and Noor iterations. Moreover, we
prove the stability result of the SR-iteration for a weak contraction and apply the SR-iteration to estimate
the unique solution of mixed type Volterra-Fredholm functional nonlinear integral equation.
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2. Convergence theorems

In this section, we prove the following strong convergence theorems to fixed points of weak contractions
in a Banach space.

Theorem 2.1. Let C be a nonempty closed conver subset of a Banach space X and T : C — C be a weak
contraction with condition (x). Suppose that the sequence {x,} is defined by the SR-iteration, where {c,},
{Bn}, and {’yn} are sequences in [0, 1] which satisfy one of the following conditions:

(C1) Zanf (C2) Zﬂnf (C'3) Z%*

Then {xn} converges strongly to a unique ﬁa:ed pomt of T.

Proof. Let p € F(T). Then by Proposition we have

|#ns1 = pll = (1 = @) Ty + n Ty = |
< (1= an)|Tyn — pll + || T?yn — pl|
< (1= an)llyn — pll + € |lyn — pl|
= (1= an(1 = 0))0llyn — 1l

(1= BTz — pll + Bl T?20 — pll
(1= Bn)Bllzn — pll + 560|120 — pll
= (1= Bn(1=0))0|zn — pl|,

1yn — pll

IA A

and
l2n = pll < (L =n)[l@n — pll + ynl| Tzn — pll

< (L =n)llzn — pll + WO Tzn — pll

= (=71 =0))|zn —pl-
Thus,

2041 = pll < 6°(1 = @n(1 = 0))(1 = Bu(1 = 0))(1 = (1 = 0))l[zn — p|
<> [T = an(t = 0)(1 = Br(1 = 6))(1 = & (1 = 0))]lx1 — pl- (5)
k=1

By the assumption, we can conclude that {x,} converges to p. O

Theorem 2.2. [9] Assume X,C,T are as in Theorem [2.1 Suppose that the sequence {wy,} is defined by
the Phuengrattana iteration and the sequences {an}, {Bn}, {m}, {\n}, and {an + A} are in [0, 1] which
satisfy one of the conditions (C1), (C2), (C3) in Theorem [2.1 Then {w,} converges strongly to a unique
fized point of T

Theorem 2.3. [9] Assume X,C,T are as in Theorem [2.1 Suppose that the sequence {h,} is defined by
(o ¢]
the Noor iteration and the sequences {an}, {fn} and {y,} are in [0,1] such that Zan = o00. Then {hy}

n=1
converges strongly to a unique fized point of T.
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3. Rate of convergence

In this section, we compare the rate of convergence between the SR-iteration and Phuengrattana iteration
and Noor iteration.

Theorem 3.1. Assume X,C,T are as in Theorem [2.1. Suppose {x,}, {w,} and {hy,} are sequences gen-
erated by SR-iteration, Phuengrattana iteration, and Noor iteration, respectively, where x1 = wy = hy € C,
and the sequences {an}, {Bn}, {1}, {Mn}, and {a, + A\, } are in [0,1] and the sequences {an}, {Bn}, {n}
satisfy one of the conditions (C1), (C2), (C3) in Theorem[2.1 Then
(2) If im (o + B+ A\n) = 0= lim ~,,
n—oo n—oo
then {x,} converges faster than {w,} to a unique fized point of T.
o0
(i) If lim o, = lim B, = lim 7, =0 and Zan = 00,
n—oo n—oo n—oo —

then {x,} converges faster than {h,} to a unique fizved point of T.
Proof. By Theorems and the sequence {z,}, {w,} and {h,} converge to a unique fixed point of
T, say p.
(i) Assume that lim ay + 5, + A, =0 = lim ~,. From Phuengrattana iteration, we have
n—00 n—oo

[wnt1 —pll = (1 — an — An)vn + an Ty + A Tuy — pl|
> (L= an = An)llvn = pll = anl|Ton — pll = An|Tun — p
> (1= an = An)llvn = pll = anb|on, — pl| = Anblun —pl|
= (1= an(1+0) = An)llvn = pll = Anf|un — pl|
> (1= an(14+0) = An) (1 = Bn — Bnb)|[un — pll — Anb|lun — pl|
[(
=
=
(

- an<1 + 0) - )‘n)(l - 571(1 + 9)) - Ane]Hun - p”
Brn(1+6) — an(14+0)(1 = Bp(1+6)) = An(1 = Bu(1 +6) — X0 |lun — 1|
an (L4 0)(1 = Bn(L+60)) = Bu(1+0)(1 = An) = An(1 + 0)]|un — p

(1
1—
1—
1= (an + Bn+ An)(1 4 0))(1 = (1 4 0))[[wn — pl|

v

> [T = (o + B+ M) (1 + ) (1 = (L +0))||wr = pll-
k=1

Thus
1 < 1
lwns1 —pll = TThei (1= (ar + Br + M) (1 +6))(1 — (1 +6))[lwr — p||

By inequalities , @ and the assumption, we have

241 =2l _ 07" TTrq (1 — ap(1 = 0))(1 — Br(1 — 6))(1 — (1 — 6))
lwps1 —pll = Tliei (1= (o + B + M) (1 +0))(1 — (1 +0))

62" [Tr_y (1—a(1-6)) (1—B5 (1—6)) (1 =75 (1-6))
[Tie1 (A= (ar+Br+Ak) (1+0)) (1=, (140))

one1 _ PUTITLE (1 — ag(1 = 6))(1 = Be(1 = 0))(1 — (1 - 6))
o ML= (g + B+ M) (L+0)) (1 — (1 +0))
[Th (1 — (o + Br 4+ M) (1 +0))(1 — (1 +6))
027 [Tpey (1 — (1= 0))(1 = Br(1 = 0))(1 — (1 - 9))
_ 0?1 = a1 (1= 0))(1 = Bri (1= ) (1 — 1 (1 - 0))
(1= (ng1 4 Bnr1 + A1) (1 +0))(1 = 1 (146))

Setting oy, =

, we get

X
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. On+1
and so lim +
n—oo  Op

oo
= 0% < 1. By the ratio test, it implies that Z op < 00. So, lim o, =0, we conclude that
— n—oo
{zn} converges faster than {w,}.
(74) Assume that lim «, = lim 3, = lim 7, = 0. By the proof of Theorem 2.4. in [9], we have
n—oo n—oo n—oo

s =l =TT = e +6)) a1 = pll.
k=1

Hence

1 1
< — :
11 =l = Tlg=a (1 = a(1 4 6))[|h1 = p]|

It follows from and that

lznss —pll _ 02" Ty (1= 0n(1 = 0))(1 = Bi(1 = 6)(1 = (1 = 6))
[t —pll — [Tier (1 = (1 +6)) '

Setting 7, = o Hz=1(170‘1’1[(%;9()1)(_1;{6(’15303;9))(17%(179)), we obtain

Tt _ PTG (1 — ap(1 = 0)(1 = B(1 = 0)(1 — (1 —6))
Tn M1 = ok(1 4 6))
% [Tre: (1 —ax(1+96))
02" [Trer (1 — k(1= 0))(1 = Be(1 = 0))(1 — (1 — 0))
_ (1 — o1 (1= 0))(1 = Brn (1= 0))(1 — 1 (1 — 0))
(1 —apt1(14+0)) ’

oo
-
and so lim L — 92 < 1. By the ratio test, it implies that Z Tn < 00. S0, lim 7, = 0, we conclude that
n—o0o Ty ot n—o00
{zy} converges faster than {h,}. O

4. Stability

In this section, we prove the stability result for the SR-iteration defined by for a weak contraction
with condition (x). We recall the concept of stability.

Definition 4.1. Let X be a Banach space and T : C — C be a mapping. Suppose a point x1 € X and define
a fized point iteration procedure by a general relation of the form

Tn+1 = f(T’ xn)a

for alln € N, and {x,} converge to a fized point p of T. Let {y,} be an arbitrary sequence in X and set

en = [lyns1 — (T ).
The sequence {xy} is T-stable (or stable with respect to T') if
lim &, =0 if and only if lim y, = p.
n—00 n—00

We now prove the stability result of the SR-iteration.
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Theorem 4.2. Let C be a nonempty closed conver subset of a Banach space X and T : C — C be a
weak contraction with condition (x). Suppose that the sequences {x,} is defined by the SR-iteration and the
sequence {an}, {Bn}, and {yn} are in [0, 1] which satisfy one of the conditions (C1), (C2), (C3) in Theorem
2.1, Then the sequence {xy} is T-stable.

Proof. From Theorem [2.1] the sequence {z,} converge to a unique fixed point of T, say p. Let {p,} be an
arbitrary sequence in C' and define

qn = (1 - ’Yn)pn + Y T'pn,

n = (1 - 5n)TQn + BnTQQna

en = [|pnt1 — (1 — an)Tr + anT?r) |,
for all n € N. By the same proof of Theorem we obtain

H(l - O‘n)Trn + anTQTn - p”
<O (1= ap(1 = 0))(1 = Ba(1 = 0))(1 = 7 (1 = 0)) [P — 2|

n
<0 T (1= w1 = 0))(1 = B(1 = 6))(1 — k(1 = 60))[lp1 — .
k=1
Next, assume that h_)m en = 0. By above inequality, we have
n o

lPn+1 — pl|
< |lpn+1 — ((1 —apn)Try, + OénTQTn) |+ [|(1 = ap)Tr + anT?r, — p|

n

<en+ 02" ] = an(t = 0)(1 = Br(1 = 0))(1 = (1 = 0))[Ip1 - pll
k=1
It follows from above inequality and our assumptions on the sequences {a, }, {5, } and {7, } that le DPn = D.

Conversely, assume that lim p, = p, then
n—oo

en < |Pns1 = pll + p — (1 = an)Trp + anT?ry) |
< |Pnt1 = pll + 02(1 — an(1 = 0))(1 — Br(1 — 0))(1 — v (1 — 0))||ps — D
< \pns1 — 2l + lon — 2|

By above inequality and p, — p as n — oo, we obtain that lim &, = 0. Therefore, the sequence {z,} is
n—oo

T-stable. O

5. Numerical results

Example 5.1. Consider R? with the Euclidean norm. Let C = [0,1] x [0,1] and T : C — C be defined as

T((x,y)) = (/2?2 —x + %, sin(cos y)),

for all (z,y) € C. Then T is a weak contraction with condition (x). Suppose {x,}, {sn}, {wn}, and {h,} are
sequences generated by SR-iteration, SP-iteration, Phuengrattana iteration, and Noor iteration, respectively,
Choose oy, = n%_l, Bn = ﬁ, Y = %4-2’ and \, = ﬁ, for all n € N. It is clear that sequences {an,}, {6n},
{}, and {\,} satisfy all the conditions of Theorem|3.1. For the initial point hy = s; = wy = x1 = (0,0). We
obtain the following numerical experiments for fized point of T', rate of convergence and numerical experiments
of the studied methods.
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Noor

Sp

Phuengrattana

SR

b,

Sn

W,

Tn

(0.29454,0.41043)
(0.37138,0.53183)
(0.40647,0.58606)

= W N 3

(0.46455,0.66564)

(0.43447,0.62052)
(0.47515,0.67722)
(0.48741,0.68853)

(0.49860,0.69459)

(0.54442,0.80026)
(0.51320,0.70256)
(0.50595,0.69688)

(0.50055,0.69487)

(0.50102,0.68651)
(0.50000,0.69441)
(0.50000,0.69479)

(0.50000,0.69482)

Table 1: Numerical experiments of Noor, SP, Phuengrattana, and SR-iterations.

n Noor SP Phuengrattana SR
[An — Tha|l  [Isn — T'snl| [wn — Twy|| |[2n — Ty
2 0.45548 0.12712 0.16429 0.01215
3 0.26950 0.03610 0.01727 0.00059
4 0.18481 0.01570 0.00664 0.00004
10 0.05597 0.00145 0.00055 1.5001e-10
Table 2: Numerical experiments of the studied methods.
n Noor SP Phuengrattana SR
[hn = Pl lsn — sn—ll | wn — wp—1| [Zn — zn-1ll
2 0.50518 0.75750 0.96789 0.84989
3 0.14368 0.06978 0.10256 0.00797
4 0.06459 0.01669 0.00922 0.00038
10 0.00631 0.00042 0.00017 6.0593e-10

Table 3: Numerical errors in Example

-3

10

x

20

15

101

—®— SR

—#—— Phuengrattana

Figure 1: Comparison of errors in Example

10

By Theorem we know that the sequence {z,,} converges to a unique fixed point p of T' faster than
that the others. From Tables 2 and 3, we observe that the sequence {x,} converges faster than the others
and from Tables 1 and 2, we also note that p ~ (0.50000, 0.69482) with accuracy 9 D.P.
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6. Application to mixed type Volterra-Fredholm functional nonlinear integral equation

In this section, we use the SR-iteration to approximate the unique solution of mixed type Volterra-
Fredholm functional nonlinear integral equation which is in the following from (see [14], [16]):

x(t) t x(t /t1 th t,s,x(s))ds /bl " H(t,s,m(s))ds), (8)

Am,

where [a1, b1] X+ - X [am, bm] be an interval in Rm, K, H :lay,b1]x- - X[am, bp]x[a1,b1] X - X[am, bp] xR — R
continuous functions and F : [a1,b1] X =+ X [am, bm] X R? — R.

Theorem 6.1. Let X = C([a1,b1] X -+ X [am, bm]) be the Banach space with the Cebyshev’s norm. Assume
that T : X — X 1is a mapping defined by

T(a)(1) = F (1,21 /tl thtsaz \ds, /bl bmH(t,s,x(s))ds), (9)

for all x € X. Suppose that the following condztwn holds:
(04) K,H S C([al,bl] X oo X [am,bm} X [al,bﬂ X oo X [am,bm] X R);
(C5) F e C([al,bl] X+ X [am,bm] X R3);
(C6) there exist nonnegative constants k,(,n with k < 1 such that

|F'(t, u1,v1, w1) — F(t, uz, vo, w2)| < klug — ug| + Clvg — v2| + nwi — wy|,
for allt € [ay1,b1] X -+ X [am, by, wi, vi,w; € Rji=1,2;
(C7) there exist nonnegative constants Ly, Ly such that
Kt 52(5)) — K, 5,y())| < Lic min {Jy(s) — T(@)(5)] ly(s) - T,
[H (1 5,2(5)) — Ht,5.y()| < Lig min {Jy(s) = 7)) ly(s) ~ T)) )
forallt,s € [a1,b1] X -+ X [am, b)), x,y € X.
Then T is a weak contraction with condition (x).

Proof. Assume that x,y € X and ¢,s € [a1,b1] X -+ X [am, by]. Then
HTx - TyH (x)(t) = T(y) @)

i1 tm by bm
/ K(t,s,z(s / Htsx())ds)
a

am

/tl mK t,s,y(s))ds /b1 " H(t,s,y(s))ds))

am am

tm tm

K(t,s,x(s)) ds—/t1 K(t,s,y(s))ds‘

<ot sl +¢| [

am,

b1 bm bl bm
—1—77‘/ H(t, s, x(s) ds—/ H(t,s,y(s))ds‘

am

< Kla(t) \+4/t1 /tm (t,5,2(s)) — K(t, 5, y(s))|ds
+n/b1.../bm\ﬂ(t,s,x(s) H(t, 5,y(s))|ds

< wla(t) \+(/t1 /“"LKmm{ry )l ly(s) - T(w) ()]} ds
H]/*” /bm Ly min {Jy(s) — T(2)(s)]. ly(s) — T(u)(s) }ds

<kllz =yl + ((Lx +nLu)(bi —a1) - (by — am) min {|ly — Tz||, |y — Ty||}.

By our assumptions, we can conclude that 7" is a weak contraction with condition (x). O
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The following result shows that the mixed type Volterra-Fredholm functional nonlinear integral equation
has a unique solution.

Theorem 6.2. Let X = C([a1,b1] X -+ X [am, bm]) be the Banach space with the Cebyshev’s norm. Assume
that T : X — X is a mapping defined by (9). Suppose that the conditions (C4) — (C7) in Theorem [6.1] hold.
Then the equation has a unique solution, say x*, in X, and the Picard iteration converges to x*.

Proof. By Theorem , we know that 7" is a weak contraction with condition (x). By Proposition there
exists a unique solution z* of the equation and the Picard iteration converges to x*. O

Theorem 6.3. Let X = C([a1,b1] X -+ X [am, by]) be the Banach space with the Cebyshev’s norm. Suppose
that the sequence {xy} is defined by the SR-iteration and the sequences {an}, {Bn}, and {yn} are in [0,1]
which satisfy one of the conditions (C1), (C2), (C3) in Theorem|[2.1 Assume that T : X — X is a mapping
defined by (9). Suppose that the conditions (C4)—(CT) in Theorem[6.1 hold. Then the SR-iteration converges
to a unique solution of the equation .

Proof. By Theorem Theorem [6.1] and Theorem we can conclude that the SR-iteration converges to
a unique solution of the equation (8)). O
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