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Abstract 

Visual-based controlling concerns how to manage a robot by using image-based features obtained from imaging devices. There are 

two types of configurations; internal vision configuration – IVC (the camera is in the device) and external vision configuration – EVC 

(the camera is out of the device). A multi-camera process with EVC has been employed to generate input for modeling behaviors of a 

mobile robot in this study. Gaussian-based controller and adaptive artificial potential field (A-APF) have been utilized for control and 

path planning processes, respectively. Four webcams with the same specifications are operated from the same height to control the 

mobile robot within a specific area. Images are stitched by using identic features of intersection areas in the first stage. Then, the 

color-based object detection is performed on this image to detect positions and other information related to the target, robot ,and 

obstacles. In the next step, to obtain a feasible and safe path plan between target and robot, an adaptive potential field algorithm is 

performed. Then, the controller is used to model the robot motions according to the path plan. In each control iteration, only one 

camera is activated according to the local position obtained from the global position of the moving robot. The simulation and physical 

experiment results demonstrate that the multi-camera configuration provides good performance and efficiency. 

Keywords: Visual-based control, Gaussian control, A-APF, Multi-camera, Image stitching.   

Çok Kameralı Görü Tabanlı Mobil Robot Kontrolü ve Yol Planlaması 

Öz 

Görsel tabanlı kontrol, görüntüleme cihazlarından elde edilen imge-tabanlı özellikleri kullanarak bir robotun nasıl kontrol edileceği ile 

ilgilidir. İki tür konfigürasyon vardır; dahili görüş yapılandırması – IVC (kamera cihazdadır) ve harici görüntü yapılandırması – EVC 

(kamera cihazın dışındadır). Bu çalışmada bir mobil robotun davranışlarını modellemek için girdi oluşturmak için EVC ile çok 

kameralı bir süreç kullanılmıştır. Kontrol ve yol planlama süreçleri için sırasıyla Gauss tabanlı denetleyici ve uyarlanabilir yapay 

potansiyel alanı (A-APF) kullanılmıştır. Belirli bir alanda mobil robotu kontrol etmek için aynı özelliklere sahip dört web kamerası 

aynı yükseklikten çalıştırılır. Dört kameradan alınan görüntüler ilk aşamada kesişim alanlarının ortak özelliklerine göre dikilir. 

Ardından, robot, hedef ve engellerle ilgili konumları ve diğer bilgileri tespit etmek için bu dikilmiş görüntü üzerinde renk tabanlı 

nesne tespiti gerçekleştirilir. Bir sonraki adımda robot ve hedef arasında uygun ve güvenli bir yol planı elde etmek için uyarlanabilir 

potansiyel alan algoritması yürütülür. Daha sonra Gauss tabanlı mobil robot denetleyicisi, robot hareketlerini yol planına göre 

modellemek için kullanılır. Her kontrol yinelemesinde, hareket eden robotun global konumundan elde edilen yerel konuma göre 

yalnızca bir kamera etkinleştirilir. Deneysel simülasyon ve gerçek dünya sonuçları, çoklu kamera konfigürasyonunun iyi performans 

ve verimlilik sağladığını göstermektedir.  

Anahtar Kelimeler: Görsel tabanlı kontrol, Gauss kontrolü, A-APF, Çoklu kamera, Görüntü birleştirme. 
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1. Introduction 

Motions of a mobile robot is usually modeled by utilizing 

environment information gathered from onboard encoders, 

distance sensors, or imagining sensors (external and internal 

sensors) (Siciliano, 2008), (Dönmez, 2018). Imagining sensors 

capture visual information in the images. Then, visual features 

are obtained by employing image processing approaches. Visual-

based mobile robot control is a popular researching area in 

robotics. The main motivation is managing the robot by using 

visual features obtained from its surroundings. The internal 

vision configuration (IVC) based system is used to detect 

positions of objects by utilizing visual features, distance, and 

depth information. The second approach is external vision 

system (EVC) providing to detect information about the 

environment. In external vision configuration (EVC), unique 

features of the object (target, robot etc.) can be tracked and 

according to these features, motion of robot is modeled. 

In a visual-based control system with EVC configuration; 

the cameras capture visual information like low, mid, or high-

level features from the working environment. The system tracks 

the changes in the consecutive image frames. Each tracked 

change may affect the robot's motion according to the control 

system design. The image processing and control tasks are 

generally performed on an external computer system rather than 

robot hardware in this configuration. All the sensor tasks 

(measuring the distance, position, etc.) are performed through 

the imaging sensors in visual-based control systems. Therefore, 

internal or external sensors to measure distance or position aren't 

needed in general. In terms of performance, objects are tracked 

with high speed by using optimized image processing algorithms 

in visual-based control. Path errors mainly stemming from 

slipping, colliding, and falling or sensor reading are highly 

prevented in visual-based control. Because the controller knows 

the exact position of the robot in each control iteration. Thus, it 

can be said that a visual-based control system provides a good 

balance between performance and cost.  

The other important component of visual-based control is 

path planning. It is one of the basic parts of the robot control 

process. It simply concerns modeling a path plan between an two 

position configurations (Choset, 2005). A path is created by 

considering the obstacles (wall, door, any object, etc.) in a 

configuration space. The main factors about planning a path are 

path safety, working efficiency, and admissible path cost, 

(Cowan, 2002), (Dönmez, 2020). Path planning is performed 

according to problem structure. Two types of approaches are 

global and local methods. They are used to extract a path plan 

from a given environment (Dudek, 2010). Global approaches are 

divided into two categories; retraction methods and 

decomposition methods. The retraction methods recursively 

reduce the dimension of the initial problem by taking into 

account a certain part of the configuration space. Decomposition 

methods characterize the obstacle-free regions of given 

configuration space. In addition, distance value are mainly used 

in local approaches while avoiding obstacles. This distance (or 

the cost function gradient) generally guides the local method. To 

overcome complex robots, the local approaches are more 

efficient. Except for these two approaches, path planning can be 

performed with stochastic or randomized methods. These 

methods generally utilize building a graph and find a local 

minimum at each iteration. In addition to the configuration 

space, path planning can be considered in the trajectory space. In 

this space, a straight line is created between the initial and final 

configuration while all of the obstacles are neglected. In the next 

step, this path is progressively reshaped by reducing and fixing 

improper parts of the acquired path. Planning a path can be 

performed with graph-inspired approaches like Dijkstra 

(Tsitsiklis, 1995), (Cormen, 2001), A* (Hart, 1968), D* (Stentz, 

1994), randomized methods like RRT, esiBi-RRT (Lavalle, 

1998), (Lavalle, 1999), potential field inspired APF method 

(Rimon, 1992), partitioning, hierarchical partitioning, etc. Each 

method has advantages or disadvantages according to the 

configuration space specifications.     

In section 2, related works have been given. Problem 

definition is defined and preliminary information is organized in 

section 3. We touch details of material and methods including 

image stitching, object detection, kinematics, potential fields, 

and controller design in section 4. In section 5, both simulation 

and real-world experiments have been performed and explained. 

Conclusion and future works have been given in section 6. 

2. Related Studies 

Visual-based robot control is investigated in a remarkable 

number of researches. Decreasing errors and improving speed 

and efficiency are generally the main focusing points in these 

studies. There are several configurations to implement a visual-

based robot control infrastructure. Malis et al (Malis, 2000) have 

improved the fundamental visual servoing approaches to the use 

of multiple cameras tracing a number of segments of an entity. 

The multi-camera visual-based control has been developed as a 

chunk of the task cluster approach. They expressed that the 

design of the control and the analysis of stability has been 

facilitated by allowing specific selection of the task function. 

Lippello et al (Lippiello, 2005) has introduced a visual servoing 

process capitilazing a mixed eye-to-hand/in-hand multi-camera 

system in their study. It is claimed that depending on a modified 

Kalman filter, this approach utilizes the data ensured by all the 

cameras without “a priori” distinction, permitting real-time 

estimation of object position. Qiu et al (Qiu, 2006) have 

proposed a multi-camera configured visual servoing system. The 

designed system uses switching the vision system between the 

eye-in-device and stereo cameras with a voting process. They 

stated that the proposed infrastructure enables process in a more 

generic variety of situations than that of either eye-in-hand or 

stereo camera single configuration. Yoshitata et al (Yoshitata, 

2007) proposed a visual control design that allows a mini-

helicopter to hover under local and temporal occlusions. Two 

fixed and upward-looking imagining devices observe four black 

balls fixated to rods connected to the lower side of the 

helicopter. They have said that the designed structure can hold 

the helicopter in a resolute hover. Iwatani et al (Iwanati, 2008) 

proposed a visual servo control system using multi-camera for 

unmanned micro aerial vehicles. The cameras are placed on the 

floor, and they are connected through a network. They claimed 

that the controller is durable against occlusion, and the 

helicopters can move easily and freely in the field of view of the 

camera. Weber and Kühnlenz (Weber, 2010) have utilized 

triangulation of images obtained by multi-cameras pointing in 

different directions to manage a robot with position-based visual 

servoing (PBVS). The presented triangulation is deployed by a 

linear method which provides real-time operating and high 

accuracy. Kermorgant and Chaumette (Kermorgant, 2011) have 

introduced a sensor fusion model for positioning of a robot with 
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multi-sensors. To realize an image-based visual servoing task, 

two cameras are used in eye-in-hand and eye-out-hand 

configuration. It is said that the sensor data fusion design is 

activated by a versatile comparison. Elsheikh et al (Elsheikh, 

2016) has recommended an application and practical results of 

dynamic path planning and robot navigation for a mobile robot 

by using visual based controlling in an indoor environment. It is 

said that power consumption is balanced, short locomotion 

distances for the robot are anticipated and consequently enhance 

the overall time. Aliakbarpour et al (Aliakbarpour, 2014) have 

introduced several contributions on controlling a mobile robot 

operating a generic camera system. It is claimed that by using a 

basic radial model, the recommended visual servoing technique 

can be operated for commonly known type of general camera, 

both non-central and central. Ahlin et al (Ahlin, 2016) have 

proposed a leaf grasping system using a robotic manipulator in 

an unstructured environment by using deep learning and visual 

servoing. They said that Monoscopic Depth Analysis (MDA) 

enables a random number of features in unknown geometric 

characteristics. Alepuz et al (Alepuz, 2016) have exhibited a 

visual-based controller to fulfill a robot manipulator guidance. 

The manipulator has an eye-in-device camera configuration and 

is placed to a base satellite. The base is entirely independent and 

floating in space without attitude control. They said that by 

taking into account dynamics and kinematics, the controller 

system permits the robot to accomplish a defined location from 

an starting point and implement the tracking of the desired 

trajectory. Dönmez et al (Dönmez, 2016) introduce a visual 

servoing method. They use the decision tree method and graph-

based input calculation to design controller functions. They 

claimed that the proposed method provides efficient and robust 

motion modeling. Dirik et al (Dirik, 2016), (Dirik, 2020) 

proposed a decision tree controller taking positioning inputs 

according to a triangle scheme. They use an eye-out device 

configuration and a wheeled mobile robot. They only model the 

go-to-goal motion model for a  mobile robot. Dönmez et all 

(Dönmez, 2017) introduced an adaptive artificial potential field 

method that dynamically manages the parameters according to 

the target distance and available sensor data. They use image 

processing techniques to detect obstacles, robots, and target 

positions. They compare adaptive potential field and 

conventional methods and emphasize the notable achievements. 

Dirik et al (Dirik, 2017) present a fuzzy logic-based static path 

planning method. They use a fuzzy-based controller to extract a 

path plan on acquired image space. Floor vertical camera (FVC) 

configuration has been used within an external computation unit.  

The majority of the investigated studies have been carried 

out without considering the number of cameras in the 

configuration space in general. The stereovision systems with 

double cameras have been generally focused on in these studies. 

Multi-camera configured systems similar to this study are 

commonly designed by utilizing Position-Based Visual Servoing 

(PBVS) method. IVC studies are more researched compare to 

EVC studies. A simple and easy-to-use multi-camera 

configuration is implemented in this study. We have used four 

cameras to extend the configuration space. The process of image 

stitching is employed to generate a binary map including entities 

of the working environment. The position of the robot is 

determined in consecutive image frames by using simple object 

detection methods.  Both simulation and real implementation 

results have been implemented and results are analyzed. 

3. Preliminary Information 

A multi-camera configured visual-based control design 

hosts a couple of problems in its essence. The first problem is 

the image stitching procedure; it is a time-consuming task 

because of high mathematical complexity. It is not possible or 

impractical to apply it in real-time visual-based control. 

Therefore, this task is performed once before extracting the path 

plan. By using common features acquired by a feature detector 

method, images are stitched through intersection areas where 

common features are dominantly evident. After the stitching 

process; robot, target, and obstacle positions are detected and a 

path plan is extracted from this new map configuration.  The 

second issue is dividing the acquired path plan according to the 

camera intersection areas and aligning these paths to the related 

camera as local paths. The entire path has global coordinates 

acquired from the stitched image. However, these coordinate 

values cannot be used in this state. Each coordinate has to be 

updated according to the local coordinate system of the related 

camera. After the update step, the robot is controlled by taking 

and processing consecutive images from the related camera (The 

related camera is the device that sees the robot momentarily). 

But, this time a new problem appears; how to make the 

transition from one camera to another where the path continues. 

In other words, the camera seeing the continuation of the path 

has to take over the robot tracking task. The camera changing 

simply can be modeled according to the intersection areas. When 

the robot appears in these intersection areas, the other camera 

where the local path as next part of the global path continues, 

start tracking the robot and the previous camera is stopped. Then 

the next camera is activated, the target position is updated by 

taking into account the end of the path in the local area. This 

process continues until the mobile robot successfully reaches the 

target position. 

Such a working mechanism may not be needed if separate 

image processing units are employed. But, this time such a 

design will dramatically increase the cost of the control system. 

The multi-camera system ensures several advantages in terms of 

robotic control systems. Therefore, in experiments, the whole 

images of different configuration spaces are unified with the 

image stitching method. In the next step, a binary map of the 

whole image is obtained and required objects in this image are 

found with image processing. Then the multi-camera-based 

controller is employed to control the WMR until reaching the 

target position. Results of control processes are utilized to 

compare experiments in the aspect of performance, advantages, 

and disadvantages. 

4. Material and Method 

There are three stages to construct a multi-camera-based 

mobile robot control infrastructure in this study. In the first 

stage, configuration space, camera calibration, image processing, 

and controller tasks are modeled. In the second stage, the path 

planning task is performed and the acquired path is resampled.  

In the third stage, multi-camera hardware is utilized to control 

WMR in each iteration. These stages are illustrated in Figure 1.  
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Figure 1 Stages for the multi-camera control model

4.1. Configuration Space 

There are several setups for EVC infrastructure; the camera 

can be horizontally, vertically, or diagonally placed relative to 

the floor with a single or multi-camera option. In this study; four 

cameras have been vertically placed to the ceiling, thus the floor 

is seen by them as bird's eye view. Since the utilized vehicle is a 

wheeled mobile robot (WMR), this camera configuration 

ensures an applicable infrastructure.         

Configuration space has been observed through four 

cameras that have the same specifications. All cameras have 

been placed to a fixed position with the same heights from the 

ground. Figure 2 demonstrates working space representatively. 

The brown shapes represent the obstacles. Cameras are 

expressed with C1, C2, C3, and C4. The viewing area for C1 

consists of the multiplication of C1_x and  C1_y. Intersections of 

the viewing area of two cameras are C1-C2, C1-C3, C2-C4, and 

C3-C4. There is one area (C1-C2-C3-C4) where the viewing 

areas of all cameras are intersected. This situation means that 

there are several areas jointly tracked by different cameras. In 

addition, the remaining areas are observed with only one camera. 

Blue objects (T1, T2) represent the target positions. Red objects 

(I1, I2) represent boundary positions where the robot starting to 

enter or exit (from) the viewing area of two cameras at the same 

time on the path. Rp1, Rp2, and Rp3 are reference points 

between two obstacles. They are only utilized for showing the 

shortest path (desired path) and have no functions in path 

planning tasks. 

 

Figure 2 Working environment for the designed control system 

(Representative) 

4.2. Image Stitching 

Image Stitching is one of the particular studying fields that 

are commonly researched and it hosts several problems needed 

to be overcome. Generally, there are two basic goals; (a) 

superimposing the images taken from the same position and 

different angles and (b) integrating identic intersection points in 

most convenient form. The main problem with image stitching is 

the component size difference between the region 𝑥 and 𝑥’ 
because of the difference between angles, Figure 3 (Brown, 

2003). In the equations (Brown, 2003) (1), (2), (3), and (4), the 

components connected by x have been shown; 

 

Figure 3 Changes for parameters due to angle 

 𝑥 = 𝐾[𝑟𝑡]𝑋 (1) 

 𝑥′ = 𝐾′[𝑟′𝑡′]𝑋′ (2) 

 𝑡 = 𝑡′ = 0 (3) 

 𝐻 = 𝐾′𝑅′𝑅−1𝐾−1 to be, 𝑥′ = 𝐻𝑥 (4) 

In equations, 𝐾 and 𝐾′ are the matrices used for 

measurements (calibration). The parameter 𝑋 is the real object 

location. 𝑥 and 𝑥′ represent the object’s different positions 

stemming from another angle shooting. 𝑅 and 𝑅′ are matrices 

used for rotation procedure. 𝑡 and 𝑡′ are matrices for translation 

procedure. Figure 4 demonstares the difference of distances 

between the components. This difference originates from the 

camera angle. The red dot is common to both images. A 

component from the second shoot has been pointed by a green-

colored dot. 
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Figure 4 Photo shots taken from the same camera center and 

different angles (Photo: Russell J. Hewett) 

In this study, the input images for the stitching process, are 

obtained from the four cameras that are vertically placed to the 

ceiling. These images are mapped horizontally or vertically 

relative to the camera locations by superimposing common areas 

with the next intersecting camera image. Although this process is 

similar to creating a panoramic image, it is different from each 

other in terms of the location in which the image is taken. Input 

images for a panoramic image are generally taken at different 

angles with a single camera from the same camera center.  On 

the other hand, within this study, input images are obtained from 

multiple cameras with different camera centers and the same 

angle (perpendicular to the surface). Generally, creating a 

panoramic image with images taken from the same spot is more 

prone to distortions in the image. This situation stems from the 

difficulty of matching the intersection points of the images 

because of the different angles of the input images. If the 

matchings at these intersections are not sufficient, the stitching 

success at the relevant region will be low and visible distortions 

will occur. In images taken consecutively in the direction of both 

x and y coordinates from the central view, the presence of 

common intersection areas closest to each other due to the 

shooting angle is an enhancement factor. 

The performance of a multi FVCs is promising since the 

images are captured within the identic angle. Thus, the matching 

ratio of intersection regions is very high, the stitching process 

can be initiated from any reguired image. The SURF (Bay, 2008) 

or SIFT (Lowe, 2004), (Gonzalez, 2002) can be utilized to detect 

the key points when image properties are extracted. In this study, 

the SURF detector has been used. The pseudo-code executed for 

the stitching process is as follows: 

 

Image properties are detected and matched as 𝐺(𝑛) to 

𝐺(𝑛 − 1) – (common intersection regions). The SURF features 

are extracted from the black-and-white transformation of the 

first image. Because the images are close enough to the camera, 

a projective conversion is used. If pictures are farther away, an 

affine transformation is used. Then, in the iteration process, the 

SURF properties of the 𝐺 (𝑛) image are extracted. Matching of 

these extracted properties between 𝐺(𝑛) and 𝐺(𝑛 − 1) is 

performed. The geometric transformation of 𝑇(𝑛) mapped from 

𝐺(𝑛) to 𝐺(𝑛 − 1) is calculated by the RANSAC method [30] 

using property mappings and taking the previous property 

mappings as parameters. Transformations mapped from 𝐺(𝑛) 
into panaroma image/view 𝑇(1) ∗ ⋯ ∗ 𝑇(𝑛 − 1) ∗ 𝑇(𝑛) are 

calculated. It is obtained by multiplying itself and the previous 

transform together. Moving from the situation that "the center of 

the captured scene exhibits the least distortion", a good 

panorama can be acquired by changing the transformations. 

These changes are performed by inverting the transform for the 

central image. Then this transform is applied to the other 

components. This can be neglected, however, since multi FVCs 

all receive images from the same vertical angle and different 

positions. Because angle-induced distortions hardly ever occur. 

 

Figure 5 (I) Images obtained at the same angle from different 

camera positions (II) stitched the state of four-images 

In Figure 5 (I), four images (a, b, c, d) taken from the 

different positions and same angles are stitched on common 

intersection points. It should be noted that all the cameras have 

the same specifications. (II) The opacity values have been 

changed so that the stitched areas in the images look better. 

 

 

 

 

 

1. Input images (2) as parameters. G (n) and G (n-1). 

2. Feature extraction by SURF detector. 

3. Compute the matching points. 

4. Implement the RANSAC to presume a transforming for 

homography then overlap the image spots, T (n). 

5. Transform the images utilizing the homography. 

6. Perform the stitching operation.   

7. The whole process is repeated to stitch the following 

image. 
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4.3. Image Stitching 

Object detection and tracking task are performed by 

utilizing color-based segmentation. To improve the quality of the 

detection process color quantization (Mota, 2001) is used. To 

detect object positions, simple color labels are used. To detect 

orientation, a triangle-shaped red label is employed. The form of 

the robot positioning scheme with related components (robot and 

target labels) is illustrated in Figure 6 (a). Angle values in Figure 

6 (b) are calculated to be used as input for the control process. 

 

Figure 6 (a) Positioning mode for robot, (b) Physical world 

The white circular labels (l, r) represent robot wheels, red 

triangle label (c) is utilized to acquire information about robot 

direction and the blue label (t) is the target. After the centroids 

have been computed, the regions are separated based on color. 

Each separated object linked corner points of the triangle where 

lines are intersected. These centroid and angle values are 

computed for each image obtained from the camera in real-time. 

After that, all angle and centroid parameters are assigned and 

new inputs for the control step are recalculated. The velocities of 

wheels are calculated and sent to the robot in each update 

iteration. The positioning model scheme for triangle form is 

illustrated in Fig. 6. The “c, l, r, t” asteriks are centroids of the 

labels mentioned previously. In addition, ‘AR, AL, AT’ denote 

the Right-Left wheel, and Target Angles, respectively. To adjust 

angular parameters being input to the controller, internal angles 

of the virtual triangle are used. Whenever the robot moves under 

FVC, the coordinate system in 2D (x-y) space is updated 

periodically using the angle changes. Ultimately, velocity 

parameters are accurately calculated by using these angle values. 

4.4. Adaptive Artificial Potential Field Principles 

for Path Planning 

Attractive Potential Field (𝑃𝑎𝑡𝑡): It is an attraction field that 

is created by resultant of attractive forces in a region. It is used 

to pull the object to the target position in configuration space. 

The magnitude of this force generally maintains a fluctuating 

pattern until the robot reaches the predefined position. Repulsive 

Potential Field (𝑃𝑟𝑒𝑝): It is a repulsion field that is created by the 

resultant of repulsive forces in a region. It pushes the object to 

avoid obstacles and unseen locations. The magnitude of this 

force generally demonstrates a variable character according to 

the global positions and distance values between moving objects 

and obstacles. Gradient vectors are utilized to define these forces 

and they are specified as magnitude and direction. The 

mentioned forces are shown in Figure 7 for an obstacle-hosted 

configuration space. 𝐹𝑎𝑡𝑡 is the attractive force, 𝐹𝑟𝑒𝑝 is the 

repulsive force and 𝐹𝑡𝑜𝑡𝑎𝑙 is the resultant of these two forces.  

 

Figure 7 Potential field forces 

The attractive field between robot and target is created to 

pull the robot to the target position. Attractive potential field (5) 

formed by target and robot parameters is found by the following 

equation; 

 𝑃𝑎𝑡𝑡(𝑞) = {

1

2
𝜁𝑑2(𝑞, 𝑞ℎ), 𝑑(𝑞, 𝑞ℎ) ≤ 𝑑 ∗ℎ,

𝑑 ∗ℎ 𝜁𝑑(𝑞, 𝑞ℎ) −
1

2
𝜁𝑑 ∗ℎ

2, 𝑑(𝑞, 𝑞ℎ) > 𝑑 ∗ℎ,

 (5) 

𝑑(𝑞, 𝑞ℎ) is the current distance between the robot and the 𝑞ℎ 

target. 𝜁 is attraction gain and 𝑑 ∗ℎ is the threshold being the 

next value of the conical form of second-order function. 

Repulsive potential field (6) formed by obstacle and robot 

parameters is found with the equation below; 

 𝑃𝑟𝑒𝑝(𝑞) = {

1

2
𝜂 (

1

𝜌(𝑞)
−
1

𝑄∗
)
2

, 𝜌(𝑞) ≤ 𝑄∗

                                 0, 𝜌(𝑞) > 𝑄∗ 

 (6) 

In this equation, η states repulsion gain, 𝑄∗ is the distance 

threshold creating a repulsive force on the robot for an obstacle. 

𝑞𝑐 = (𝑥𝑐 , 𝑦𝑐) is a unique configuration in the nearest obstacle to 

𝑞. 𝜌(𝑞) = ‖𝑞 − 𝑞𝑐‖ is the shortest path between the robot and 

the obstacle. If the distance between the robot and the obstacle is 

larger than 𝑄∗; repulsive force is not applied to the robot 

(object). The ζ and η gain parameters and the d* and 𝑄∗ 
threshold parameters are adjusted empirically in general. 

Similarly, the repulsive force is the gradient of repulsive 

potential function. 

There may be a significant number of obstacles in the 

configuration space. The total repulsive potential is the sum of 

the repulsive potential fields stemming from all these obstacles. 

The total potential field is simply expressed with the following 

equality (7); 

 𝑃(𝑞) = 𝑃𝑎𝑡𝑡(𝑞) +∑𝑃𝑟𝑒𝑝(𝑞)

𝑛

𝑖=1

 (7) 

In this equation, n express the number of obstacles. The 

total artificial force can be formed with the following term (8); 

 𝐹(𝑞) = 𝐹𝑎𝑡𝑡(𝑞) +∑𝐹𝑟𝑒𝑝(𝑞)

𝑛

𝑖=1

 (8) 
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To adjust scaling factors of artificial potential field functions 

following (9), (10) equations are used. 𝑑(𝑞, 𝑞𝑜)𝑑𝑎𝑓  express the 

distance values acquired from virtual sensors. These virtual 

sensors are located at the front, front-left (between front and 

front-left-diagonal), and front-right (between front and front-

right-diagonal). 𝑑(𝑞, 𝑞ℎ) represents the distance between robot 

and target. The repulsion force scaling factor ‘η’ is increased 

with decreasing of the 𝑑𝑜 distance (distance to an obstacle) in 

configuration space. Similarly, the attraction force scaling factor 

‘ζ’ is increased with decreasing of the 𝑑𝑡 distance (distance to 

the target) in configuration space. 

η = η + η ∗ γ

(

 
1

√𝑑(𝑞, 𝑞𝑜)𝑑𝑎𝑓)

 ⇒ 𝑑𝑜 ↓ (9) 

ζ = ζ + ζ ∗ δ(
1

√𝑑(𝑞, 𝑞ℎ)
) ⇒ 𝑑𝑡 ↓ (10) 

4.5. Gaussian Controller Method 

The mobile robot control method is designed by inspiring 

from the basic Gaussian function. A cost-efficient vision-based 

control system is modeled with it. The function is utilized to 

determine parameter changes for the robot motion controller. 

The Gaussian simply ensures characterizing the error elimination 

model for a mobile robot navigation infrastructure. Therefore, 

this function has been selected because of providing efficient 

and highly accurate outputs. Position and orientation parameters 

generate control inputs that are used for modeling wheel 

dynamics within the controller. The general single-dimensional 

Gaussian function is given in (11).    

 fG(x) =
1

σ√2π
e−

(x−μ)2

2σ2  (11) 

  x = |
AL − AR
φ

| (12) 

  SA = Smax ∗ (1 − fG) (13) 

    SL = {
Pmax ∗ τ + SA, AL < AR
Pmax ∗ τ − SA, AL > AR

 (14) 

   SR = {
Pmax ∗ τ + SA, AL > AR
Pmax ∗ τ − SA, AL < AR

 (15) 

  SL,R = Pmax ∗ τ + SA, AL ≅ AR (16) 

The input parameter 𝑥 (12) is the difference of angle 

parameters (𝐴𝐿 – 𝐴𝑅). It corresponds to the 𝜃 angle in general 

WMR kinematics. The error can be estimated by smoothing the 

data with a large Gaussian kernel (σ = 10). The overall standard 

deviation is fixed to ‘0.41’ in the range of 0 – 1. This value has 

been found empirically for the designed controller model. 

If the difference of input parameters approaches zero (𝐴𝐿 −
𝐴𝑅 ⇒ 0), then it means that robot direction is straight toward the 

target and error is almost equal to zero. 𝜑 value is utilized as a 

scaling factor for the input value. If x value approaches ‘0’, then 

𝑓𝐺 converges to ‘1’ and if x value approaches to ‘∞’, then 𝑓𝐺 

converges to ‘0’. This situation is inversely proportional to the 

desired result. 𝑆𝐴 – “Speed Additive” is used to weight the 

velocity parameters and it is computed by using (13). We have 

used (14), (15) and (16) equations to determine 𝑆𝐿 – ‘Speed of 

Left Wheel’ and 𝑆𝑅 – ‘Speed of Right Wheel’ of the mobile 

robot. Pmax is the maximum pulse value adjusted for the velocity 

calculation of the robot. ‘τ’ is used as a constant scaling factor. 

4.6. Robot Control in Multi-Camera Configuration 

Space 

All designed controllers and positioning models are 

generally modeled with a fixed single FVC configuration. In this 

study, to create a scalable configuration space; four cameras 

have been used. These cameras acquire image frames from 

configuration space as shown in Figure 8. These input images 

are stitched to get a single image of the area. After this stage, 

object detection is performed on this single image, so that the 

binary map is obtained. Next step, the path plan is extracted 

from this binary map with A-APF (Adaptive Artificial Potential 

Field). Then, the controller method drives WMR on this path in 

real-time until the robot reaches the target. 

 

Figure 8 Multi-camera – Computer connection and 

configuration space 

In the first stage, a path is acquired from the stitched image. 

It is stated with the term 𝑆𝑝𝑎𝑡ℎ. This path parameter includes 

path coordinates obtained from the A-APF process. At the next 

stage, this variable sequence is divided (17) according to the 

number of minimum required cameras. 𝑆𝑥𝑝𝑎𝑡ℎ  exemplifies a 

piece of path within the viewing area of camera x (𝐶𝑥). The 

acquired path is partitioned according to the camera viewing 

areas where the path passes. For example; if the path plan is in 

the two cameras' field of view, it is divided into two pieces. The 

ends of these path fragments are used to model switching 

between the cameras. These endpoints are called intermediate 

targets. Only the end of the last path fragment (the main target) 

is not considered for this switching process. The robot starts to 

move according to the path fragment; firstly it tries to reach an 

intermediate target from its initial (starting position) position. 

When it arrives to the intermediate target, its available position 

is designated as starting position and the target is assigned as 

intermediate or main according to the available path fragments. 

Divided path coordinates are dispersed to the regions where path 

is hosted with the rescaling process by using (18). 𝑥𝑛𝑒𝑤  and 

𝑦𝑛𝑒𝑤  are the new coordinates (𝑥, 𝑦) that are required to compute 

in undistorted space of image. The width and height are 𝑋𝑢𝑛𝑑 

and 𝑌𝑢𝑛𝑑 in the undistorted image. The path coordinates are 𝑥𝑜𝑙𝑑  

and 𝑦𝑜𝑙𝑑  in stitched image. The width and height of the distorted 

image are 𝑋𝑑𝑖𝑠 and 𝑌𝑑𝑖𝑠. By using (19) and (20) conditional 

statements, the path is controlled if the mobile robot appears in 

the intersected area. 𝐼𝑛𝑚 expresses the intersected region; this 

parameter receives 1 or 0, the value 1 signifies that the robot is 
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in 𝐼𝑛𝑚 intersected region. 𝐶𝑎𝑐𝑡 expresses the active imaging 

device; it has to be equal to one of the camera (𝐶𝑛/𝑚) in the 

environment. If the robot is not in the intersected region then the 

currently working camera (𝐶𝑝𝑟𝑒) is assigned to the 𝐶𝑎𝑐𝑡. 𝐼𝑎𝑙𝑙  

exemplifies the intersected region where all imaging device can 

mutually track. 𝑡𝑥𝑖,𝑦𝑖 represents the target coordinates in the 2D 

image space.      

 𝑆𝑝𝑎𝑡ℎ ⇒ 𝑆1𝑝𝑎𝑡ℎ , 𝑆2𝑝𝑎𝑡ℎ , … , 𝑆𝑛𝑝𝑎𝑡ℎ ∧ 1 ≤ 𝑛 ≤ 4 ∧ 𝑛 ∈ 𝕫 (17) 

 𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑙𝑑 ∗ 𝑋𝑢𝑛𝑑
𝑋𝑑𝑖𝑠

∧ 𝑦𝑛𝑒𝑤 =
𝑦𝑜𝑙𝑑 ∗ 𝑌𝑢𝑛𝑑
𝑌𝑑𝑖𝑠

, ∀(𝑥𝑖 , 𝑦𝑖) ∧ (𝑥𝑖 , 𝑦𝑖) ∈ 𝑆𝑝𝑎𝑡ℎ (18) 

 𝐼𝑛𝑚 = 1 ? 𝐶𝑎𝑐𝑡 = 𝐶𝑛/𝑚 ∶ 𝐶𝑎𝑐𝑡 = 𝐶𝑝𝑟𝑒 (19) 

 𝐼𝑎𝑙𝑙 = 1 ? 𝐶𝑎𝑐𝑡 = 𝐶𝑛 ⇔ ∃ 𝑡𝑥𝑖,𝑦𝑖 ∈ 𝐶𝑛 ∶ 𝐶𝑎𝑐𝑡 = 𝐶𝑝𝑟𝑒 (20) 

The whole multi-camera-based control process flow is 

illustrated in Figure 9. After acquiring the path plan, the 

controller triggers the motion of the mobile robot. The robot is 

tracked with the related camera where it is in the field of view.  

When the robot moves towards the field of view of another 

camera; firstly, the control process is preceded until the robot 

fully appears in the intersection region. According to related 

cameras viewing this intersection region, the related FVC is 

activated concerning the view field of the other camera where 

the next part of the extracted path is located.  When this second 

camera is activated, the first camera is deactivated instantly. This 

means that only one camera is activated at a time. This process 

continues until the mobile robot reaches the position of the main 

target. At each intersection point, the next camera takes over the 

tracking process, and the control task proceeds in this local 

configuration space. The next camera is the device covering the 

continuation of the path part. The extracted path from the whole 

map can be in one camera field of view or more. This situation 

changes according to the distance of the target, obstacle 

positions, and robot position and direction. In each camera 

region, the controller is operated without any additional 

workload. The WMR is actuated by the controller when there is 

an intermediate or main target. The summary of the multi-FVC 

based control system is illustrated in Figure 10.   

 

Figure 9 Multi-camera based control process flow of the 

designed system 

 

Figure 10 Summary of the multi-camera based control system: (I) Simultaneously acquired images from all cameras  (II) Stitched 

image (III) Detected obstacles (IV) Extracted path plan between robot and target (V) Calculation of  controller inputs (VI) Robot 

implementation

 

4.7. Configuration Space Properties 

A multi-camera experiment has been performed with four 

webcam cameras. In our single camera-based previous work, a 

CCD camera is used for visual-based control. CCD camera 

provides more color depth compared to a webcam, but it is very 

expensive. Therefore, this cost is needed to be reduced for a 

multi-camera configuration. On the other hand, webcams are 

easy to use, platform-independent in terms of software and 

hardware, adaptable to any environment with proper 

configuration. Of course, CCD cameras have their specific 

advantages. However, such properties are not required for this 

configuration.  

Each webcam is adjusted to Super-VGA (SVGA) resolution. 

Imaging devices (or cameras) have been placed to the ceiling in 

a way that their position perpendicular to the ground. Cameras 

have been placed about 210 cm from the floor. According to 

these camera positions each camera covers about 3.05 m2, so in 

total 12.20 m2 area may be processed for this configuration.  It 

should be noted that all the webcams are the same models with 

the same specifications. Each imaging device is separately 

connected to the computer through USB ports. This physical 

configuration has been demonstrated in Figure 11 (I). 

Several distinct shaped and colored labels have been 

emplaced on the floor as different properties for the utilized 

feature detector. The utilized SURF detector searches the 

distinctive properties and matches these properties in an image 

according to the given input image. The shape size and colors 
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have been randomly determined. The only important factor is the 

position of these labels. Each camera covers a single plain area 

including two axes labels according to camera position as shown 

in Figure 11 (II). 

 

Figure 11 (I) Multi-camera configured real operating environment (II) Colored and randomly shaped labels on the operating floor 

The webcam (C920) that is utilized for multi-camera 

configuration is demonsrated in Figure 12. It has 3.2MP 

maximum video resolution and 15MP image resolution. 

However, SVGA (800x600) is used for visual servoing tasks. 

Therefore, even more, basic webcams will be enough to deal 

with the indicated resolution. In terms of image quality and noise 

reduction, it is a good choice. On the other hand, it supports a 

30fps frame capturing speed. They are fixed to aluminum 

support brackets with plastic clamps.    

 

Figure 12 The webcam used in the multi-camera configuration 

The positions of imaging devices are demonstared in Figure 

13. IDs are given as C1 to C4 to the devices respectively. The 

camera viewing area has been indicated with the blurred area. 

An example viewing area is C1-X and C1-Y area for the C1 

camera. Other cameras have similar viewing areas according to 

their positions. Red and blue regions corresponds to the common 

intersected areas for two webcams. The middle square area body 

forths the intersected region of all devices. It should be said that 

the black lines are the guidelines; they are not constraints for 

viewing area of tha cams.    

 

Figure 13 Camera positions and camera intersection regions 

5. Experiments and Observations 

5.1. Experiment (Conf-1) 

Images captured via the imaging devices with FVC 

configuration are demonstared in Figure 14. The grayish areas 

on the left or right edges in the images are the real floor texture 

of the experiment environment. The ball caster wheels are too 

small and wheels of the mobile robot are quite thin. Thus, the 

plastic-material-based layer is utilized to prevent the wheel from 

jamming to the suture area of the floor tiles. On the other hand, 

the yellow color is one of the most sensitive colors against the 

illumination changes. The blue circular label is the target and the 

brown rectangle labels are obstacles. The remaining colored 

objects on the floor are utilized as the common intersection 

properties for the stitching process.       

 

Figure 14 Real acquired areas covered by the cameras 
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The stitched image(s) are shown in Figure 15 (I) as the first 

configuration (Conf-1). The images are simply superimposed 

and re-scaled. To increase the accuracy of the utilized detector, 

color-based labels have been used. Hereby, images are precisely 

stitched to each other. The robot is in the C4 (Cam4) viewing 

area and the target is emplaced under the viewing area of C1 

(Cam1). There may be a different level of shadowing in the 

images taken from cameras. Because of such differences, several 

negligible inconsistencies in stitched objects may emerge. They 

are negligible because all these errors are too small to be 

effective on path planning and visual servoing tasks.       

   

Figure 15 (I) The stitched image to acquire Configuration-1/Conf-1 (II) Obstacle map acquired from the stitched image 

After acquiring stitched environment space, an obstacle 

detection task is executed on this space to extract the obstacle 

map, Figure 15 (II). Obstacles are detected and the environment 

is converted to the binary map. The value ‘1’ is assigned to the 

obstacles and the value ‘0’ is assigned to the remaining area.  

This task is known as ‘Binary Image Acquisition’. Robot and 

target positions are also detected and stored for further 

processes. To increase path safety, object dilation is used on 

detected obstacles. 

 

Figure 16 Simulation path with A-APF 

The adaptive artificial potential field (A-APF) generates the 

path planning on the acquired map. 192 frames have been 

acquired in simulation, so 192 different position sampling is 

taken on the acquired path. These positions are used as input to a 

visual-based control process. Simulation has taken about 11,2s, 

so 17,142 frames per second are acquired. The path cost of 

simulation is calculated as 1037,53 px. The robot tries to 

approach the target position in each iteration by calculating the 

next suitable position. In Figure 16, the formed path by A-APF 

has been given.  

The Attractive potential field (A-PF), repulsive potential 

field (R-PF), and total potential field (T-PF) forces against the 

processed frame numbers are shown in Figure 17 (I). Attractive 

potential field force has increased for a while from the initial 

state, then it has decreased until the robot arrived to the target 

position. On the other hand, repulsive forces show variable 

patterns until the task is finished. Total potential force 

parameters are computed by combining repulsive and attractive 

forces. As it can be seen, total forces are quite similar to the 

opposite direction values of the attractive forces. Therefore, 

attractive forces are the main influencers on the total force.    

 

 

Figure 17 (I) Potential force and (II) Potential scaling factor parameter changes 
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The attractive and repulsive potential scaling factor (aps and 

rps) variations are shown in Figure 17 (II). The APS accretes by 

starting from the initial point, then it lessens with small steps as 

iteration continues. The RPS accretes aggressively firstly, then it 

lessens in a vertical manner. It approaches more stable states 

with some little fluctuations after a while. On the other hand, the 

potential calculating threshold value shows small changes and 

the minimum calculating threshold value shows no changes.       

The acquired path plan has been used as a reference path 

which has to be followed by the mobile robot. The robot 

controller is triggered to make motions according to the 

reference path in real-time. 𝐴𝑅, 𝐴𝐿 and 𝐴𝑇 values are calculated 

as 73.81o, 69.19o, and 37.0o respectively at the first starting 

frame according to the intermediate target. At the end of the 

control task, these values were calculated as 59.29o, 61.41o, and 

59.29o respectively. The robot has successfully reached the pre-

defined target of about 10.5s. Starting/finishing positions of the 

robot are shown in Figure 18. 

 

Figure 18 (I) Starting position and (II) finishing position of the mobile robot 

Sample frames from the working environment, while the 

visual control process is performed, are exhibited in Figure 19. 

The ‘f1, f2 … f8’ frames represent distinct positions of the robot 

as time passes. In total 102 frames have been processed, so 

9.714 FPS is achieved until the task is completed. Half of the 

total 102 frames (51 frames) are neglected and not stored in 

physical disk storage to keep performance at a stable level. 

(Even number frames are processed but not stored, only odd 

number frames are stored.)    

 

Figure 19 Sample frames from visual-based control task 

The simulated path that has to be tracked by the robot (I) 

and real robot motions in several selected frames (II) are given 

in the following Figure 20. The mobile robot has tracked the 

path plan with the control system. The path created by robot 

motions until the target position is determined a little lesser than 

the simulated path. The primary reason behind this situation is 

the dynamic changing of local targets. The local target is 

determined according to the cartesian coordinates of the 

simulated path according a pre-defined threshold value until 

reaching the main/final target.    
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Figure 20 (I) Simulated path and starting position of robot (II) Simulation path and mobile robot motions in several frames 

 

Figure 21 Simulation path (red) and Real path (blue) 

Except for the start and finish positions, several 

intermediate positions of the robot are given in the figure. 

Eventually, the mobile robot has smoothly tracked the input path 

plan. Some error may appeared between the actual and 

simulation paths. However, this error is too small to affect cost, 

thus, this error can be ignored. The phycical/real path formed by 

the mobile robot has been given in Figure 21. As seen, the real 

path emerges a little less costly than the simulation path. The 

path lenght is detemined about 995,16px. Eventually, a 4% 

difference emerges  between simulation and real paths.    

The angle parameter changes of the control points (mobile 

robot wheels) and target are shown in Figure 22 (I). The 

intermediate destination position is continually inspected in 

control iterations. If it is required than, the target position is 

updated. The angle value have significantly rised when the 

mobile robot begins to perform rotation motions. The 𝐴𝑇, 𝐴𝐿 and 

𝐴𝑅 angle parameters get close to the each other at the end of the 

control process.  

 

Figure 22 (I) The control point’s angle changes (II) Left and Right velocity changes of WMR wheels 

Velocity parameters of the right and left wheels are shown 

in Figure 22 (II). The changes in velocities similar to the 𝐴𝐿 and 

𝐴𝑅 angle parameter changes with different amplitude. The 

primary reason is that the angle parameters affect the velocities 

of mobile robot wheels directly. The values of velocity and angle 

parameters are a bit erratic, since, two tasks are slowing down 

the system. These tasks are the controller sensitivity and the 

sample image frame storing to the disk. 

 

5.2. Experiments with Different Configurations 

(Conf-2/3) 

Experiments have been performed on two different 

operating environment configurations besides the previous 

configuration (Conf-1). The experiment environment and 

acquired path plan with the A-APF method are given in Figure 

23 for Conf-2 and Figure 24 for Conf-3. Superimposing and 

rescaling processes are performed at different levels compared to 

the previous configuration. This situation generally stems from 
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the stitch order of captured images. Therefore, it can be said that the stitch order of images directly affects the final image output.  

 

Figure 23 (I) Configuration-2 (Conf-2) and (II) simulated path plan

 

Figure 24 (I) Configuration-3 (Conf-3) and (II) simulated path plan

The mobile robot has successfully reached the pre-defined 

target under configurations with different obstacle alignments in 

simulation experiments.  In each configuration images taken 

from the camera can be superimposed differently. The important 

principle is fusing common intersection areas with a high degree 

of precision. The starting and finishing positions with angle 

values by the mobile robot are given in Figure 25 for Conf-2 and 

Figure 26 for Conf-3. In Conf-2, the WMR has started (I) with 

𝐴𝑇 = 14.94°, 𝐴𝐿 = 142.30° and 𝐴𝑅 = 22.76° and reached to 

(II) the target with 𝐴𝑇 = 57.34°, 𝐴𝐿 = 61.33° and 𝐴𝑅 = 61.33° 
angle values. On the other hand, in Conf-3, the WMR has started 

(I) with 𝐴𝑇 = 32.47°, 𝐴𝐿 = 65.88° and 𝐴𝑅 = 81.65° and 

reached to (II) the target with 𝐴𝑇 = 57.03°, 𝐴𝐿 = 55.80° and 

𝐴𝑅 = 67.17° angle values.   

 

Figure 25 (I) starting position and (II) finishing position for Conf-2
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Figure 26 (I) starting position and (II) finishing position for Conf-3

The paths formed by the motion of the mobile robot from 

the initial position to the target position are given in Figure 27. 

In each configuration, the object dilation to the obstacles has 

been implemented to increase path safety. Similar to the first 

configuration, the real paths are measured a bit shorter than the 

simulated path.  

 

Figure 27 (I) path formed in Conf-2 (II) path formed in Conf-3 

5.3. Experiment Comparisons 
İdentified path cost and time variables are shown in 

Table 1. Except for the first experiment (Conf-1) simulation 

has been carried out faster. Compare to the simulation path costs, 

the real path costs are generally found as less costly. The average 

difference between simulation and real path costs has emerged 

about 3,656% for all experiments. On the other hand, it should 

be indicated that both simulation and real paths are not perfect 

paths that minimize path cost and increase path safety with the 

best values. However, it can be stated that obtained paths are 

closer to the best path option and provide an efficient solution 

balance between safety and cost.    

Table 1 The cost and acquired time parameters for different configurations 

Experiment 
Time (s) 

Simulation  

Time (s) 

Implementation  

Cost (px) 

Simulation Path  

Cost (px)  

Real Path 

Conf-1 11,2 10,5 1037,53 995,16 

Conf-2 11,4 11,9 1088,65 1055,42 

Conf-3 12,5 13,8 1143,08 1099,27 

Şekil 1

5.4. General Observations 

In terms of scalability, multi-camera configurations provide 

advantages and disadvantages. The first advantage is eye-in-

device equipment is not required. Thus, the the system cost can 

be decreased. The another advantage is that all the robots can be 

controlled from one system (actually system may be saturated to 

an upper limit in terms of robot number). The disadvantage is 

the number of required cameras may be high for large interior 

environments. So, the flexibility of the system will reduce. To 

overcome this issue, cameras with a wide-angle lens or high-

resolution image levels can be used. Image stitching is a time-

consuming task. However, this process is only implemented 

once before triggering the real control task. The instant glare is a 

problem for this configuration as well. Besides, shadowing can 

be a problematic issue. Although all the cameras have the same 

specifications and have been placed to the same height, images 

taken from these cameras can have a different level of 

shadowing and illumination. Therefore, these two problems 

should be researched for the visual-based control systems and 

these types of issues should be focused on as separate studies. 
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5.5. The Main Influencers for Control Models 

Multi-camera-based visual control allows the robot to be 

operated for large areas in interior spaces. The camera 

specifications should be the same to acquire better efficiency and 

performance. Another factor is the number of cameras; an 

external computer can cope with a certain number of cameras. 

Therefore, as the number of the camera increases the number of 

required computers will also increase. This situation is the main 

drawback of such systems. Illumination and shadowing are big 

factors for multi-camera configuration as well. Each camera may 

be exposed to a different level of illumination. This difference 

may cause an improper stitching process if it is not handled 

properly. 

6. Conclusion and Future Works 

In this study, a model is proposed for multi-camera 

configuration for the visual servoing task. Multi-camera 

provides a scalable platform for visual servoing systems. Unlike 

the stereovision systems, depth data is not utilized. Besides, the 

depth information does not ensure any notable advantage for the 

eye-out-device configuration. This configuration resembles a 

global positioning system in a way that each camera helps to 

determine the exact location of the robot. The robot has been 

arrived the target position in each configuration, successfully. 

The simulation and real paths may be a little different from each 

other. However, the robot exhibits compatible motions to the 

extracted path plan. In the future, we aim to develop the visual 

control without stitching process. Ultimately, an efficient 

planning to create feasible path is a critical issue to overcome. 
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