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Abstract

In this paper, we construct a new hybrid iteration, called SR-iteration, and prove its stability and convergence
analysis for weak contraction mappings in a Banach space. We compare the rate of convergence between
the SR-iteration and other iterations. Moreover, we provide numerical comparisons for supporting our main
theorem and apply our main result to prove the existence problem of mixed type Volterra-Fredholm functional
nonlinear integral equation.
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1. Introduction and preliminaries

Let C be a nonempty convex subset of a Banach space X, and T : C → C be a mapping. The �xed point
set of T is denoted by F (T ), that is, F (T ) = {x ∈ C : x = Tx}. Fixed point theory plays very important
role in solving various nonlinear equations. Many iteration methods were introduced extensively by a huge
number of mathematicians for approximating solutions of the studied problems, see [1, 2, 3]. For a class of
contraction mappings, Picard iteration is a powerful and e�cient method for approximating a �xed point of
a contraction mapping. Renowned Picard iteration [4] is formulated as follows: x1 ∈ C and

xn+1 = Txn,

for all n ∈ N.
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In 1953, Mann [5] introduced an iteration as follows: x1 ∈ C and

xn+1 = (1− αn)xn + αnTxn,

for all n ∈ N, where {αn} is a sequence in [0, 1].
In 1974, Ishikawa [6] introduced an iteration as follows: x1 ∈ C and

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn,

for all n ∈ N, where {αn} and {βn} are sequences in [0, 1].
In 2000, Noor [7] introduced a there-step iteration as follows: h1 ∈ C and

ln = (1− γn)hn + γnThn,

kn = (1− βn)hn + βnT ln,

hn+1 = (1− αn)hn + αnTkn, (1)

for all n ∈ N, where {αn}, {βn}, and {γn} are sequences in [0, 1].
In 2011, Phuengrattana and Suantai [8] introduced an iteration, called SP-iteration, and studied compar-

ison of the rate of convergence between this method and Mann, Ishikawa, Noor iterations. After that they
[9] also introduced a new iteration as follows: w1 ∈ C and

un = (1− γn)wn + γnTwn,

vn = (1− βn)un + βnTun,

wn+1 = (1− αn − λn)vn + αnTvn + λnTun, (2)

for all n ∈ N, where {αn}, {βn}, {γn}, {λn}, and {αn + λn} are sequences in [0, 1]. We will call it here
Phuengrattana iteration.

Remark 1.1. The Phuengrattana iteration reduces to the SP-iteration when we take λn = 0 for all n ∈ N.

A mapping T : C → C is said to satisfy condition (∗) if there exist θ ∈ (0, 1) and some L1 ≥ 0 such that

∥Tx− Ty∥ ≤ θ∥x− y∥+ L1∥x− Tx∥, (3)

for each x, y ∈ C.

Remark 1.2. Note that, by the symmetry of the distance, (3) is satis�ed for all x, y ∈ C if and only if

∥Tx− Ty∥ ≤ θ∥x− y∥+ L1∥y − Ty∥.

also holds, for all x, y ∈ C.

In 1995, Osilike [10] proved several stability results of some iteration methods for a class of mappings
satisfying the condition (∗). Those results are generalizations and extensions of those of Rhoades [11].

In order to study the order of convergence of a real sequence {an} converging to a, we usually use the
well-known terminology in numerical analysis, see [12], for example.

De�nition 1.3. [12] Suppose {an} is a sequence that converges to a, with an ̸= a for all n. If positive

constants λ and α exist with

lim
n→∞

|an+1 − a|
|an − a|α

= λ,

then {an} converges to a of order α, with asymptotic error constant λ. If α = 1 (and λ < 1), the sequence

is linearly convergent and if α = 2, the sequence is quadratically convergent.
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In 2002, Berinde [13] employed above concept for comparing the rate of convergence between the two
iterative methods as follows:

De�nition 1.4. [13] Let {an} and {bn} be two sequences of positive numbers that converge to a, b, respectively.
Assume there exists

lim
n→∞

|an − a|
|bn − b|

= l.

(i) If l = 0, then it is said that the sequence {an} converges to a faster than the sequence {bn} to b.
(ii) If 0 < l < ∞, then we say that the sequence {an} and {bn} have the same rate of convergence.

De�nition 1.5. [13, 9] Let C be a nonempty closed convex subset of a Banach space X and T : C → C be

a mapping. Suppose {xn} and {wn} are two iterations which converge to a �xed point p of T . We say that

{xn} converges faster than {wn} to p if

lim
n→∞

∥xn − p∥
∥wn − p∥

= 0.

He also introduced a new class of operators which is more general than that of Zam�rescu operators.

De�nition 1.6. [13] Let C be a nonempty closed convex subset of a Banach space X. A mapping T : C → C
is said to be weak contraction if there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

∥Tx− Ty∥ ≤ δ∥x− y∥+ L∥y − Tx∥,

for all x, y ∈ C.

The following existence and uniqueness results can be found in [13].

Proposition 1.7. [13] Let C be a nonempty closed convex subset of a Banach space X and T : C → C be a

weak contraction with condition (∗). Then T has a unique �xed point. Further, the Picard iteration converges

to a unique �xed point of T .

Remark 1.8. It is known that only weak contraction does not guarantee the uniqueness of �xed point of T .
But if T also satis�es the condition (∗), its �xed point must be unique.

In 2013, Phuengrattana and Suantai [9] proved the strong convergence of the Phuengrattana iteration
to a �xed point of a weak contraction, and this iteration converges faster than Mann, Ishikawa and Noor
iterations.

Recently, Gürsoy [14] used a Picard-S iteration, which was introduced by Gürsoy and Karakaya [15]
in 2014, to approximate the unique solution of mixed type Volterra-Fredholm functional nonlinear integral
equation. Many contributions on �xed point outcomes with di�erent contractive conditions have recently
been published, see also [17, 18, 19].

In this work, we introduce a new iteration, called the SR-iteration, as follows:

zn = (1− γn)xn + γnTxn,

yn = (1− βn)Tzn + βnT
2zn,

xn+1 = (1− αn)Tyn + αnT
2yn, (4)

for all n ∈ N, where x1 ∈ C, {αn}, {βn}, and {γn} are sequences in [0, 1]. We prove strong convergence
theorems of the SR-iteration for approximating �xed points of weak contractions in a Banach space, and also
compare the rate of convergence of this iteration with Phuengrattana and Noor iterations. Moreover, we
prove the stability result of the SR-iteration for a weak contraction and apply the SR-iteration to estimate
the unique solution of mixed type Volterra-Fredholm functional nonlinear integral equation.
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2. Convergence theorems

In this section, we prove the following strong convergence theorems to �xed points of weak contractions
in a Banach space.

Theorem 2.1. Let C be a nonempty closed convex subset of a Banach space X and T : C → C be a weak

contraction with condition (∗). Suppose that the sequence {xn} is de�ned by the SR-iteration, where {αn},
{βn}, and {γn} are sequences in [0, 1] which satisfy one of the following conditions:

(C1)

∞∑
n=1

αn = ∞; (C2)

∞∑
n=1

βn = ∞; (C3)

∞∑
n=1

γn = ∞.

Then {xn} converges strongly to a unique �xed point of T .

Proof. Let p ∈ F (T ). Then by Proposition 1.7, we have

∥xn+1 − p∥ = ∥(1− αn)Tyn + αnT
2yn − p∥

≤ (1− αn)∥Tyn − p∥+ αn∥T 2yn − p∥
≤ (1− αn)θ∥yn − p∥+ αnθ

2∥yn − p∥
= (1− αn(1− θ))θ∥yn − p∥,

∥yn − p∥ ≤ (1− βn)∥Tzn − p∥+ βn∥T 2zn − p∥
≤ (1− βn)θ∥zn − p∥+ βnθ

2∥zn − p∥
= (1− βn(1− θ))θ∥zn − p∥,

and

∥zn − p∥ ≤ (1− γn)∥xn − p∥+ γn∥Txn − p∥
≤ (1− γn)∥xn − p∥+ γnθ∥Txn − p∥
= (1− γn(1− θ))∥xn − p∥.

Thus,

∥xn+1 − p∥ ≤ θ2(1− αn(1− θ))(1− βn(1− θ))(1− γn(1− θ))∥xn − p∥
...

≤ θ2n
n∏

k=1

(1− αk(1− θ))(1− βk(1− θ))(1− γk(1− θ))∥x1 − p∥. (5)

By the assumption, we can conclude that {xn} converges to p.

Theorem 2.2. [9] Assume X,C, T are as in Theorem 2.1. Suppose that the sequence {wn} is de�ned by

the Phuengrattana iteration and the sequences {αn}, {βn}, {γn}, {λn}, and {αn + λn} are in [0, 1] which
satisfy one of the conditions (C1), (C2), (C3) in Theorem 2.1. Then {wn} converges strongly to a unique

�xed point of T .

Theorem 2.3. [9] Assume X,C, T are as in Theorem 2.1. Suppose that the sequence {hn} is de�ned by

the Noor iteration and the sequences {αn}, {βn} and {γn} are in [0, 1] such that

∞∑
n=1

αn = ∞. Then {hn}

converges strongly to a unique �xed point of T .
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3. Rate of convergence

In this section, we compare the rate of convergence between the SR-iteration and Phuengrattana iteration
and Noor iteration.

Theorem 3.1. Assume X,C, T are as in Theorem 2.1. Suppose {xn}, {wn} and {hn} are sequences gen-

erated by SR-iteration, Phuengrattana iteration, and Noor iteration, respectively, where x1 = w1 = h1 ∈ C,

and the sequences {αn}, {βn}, {γn}, {λn}, and {αn + λn} are in [0, 1] and the sequences {αn}, {βn}, {γn}
satisfy one of the conditions (C1), (C2), (C3) in Theorem 2.1. Then

(i) If lim
n→∞

(αn + βn + λn) = 0 = lim
n→∞

γn,

then {xn} converges faster than {wn} to a unique �xed point of T .

(ii) If lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

γn = 0 and

∞∑
n=1

αn = ∞,

then {xn} converges faster than {hn} to a unique �xed point of T .

Proof. By Theorems 2.1, 2.2 and 2.3, the sequence {xn}, {wn} and {hn} converge to a unique �xed point of
T , say p.

(i) Assume that lim
n→∞

αn + βn + λn = 0 = lim
n→∞

γn. From Phuengrattana iteration, we have

∥wn+1 − p∥ = ∥(1− αn − λn)vn + αnTvn + λnTun − p∥
≥ (1− αn − λn)∥vn − p∥ − αn∥Tvn − p∥ − λn∥Tun − p∥
≥ (1− αn − λn)∥vn − p∥ − αnθ∥vn − p∥ − λnθ∥un − p∥
= (1− αn(1 + θ)− λn)∥vn − p∥ − λnθ∥un − p∥
≥ (1− αn(1 + θ)− λn)(1− βn − βnθ)∥un − p∥ − λnθ∥un − p∥
= [(1− αn(1 + θ)− λn)(1− βn(1 + θ))− λnθ]∥un − p∥
= [1− βn(1 + θ)− αn(1 + θ)(1− βn(1 + θ))− λn(1− βn(1 + θ)− λnθ]∥un − p∥
= [1− αn(1 + θ)(1− βn(1 + θ))− βn(1 + θ)(1− λn)− λn(1 + θ)]∥un − p∥
≥ (1− (αn + βn + λn)(1 + θ))(1− γn(1 + θ))∥wn − p∥
...

≥
n∏

k=1

(1− (αk + βk + λk)(1 + θ))(1− γk(1 + θ))∥w1 − p∥.

Thus

1

∥wn+1 − p∥
≤ 1∏n

k=1(1− (αk + βk + λk)(1 + θ))(1− γk(1 + θ))∥w1 − p∥
(6)

By inequalities (5), (6) and the assumption, we have

∥xn+1 − p∥
∥wn+1 − p∥

≤
θ2n

∏n
k=1(1− αk(1− θ))(1− βk(1− θ))(1− γk(1− θ))∏n
k=1(1− (αk + βk + λk)(1 + θ))(1− γk(1 + θ))

Setting σn =
θ2n

∏n
k=1(1−αk(1−θ))(1−βk(1−θ))(1−γk(1−θ))∏n
k=1(1−(αk+βk+λk)(1+θ))(1−γk(1+θ))

, we get

σn+1

σn
=

θ2(n+1)
∏n+1

k=1(1− αk(1− θ))(1− βk(1− θ))(1− γk(1− θ))∏n+1
k=1(1− (αk + βk + λk)(1 + θ))(1− γk(1 + θ))

×
∏n

k=1(1− (αk + βk + λk)(1 + θ))(1− γk(1 + θ))

θ2n
∏n

k=1(1− αk(1− θ))(1− βk(1− θ))(1− γk(1− θ))

=
θ2(1− αn+1(1− θ))(1− βn+1(1− θ))(1− γn+1(1− θ))

(1− (αn+1 + βn+1 + λn+1)(1 + θ))(1− γn+1(1 + θ))
,
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and so lim
n→∞

σn+1

σn
= θ2 < 1. By the ratio test, it implies that

∞∑
n=1

σn < ∞. So, lim
n→∞

σn = 0, we conclude that

{xn} converges faster than {wn}.
(ii) Assume that lim

n→∞
αn = lim

n→∞
βn = lim

n→∞
γn = 0. By the proof of Theorem 2.4. in [9], we have

∥hn+1 − p∥ ≥
n∏

k=1

(1− αk(1 + θ))∥h1 − p∥.

Hence

1

∥hn+1 − p∥
≤ 1∏n

k=1(1− αk(1 + θ))∥h1 − p∥
. (7)

It follows from (5) and (7) that

∥xn+1 − p∥
∥hn+1 − p∥

≤
θ2n

∏n
k=1(1− αk(1− θ))(1− βk(1− θ))(1− γk(1− θ))∏n

k=1(1− αk(1 + θ))
.

Setting τn =
θ2n

∏n
k=1(1−αk(1−θ))(1−βk(1−θ))(1−γk(1−θ))∏n

k=1(1−αk(1+θ))
, we obtain

τn+1

τn
=

θ2(n+1)
∏n+1

k=1(1− αk(1− θ))(1− βk(1− θ))(1− γk(1− θ))∏n+1
k=1(1− αk(1 + θ))

×
∏n

k=1(1− αk(1 + θ))

θ2n
∏n

k=1(1− αk(1− θ))(1− βk(1− θ))(1− γk(1− θ))

=
θ2(1− αn+1(1− θ))(1− βn+1(1− θ))(1− γn+1(1− θ))

(1− αn+1(1 + θ))
,

and so lim
n→∞

τn+1

τn
= θ2 < 1. By the ratio test, it implies that

∞∑
n=1

τn < ∞. So, lim
n→∞

τn = 0, we conclude that

{xn} converges faster than {hn}.

4. Stability

In this section, we prove the stability result for the SR-iteration de�ned by (4) for a weak contraction
with condition (∗). We recall the concept of stability.

De�nition 4.1. Let X be a Banach space and T : C → C be a mapping. Suppose a point x1 ∈ X and de�ne

a �xed point iteration procedure by a general relation of the form

xn+1 = f(T, xn),

for all n ∈ N, and {xn} converge to a �xed point p of T . Let {yn} be an arbitrary sequence in X and set

εn = ∥yn+1 − f(T, yn)∥.

The sequence {xn} is T -stable (or stable with respect to T ) if

lim
n→∞

εn = 0 if and only if lim
n→∞

yn = p.

We now prove the stability result of the SR-iteration.
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Theorem 4.2. Let C be a nonempty closed convex subset of a Banach space X and T : C → C be a

weak contraction with condition (∗). Suppose that the sequences {xn} is de�ned by the SR-iteration and the

sequence {αn}, {βn}, and {γn} are in [0, 1] which satisfy one of the conditions (C1), (C2), (C3) in Theorem

2.1. Then the sequence {xn} is T -stable.

Proof. From Theorem 2.1, the sequence {xn} converge to a unique �xed point of T , say p. Let {pn} be an
arbitrary sequence in C and de�ne

qn = (1− γn)pn + γnTpn,

rn = (1− βn)Tqn + βnT
2qn,

εn = ∥pn+1 −
(
(1− αn)Trn + αnT

2rn
)
∥,

for all n ∈ N. By the same proof of Theorem 2.1, we obtain

∥(1− αn)Trn + αnT
2rn − p∥

≤ θ2(1− αn(1− θ))(1− βn(1− θ))(1− γn(1− θ))∥pn − p∥
...

≤ θ2n
n∏

k=1

(1− αk(1− θ))(1− βk(1− θ))(1− γk(1− θ))∥p1 − p∥.

Next, assume that lim
n→∞

εn = 0. By above inequality, we have

∥pn+1 − p∥
≤ ∥pn+1 −

(
(1− αn)Trn + αnT

2rn
)
∥+ ∥(1− αn)Trn + αnT

2rn − p∥

≤ εn + θ2n
n∏

k=1

(1− αk(1− θ))(1− βk(1− θ))(1− γk(1− θ))∥p1 − p∥.

It follows from above inequality and our assumptions on the sequences {αn}, {βn} and {γn} that lim
n→∞

pn = p.

Conversely, assume that lim
n→∞

pn = p, then

εn ≤ ∥pn+1 − p∥+ ∥p−
(
(1− αn)Trn + αnT

2rn
)
∥

≤ ∥pn+1 − p∥+ θ2(1− αn(1− θ))(1− βn(1− θ))(1− γn(1− θ))∥pn − p∥
≤ ∥pn+1 − p∥+ ∥pn − p∥.

By above inequality and pn → p as n → ∞, we obtain that lim
n→∞

εn = 0. Therefore, the sequence {xn} is

T -stable.

5. Numerical results

Example 5.1. Consider R2 with the Euclidean norm. Let C = [0, 1]× [0, 1] and T : C → C be de�ned as

T ((x, y)) = (
√
x2 − x+ 1

2 , sin(cos y)),

for all (x, y) ∈ C. Then T is a weak contraction with condition (∗). Suppose {xn}, {sn}, {wn}, and {hn} are

sequences generated by SR-iteration, SP-iteration, Phuengrattana iteration, and Noor iteration, respectively,

Choose αn = 1
n+1 , βn = 1

2n+1 , γn = 1
n+2 , and λn = 1

n2+1
, for all n ∈ N. It is clear that sequences {αn}, {βn},

{γn}, and {λn} satisfy all the conditions of Theorem 3.1. For the initial point h1 = s1 = w1 = x1 = (0, 0). We

obtain the following numerical experiments for �xed point of T , rate of convergence and numerical experiments

of the studied methods.
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n
Noor SP Phuengrattana SR
hn sn wn xn

2 (0.29454,0.41043) (0.43447,0.62052) (0.54442,0.80026) (0.50102,0.68651)
3 (0.37138,0.53183) (0.47515,0.67722) (0.51320,0.70256) (0.50000,0.69441)
4 (0.40647,0.58606) (0.48741,0.68853) (0.50595,0.69688) (0.50000,0.69479)
...

...
...

...
...

10 (0.46455,0.66564) (0.49860,0.69459) (0.50055,0.69487) (0.50000,0.69482)

Table 1: Numerical experiments of Noor, SP, Phuengrattana, and SR-iterations.

n
Noor SP Phuengrattana SR

∥hn − Thn∥ ∥sn − Tsn∥ ∥wn − Twn∥ ∥xn − Txn∥
2 0.45548 0.12712 0.16429 0.01215
3 0.26950 0.03610 0.01727 0.00059
4 0.18481 0.01570 0.00664 0.00004
...

...
...

...
...

10 0.05597 0.00145 0.00055 1.5001e-10

Table 2: Numerical experiments of the studied methods.

n
Noor SP Phuengrattana SR

∥hn − hn−1∥ ∥sn − sn−1∥ ∥wn − wn−1∥ ∥xn − xn−1∥
2 0.50518 0.75750 0.96789 0.84989
3 0.14368 0.06978 0.10256 0.00797
4 0.06459 0.01669 0.00922 0.00038
...

...
...

...
...

10 0.00631 0.00042 0.00017 6.0593e-10

Table 3: Numerical errors in Example 5.1.

1 2 3 4 5 6 7 8 9 10
−5
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10

15

20
x 10
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Phuengrattana

SR

Figure 1: Comparison of errors in Example 5.1.

By Theorem 2.1, we know that the sequence {xn} converges to a unique �xed point p of T faster than
that the others. From Tables 2 and 3, we observe that the sequence {xn} converges faster than the others
and from Tables 1 and 2, we also note that p ≈ (0.50000, 0.69482) with accuracy 9 D.P.
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6. Application to mixed type Volterra-Fredholm functional nonlinear integral equation

In this section, we use the SR-iteration to approximate the unique solution of mixed type Volterra-
Fredholm functional nonlinear integral equation which is in the following from (see [14, 16]):

x(t) = F
(
t, x(t),

∫ t1

a1

· · ·
∫ tm

am

K(t, s, x(s))ds,

∫ b1

a1

· · ·
∫ bm

am

H(t, s, x(s))ds
)
, (8)

where [a1, b1]×· · ·×[am, bm] be an interval in Rm,K,H : [a1, b1]×· · ·×[am, bm]×[a1, b1]×· · ·×[am, bm]×R → R
continuous functions and F : [a1, b1]× · · · × [am, bm]× R3 → R.
Theorem 6.1. Let X = C([a1, b1]× · · · × [am, bm]) be the Banach space with the Cebyshev's norm. Assume

that T : X → X is a mapping de�ned by

T (x)(t) = F
(
t, x(t),

∫ t1

a1

· · ·
∫ tm

am

K(t, s, x(s))ds,

∫ b1

a1

· · ·
∫ bm

am

H(t, s, x(s))ds
)
, (9)

for all x ∈ X. Suppose that the following condition holds:

(C4) K,H ∈ C([a1, b1]× · · · × [am, bm]× [a1, b1]× · · · × [am, bm]× R);
(C5) F ∈ C([a1, b1]× · · · × [am, bm]× R3);
(C6) there exist nonnegative constants κ, ζ, η with κ < 1 such that

|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ κ|u1 − u2|+ ζ|v1 − v2|+ η|w1 − w2|,

for all t ∈ [a1, b1]× · · · × [am, bm], ui, vi, wi ∈ R, i = 1, 2;
(C7) there exist nonnegative constants LK , LH such that

|K(t, s, x(s))−K(t, s, y(s))| ≤ LK min
{
|y(s)− T (x)(s)|, |y(s)− T (y)(s)|

}
,

|H(t, s, x(s))−H(t, s, y(s))| ≤ LH min
{
|y(s)− T (x)(s)|, |y(s)− T (y)(s)|

}
,

for all t, s ∈ [a1, b1]× · · · × [am, bm], x, y ∈ X.

Then T is a weak contraction with condition (∗).
Proof. Assume that x, y ∈ X and t, s ∈ [a1, b1]× · · · × [am, bm]. Then

∥Tx− Ty∥ = |T (x)(t)− T (y)(t)|

=
∣∣∣F(

t, x(t),

∫ t1

a1

· · ·
∫ tm

am

K(t, s, x(s))ds,

∫ b1

a1

· · ·
∫ bm

am

H(t, s, x(s))ds
)

− F
(
t, y(t),

∫ t1

a1

· · ·
∫ tm

am

K(t, s, y(s))ds,

∫ b1

a1

· · ·
∫ bm

am

H(t, s, y(s))ds
)∣∣∣

≤ κ|x(t)− y(t)|+ ζ
∣∣∣ ∫ t1

a1

· · ·
∫ tm

am

K(t, s, x(s))ds−
∫ t1

a1

· · ·
∫ tm

am

K(t, s, y(s))ds
∣∣∣

+ η
∣∣∣ ∫ b1

a1

· · ·
∫ bm

am

H(t, s, x(s))ds−
∫ b1

a1

· · ·
∫ bm

am

H(t, s, y(s))ds
∣∣∣

≤ κ|x(t)− y(t)|+ ζ

∫ t1

a1

· · ·
∫ tm

am

∣∣K(t, s, x(s))−K(t, s, y(s))
∣∣ds

+ η

∫ b1

a1

· · ·
∫ bm

am

∣∣H(t, s, x(s))−H(t, s, y(s))
∣∣ds

≤ κ|x(t)− y(t)|+ ζ

∫ t1

a1

· · ·
∫ tm

am

LK min
{
|y(s)− T (x)(s)|, |y(s)− T (y)(s)|

}
ds

+ η

∫ b1

a1

· · ·
∫ bm

am

LH min
{
|y(s)− T (x)(s)|, |y(s)− T (y)(s)|

}
ds

≤ κ∥x− y∥+ (ζLK + ηLH)(b1 − a1) · · · (bm − am)min
{
∥y − Tx∥, ∥y − Ty∥

}
.

By our assumptions, we can conclude that T is a weak contraction with condition (∗).
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The following result shows that the mixed type Volterra-Fredholm functional nonlinear integral equation
(8) has a unique solution.

Theorem 6.2. Let X = C([a1, b1]× · · · × [am, bm]) be the Banach space with the Cebyshev's norm. Assume

that T : X → X is a mapping de�ned by (9). Suppose that the conditions (C4)− (C7) in Theorem 6.1 hold.

Then the equation (8) has a unique solution, say x∗, in X, and the Picard iteration converges to x∗.

Proof. By Theorem 6.1, we know that T is a weak contraction with condition (∗). By Proposition 1.7, there
exists a unique solution x∗ of the equation (8) and the Picard iteration converges to x∗.

Theorem 6.3. Let X = C([a1, b1]× · · · × [am, bm]) be the Banach space with the Cebyshev's norm. Suppose

that the sequence {xn} is de�ned by the SR-iteration and the sequences {αn}, {βn}, and {γn} are in [0, 1]
which satisfy one of the conditions (C1), (C2), (C3) in Theorem 2.1. Assume that T : X → X is a mapping

de�ned by (9). Suppose that the conditions (C4)−(C7) in Theorem 6.1 hold. Then the SR-iteration converges

to a unique solution of the equation (8).

Proof. By Theorem 2.1, Theorem 6.1, and Theorem 6.2, we can conclude that the SR-iteration converges to
a unique solution of the equation (8).
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