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Abstract
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1. Introduction
With the development of Einstein’s theory of relativity, we know that the basic outline of black hole event horizon can be
reflected through null submanifolds in pseudo Euclidean space [1], therefore more and more geometers and physicists are
committed to the study of null submanifolds such as null special curves and lightlike cones [1–7], and have obtained some
interesting conclusions. In curve theory, We can divide curves into three types of curves: timelike curves, null curves and
spacelike curves. The timelike curves, which are the world lines of massive particles and which come with a preferred parameter,
namely proper time; null-geodesics, which are null rays or world lines of massless particles, and spacelike curves, which are
everywhere neither timelike nor null. The set of all null-geodesics through a point p generates a lightlike cone, N(p): all
timelike curves through p fill the inside of N(p), and all spacelike curves fill the outside of N(p). Lightlike cones are important
for both mathematicians and physicists. Many studies have been done on curves in the lightlike cone by many mathematicians.
For example, Sun and Pei studied the null curves on Q3 and unit semi-Euclidean 3-spheres, and the definitions of null Bertrand
curves on Q3 and unit semi-Euclidean 3-spheres are also introduced in [8]. Penrose R. indicated that null curves on null cone
were null geodesics [9]. In 2011, Meng [10] firstly proposed the concept of structure functions for cone curves, by which many
curves can be visually displayed with the help of computers and lots of pending problems on null submanifolds can be solved.
In [11, 12], the author gave the representation formula for null curves in E3

1 and E4
1 by using the generalized structure functions

which were defined by Meng and studied the properties of those null curves. In 2020, using similar method, Qian discussed
pseudo null curves in E3

1, and got some interesting conclusions [13], which greatly promoted the understanding of pseudo
Euclidean space.

Motivated by those ideas, in this paper, we study timelike and spacelike curves in E3
2 and E4

2. In Section 3, we first establish
the structure functions for spacelike curves in Q3, then consider some special curves, and give the structure functions and
expressions in these cases. In Section 4, we discuss the relationship between the cone curvatures and the structure functions of
the timelike curves in Q2, and discuss some timelike curves for which the curvature functions are constant. In Section 5, we
study the expressions for timelike curves in Q3 and give the relationship between the curvature functions.
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2. Preliminaries
We know that the inner product of vectors in Em

2 space is defined as

⟨x,y⟩=
m−2

∑
i=1

xiyi −
m

∑
j=m−1

x jy j.

A vector v in Em
2 is called spacelike, timelike or lightlike, if ⟨v,v⟩> 0, ⟨v,v⟩< 0, and ⟨v,v⟩= 0, respectively. In particular, the

vector v = 0 is said to be spacelike. A curve ξ (s) : I → Em
2 is called spacelike, timelike or null (lightlike) if all of its velocity

vectors ξ ′ satisfy ⟨ξ ′,ξ ′⟩> 0, ⟨ξ ′,ξ ′⟩< 0, and ⟨ξ ′,ξ ′⟩= 0. The norm of a vector v is given by ∥ v ∥=
√

| ⟨v,v⟩ |.
Let c be a fixed point in Em

q , the pseudo-Riemannian lightlike cone (quadric cone) is defined by [14]

Qm
q (c) = {x ∈ Em+1

q : ⟨x− c,x− c⟩= 0}.

When c = 0, we simply denote as Qm and call it the lightlike cone (or simply the light cone) [15], we assume that the curve

x(t) : I →Qm+1 ⊂ Em+2
2

is a regular curve in Qm+1.
Except for special instructions, the curves we discussed in this paper are all regular curves.

3. Structure functions of spacelike curves in Q3

Theorem 1. Let ξ (s) : I →Q3 ⊂ E4
2 be a spacelike curve with parameterized by arc length s. Then ξ (s) can be written as

ξ (s) = ρ(2 f ,1− f 2 +g2,2g,1+ f 2 −g2),

where ρ(s) =
1

2
√

f 2
s −g2

s
.

Proof. We set ξ = (ξ1,ξ2,ξ3,ξ4) and obtain

ξ
2
1 +ξ

2
2 −ξ

2
3 −ξ

2
4 = 0.

By a direct calculation, we can get

ξ1 +ξ3

ξ4 +ξ2
=

ξ4 −ξ2

ξ1 −ξ3
, or

ξ1 +ξ3

ξ4 −ξ2
=

ξ4 +ξ2

ξ1 −ξ3
.

Without loss of generality, we may assume that
ξ1 = 2ρ f ,
ξ3 = 2ρg,
ξ4 +ξ2 = 2ρ,

(1)

then, we get
ξ1 = 2ρ f ,
ξ2 = ρ(1− f 2 +g2),

ξ3 = 2ρg,
ξ4 = ρ(1+ f 2 −g2).

(2)

Therefore, the spacelike curve ξ (s) can be written as

ξ = ξ (s) = (ξ1,ξ2,ξ3,ξ4) = ρ(2 f ,1− f 2 +g2,2g,1+ f 2 −g2). (3)

From (3) we have

ξs = ρs(2 f ,1− f 2 +g2,2g,1+ f 2 −g2)+2ρ( fs,− f fs +ggs,gs, f fs −ggs).
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Since ⟨ξs,ξs⟩= 1, we get

4ρ
2( f 2

s −g2
s ) = 1, (4)

by an appropriate transformation if necessary, we have

ρ(s) =
1

2
√

f 2
s −g2

s
. (5)

This ends the proof. ■

Definition 2. We define the functions f (s) and g(s) as the structure functions of the cone curve ξ (s) : I → Q3 ⊂ E4
2 with

parameterized by arc length s.

Putting

γ(s) =−ξss −
1
2
⟨ξss,ξss⟩ξ (s), (6)

we have

⟨γ,γ⟩= ⟨ξ ,ξ ⟩= ⟨γ,ξs⟩= 0,⟨ξ ,γ⟩= 1. (7)

Let α(s) = ξs(s), and we select β (s) such that

det(ξ (s),α(s),β (s),γ(s)) = 1. (8)

Then from (6) we have

αs(s) = ξss(s) =−1
2
⟨ξss,ξss⟩ξ (s)− γ(s) = k(s)ξ (s)− γ(s). (9)

Thus, the Frenet formulas of the curve ξ (s) are the followings:
ξs(s) = α(s),
αs(s) = k(s)ξ (s)− γ(s),
βs(s) = τ(s)ξ (s),
γs(s) =−k(s)α(s)− τ(s)β (s).

(10)

Position 1. The frame {ξ (s),α(s),β (s),γ(s)} is called the cone Frenet frame of the curve ξ (s) in Q3.

Theorem 3. Let ξ (s) : I →Q3 ⊂ E4
2 be a spacelike curve with parameterized by arc length s. f (s) and g(s) are the structure

functions of the cone curve ξ (s). Then the curvature functions k(s), τ(s) can be expressed as{
k(s) = 1

2 [(lnρ)s]
2 +(lnρ)ss +

1
2 θ 2

s ,

τ2(s) =−(θs(lnρ)s +θss)
2,

where θs = (1− g2
s

f 2
s
)−1(

gs

fs
)s.

Proof. Assume that{
2 fs = ρ−1 coshθ ,

2gs = ρ−1 sinhθ .
(11)

where

tanhθ =
gs(s)
fs(s)

. (12)
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Differentiating equation (12) with respect to s, we have

θs = (1− g2
s

f 2
s
)−1(

gs

fs
)s. (13)

By (11), we can obtain{
2 fss =−ρ−2ρs coshθ +ρ−1θs sinhθ ,

2gss =−ρ−2ρs sinhθ +ρ−1θs coshθ ,
(14)

and {
2 fsss = (2ρ−3ρ2

s −ρ−2ρss +ρ−1θ 2
s )coshθ +(ρ−1θss −2ρ−2ρsθs)sinhθ ,

2gsss = (2ρ−3ρ2
s −ρ−2ρss +ρ−1θ 2

s )sinhθ +(ρ−1θss −2ρ−2ρsθs)coshθ .
(15)

By (3), we can calculate that

ξss = ρss(2 f ,1− f 2 +g2,2g,1+ f 2 −g2)+4ρs( fs,− f fs +ggs,gs, f fs −ggs)

+2ρ( fss,− f 2
s − f fss +g2

s +ggss,gss, f 2
s + f fss −g2

s −ggss),

and

ξsss = ρsss(2 f ,1− f 2 +g2,2g,1+ f 2 −g2)+6ρss( fs,− f fs +ggs,gs, f fs −ggs)

+6ρs( fss,− f 2
s − f fss +g2

s +ggss,gss, f 2
s + f fss −g2

s −ggss)

+2ρ( fsss,−3 fs fss − f fsss +3gsgss +ggsss,gsss,3 fs fss + f fsss −3gsgss −ggsss).

(16)

From (11), (14) and (15) we have

⟨ξss,ξss⟩= 16ρ
2
s ( f 2

s −g2
s )+4ρ

2( f 2
ss −g2

ss)+8ρρss(g2
s − f 2

s )+16ρρs( fs fss −gsgss)

= ρ
−2

ρ
2
s −θ

2
s −2ρ

−1
ρss,

(17)

and

⟨ξsss,ξsss⟩=36ρ
2
ss( f 2

s −g2
s )+36ρ

2
s ( f 2

ss −g2
ss)+4ρ

2( f 2
sss −g2

sss)

+24ρsρsss(g2
s − f 2

s )+24ρρss( fs fsss −gsgsss)

+24ρρs( fss fsss −gssgsss)+24ρρsss(gsgss − fs fss)

+72ρsρss( fs fss −gsgss)

=4ρ
−2

ρ
2
ss +ρ

−4
ρ

4
s −3ρ

−2
ρ

2
s θ

2
s −4ρ

−3
ρ

2
s ρss

+4ρ
−1

ρssθ
2
s +θ

4
s −2ρ

−1
ρsθsθss −θ

2
ss.

(18)

From (9) and (17), we have

k(s) =− 1
2
⟨ξss,ξss⟩

=− 1
2

ρ
−2

ρ
2
s +

1
2

θ
2
s +ρ

−1
ρss (19)

=
1
2
[(lnρ)s]

2 +(lnρ)ss +
1
2

θ
2
s .

From (9), (10) and ⟨ξ ,ξsss⟩= 0, ⟨ξs,ξsss⟩=−⟨ξss,ξss⟩, we have

τ(s)β (s) = ξsss + ⟨ξss,ξss⟩ξs + ⟨ξss,ξsss⟩ξ (20)

and then

τ
2(s) =⟨−ξsss + ksξ + kξs,−ξsss + ksξ + kξs⟩− k2

=− (ρ−1
ρsθs +θss)

2

=− (θs(lnρ)s +θss)
2.

(21)

This ends the proof. ■
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Some examples of spacelike curves in Q3 are given below.

Example 4. Let ξ1(s) = (s,
1
2

s2 − 1,1,
1
2

s2) be a spacelike curve in Q3 with curvature k(s) = 0, τ = 0. Then the structure
functions can be written as

f (s) = s
s2−1 ,

g(s) = 1
s2−1 ,

ρ(s) = s2−1
2 .

Example 5. Let ξ2(s) = (m,
√

m2 −n2 sinh
s√

m2 −n2
,n,

√
m2 −n2 cosh

s√
m2 −n2

) be a spacelike curve in Q3 with curvature

k(s)> 0, τ = 0. Then the structure functions can be written as
f (s) = m

2ρ
,

g(s) = n
2ρ
,

2ρ(s) =
√

m2 −n2(cosh s√
m2−n2

+ sinh s√
m2−n2

),

where m2 −n2 > 0.

Example 6. Let ξ3(s) = (
√

m2 −n2 sinh
s√

m2 −n2
,m,

√
m2 −n2 cosh

s√
m2 −n2

,b) be a spacelike curve in Q3 with curvature

k(s)< 0, τ = 0. Then the structure functions can be written as
f (s) =

√
m2−n2

m+n sinh s√
m2−n2

,

g(s) =
√

m2−n2

m+n cosh s√
m2−n2

,

2ρ(s) = m+n,

where m2 −n2 > 0.

4. Structure functions of timelike curves in Q2

Theorem 7. Let ξ (s) : I →Q2 ⊂ E3
2 be a timelike curve with parameterized by arc length s. Then ξ (s) can be written as

ξ (s) =
1
2

f−1
s ( f 2 +1, f 2 −1,2 f ),

where fs =
d f
ds ̸= constant.

Proof. We set ξ (s) = (ξ1,ξ2,ξ3) and obtain

ξ
2
1 −ξ

2
2 −ξ

2
3 = 0.

By a direct calculation, we can get

ξ1 +ξ2

ξ3
=

ξ3

ξ1 −ξ2
.

Without loss of generality, we may assume that

ξ1 +ξ2

ξ3
=

ξ3

ξ1 −ξ2
= f (s), ξ3 = 2ρ(s), (22)

so that
ξ1 = ρ( f + f−1),

ξ2 = ρ( f − f−1),

ξ3 = 2ρ.

(23)
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Therefore, the timelike curves ξ (s) can be written as

ξ = ξ (s) = (ξ1,ξ2,ξ3) = ρ( f + f−1, f − f−1,2). (24)

From (24) we have

ξs = ρs( f + f−1, f − f−1,2)+ρ fs(1− f−2,1+ f−2,0).

Since ⟨ξs,ξs⟩=−1, we get

4ρ
2 f 2

s f−2 = 1, (25)

by an appropriate transformation if necessary, we have

ρ(s) =
f (s)

2 fs(s)
. (26)

Thus, we have

ξ (s) =
f

2 fs
( f + f−1, f − f−1,2) =

1
2

f−1
s ( f 2 +1, f 2 −1,2 f ). (27)

This ends the proof. ■

Definition 8. We define the function f (s) as the structure function of the cone curve ξ (s) : I → Q2 ⊂ E3
2 with arc length

parameter s.

Putting

γ(s) =−ξss(s)+
1
2
⟨ξss(s),ξss(s)⟩ξ (s). (28)

By (24) we can obtain

γ(s) =−ξss +
1
2
⟨ξss(s),ξss(s)⟩ξ (s)

=
1
4

f−3
s f 2

ss( f 2 +1, f 2 −1,2 f )− f−1
s fss( f , f ,1)+ fs(1,1,0) (29)

=− 1
2

f−2
s f 2

ssξ + f−1
s fss( f , f ,1)− fs(1,1,0),

and

⟨γ,γ⟩= ⟨ξ ,ξ ⟩= ⟨γ,ξs⟩= 0,⟨ξ ,γ⟩=−1. (30)

Let α(s) = ξs(s), then
ξs(s) = α(s),
αs(s) = k(s)ξ (s)− γ(s),
γs(s) =−k(s)α(s).

(31)

Position 2. The frame {ξ (s),α(s),γ(s)} is called the cone Frenet frame of the curve ξ (s) in Q2.

Theorem 9. Let ξ (s) : I →Q2 ⊂ E3
2 be a timelike curve with parameterized by arc length s. f (s) is the structure function of

the cone curve ξ (s). Then the curvature function k(s) can be expressed as

k(s) =
1
2
[(ln fs)s]

2 − [(ln fs)s]s.
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Proof. From (27) we have

⟨ξss,ξss⟩=− f−2
s f 2

ss +2 fs(2 f−3
s f 2

ss − f−2
s fsss) = 3 f−2

s f 2
ss −2 f−1

s fsss. (32)

From (28), (31) and (32), we have

k(s) =
1
2
⟨ξss,ξss⟩=

3
2

f−2
s f 2

ss − f−2
s fsss =

1
2
[(ln fs)s]

2 − [(ln fs)s]s. (33)

This ends the proof. ■

By solving above Riccati equation (33) with vanishing linear term, we obtain some special solutions and have the following
classifications for special curves in Q2.

Remark 10. In particular, when the curve ξ (s) is planar, the structure function f (s) satisfies

((ln fs)s)
2 −2(ln fs)ss = 2k(s) = c = constant,

and we have the following classifications:

1. when −m2 = c < 0, f (s) =
2
m

tan
ms
2

, ξ (s) is an ellipse, and can be written as

ξ (s) = (
2

m2 sin2 ms
2

+
1
2

cos2 ms
2
,

2
m2 sin2 ms

2
− 1

2
cos2 ms

2
,

1
m

sinms).

2. when c = 0, f (s) =−m
s

, ξ (s) is a parabola, and can be written as

ξ (s) = (
m
2
+

s2

2m
,

m
2
− s2

2m
,−s).

3. when m2 = c > 0, f (s) =
2
m

tanh
ms
2

, ξ (s) is a hyperbola, and can be written as

ξ (s) = (
2

m2 sinh2 ms
2

+
1
2

cosh2 ms
2
,

2
m2 sinh2 ms

2
− 1

2
cosh2 ms

2
,

1
m

sinhms).

Remark 11. In particular, when the curve ξ (s) is a non planar helix, the structure function f (s) satisfies

((ln fs)s)
2 −2(ln fs)ss = 2k(s) = m(s+n)−2. (34)

Moreover, we have

1. f (s) = sc or f (s) = s−c, for c ̸= 0,±1 and m = c2 −1;

2. f (s) =
c

lns
or f (s) =

lns
c

, for c ̸= 0 and m =−1;

3. f (s) =
2
c

tan(
c
2

lns) or f (s) =−2
c

tan−1(
c
2

lns), for c ̸= 0,±1 and m =−c2 −1.

Proof. When 2k(s) = m(s+n)−2, we can assume η(s) = (ln fs)s. The equation (34) can be written as η2 −2ηs = m(s+n)−2.
By solving this equation, we can get the conclusions of Remark 11. ■

Some examples of timelike curves in Q2 are given below.

Example 12. Let ξ4(s) be a timelike curve in Q2 with curvature k(s)= 0. Then ξ4(s) can be written as ξ4(s)= (
1+ s2

2
,

1− s2

2
,−s)(

see Figure 1).

Example 13. Let ξ5(s) be a timelike curve in Q2 with curvature k(s) = − 1
2s2 . Then ξ5(s) can be written as ξ5(s) =

(
s ln2 s+ s

2
,

s ln2 s− s
2

,s lns), (s>0)( see Figure 2).
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Fig. 1. ξ4(s) shown with cone

Fig. 2. ξ5(s) shown with cone
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5. Structure functions of timelike curves in Q3

Theorem 14. Let ξ (s) : I →Q3 ⊂ E4
2 be a timelike curve with arc length parameter s. Then ξ (s) can be written as

ξ (s) = ρ(2 f ,1− f 2 +g2,2g,1+ f 2 −g2),

where ρ(s) = 1
2
√

g2
s− f 2

s
.

Proof. We set ξ (s) = (ξ1,ξ2,ξ3,ξ4) and obtain

ξ
2
1 +ξ

2
2 −ξ

2
3 −ξ

2
4 = 0.

By a direct calculation, we can get

ξ1 +ξ3

ξ4 +ξ2
=

ξ4 −ξ2

ξ1 −ξ3
, or

ξ1 +ξ3

ξ4 −ξ2
=

ξ4 +ξ2

ξ1 −ξ3
.

Without loss of generality, we may assume that
ξ1 = 2ρ f ,
ξ4 +ξ2 = 2ρ(s),
ξ3 = 2ρg,

(35)

then, we get
ξ1 = 2ρ f ,
ξ2 = ρ(1− f 2 +g2),

ξ3 = 2ρg,
ξ4 = ρ(1+ f 2 −g2).

(36)

Therefore, the timelike curves ξ (s) can be written as

ξ = ξ (s) = (ξ1,ξ2,ξ3,ξ4) = ρ(2 f ,1− f 2 +g2,2g,1+ f 2 −g2). (37)

From (37) we have

ξs = ρs(2 f ,1− f 2 +g2,2g,1+ f 2 −g2)+2ρ( fs,− f fs +ggs,gs, f fs −ggs).

Since ⟨ξs,ξs⟩=−1, we get

4ρ
2(g2

s − f 2
s ) = 1, (38)

by an appropriate transformation if necessary, we have

ρ(s) =
1

2
√

g2
s − f 2

s
. (39)

This ends the proof. ■

Definition 15. We define the functions f (s) and g(s) as the structure functions of the cone curve ξ (s) : I →Q3 ⊂ E4
2 with arc

length parameter s.

Putting

γ(s) =−ξss +
1
2
⟨ξss,ξss⟩ξ , (40)

we have

⟨γ,γ⟩= ⟨ξ ,ξ ⟩= ⟨γ,ξs⟩= 0,⟨ξ ,γ⟩= 1. (41)
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Let α(s) = ξs(s), and we select β (s) such that

det(ξ (s),α(s),β (s),γ(s)) = 1. (42)

Then from (40) we have

αs(s) = ξss(s) =
1
2
⟨ξss,ξss⟩ξ (s)− γ(s). (43)

Therefore, the Frenet formulas of the curve ξ (s) are the followings:
ξs(s) = α(s),
αs(s) = k(s)ξ (s)− γ(s),
βs(s) = τ(s)ξ (s),
γs(s) =−k(s)α(s)− τ(s)β (s).

(44)

Position 3. The frame {ξ (s),α(s),β (s),γ(s)} is called the cone Frenet frame of the curve ξ (s) in Q3.

Theorem 16. Let ξ (s) : I →Q3 ⊂ E4
2 be a timelike curve with parameterized by arc length s. f (s) and g(s) are the structure

functions of the cone curve ξ (s). Then the curvature functions k(s), τ(s) can be expressed as{
k(s) = 1

2 [(lnρ)s]
2 +(lnρ)ss +

1
2 θ 2

s ,

τ2(s) = (θs(lnρ)s +θss)
2,

where θs = (1− f 2
s

g2
s
)−1(

fs

gs
)s.

Proof. We can assume{
2gs = ρ−1 coshθ ,

2 fs = ρ−1 sinhθ .
(45)

where

tanhθ =
fs(s)
gs(s)

. (46)

Differentiating equation (46) with respect to s, we have

θs = (1− f 2
s

g2
s
)−1(

fs

gs
)s. (47)

By (45) we can obtain{
2gss =−ρ−2ρs coshθ +ρ−1θs sinhθ ,

2 fss =−ρ−2ρs sinhθ +ρ−1θs coshθ ,
(48)

and {
2gsss = (2ρ−3ρ2

s −ρ−2ρss +ρ−1θ 2
s )coshθ +(ρ−1θss −2ρ−2ρsθs)sinhθ ,

2 fsss = (2ρ−3ρ2
s −ρ−2ρss +ρ−1θ 2

s )sinhθ +(ρ−1θss −2ρ−2ρsθs)coshθ .
(49)

We can also calculate that

⟨ξss,ξss⟩= 16ρ
2
s ( f 2

s −g2
s )+4ρ

2( f 2
ss −g2

ss)

+8ρρss(g2
s − f 2

s )+16ρρs( fs fss −gsgss) (50)

=−ρ
−2

ρ
2
s +θ

2
s +2ρ

−1
ρss,
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and

⟨ξsss,ξsss⟩=36ρ
2
ss( f 2

s −g2
s )+36ρ

2
s ( f 2

ss −g2
ss)+4ρ

2( f 2
sss −g2

sss)

+24ρρss( fs fsss −gsgsss)+24ρρs( fss fsss −gssgsss)

+24ρρsss(gsgss − fs fss)+72ρsρss( fs fss −gsgss)

+24ρsρsss(g2
s − f 2

s )

=−4ρ
−2

ρ
2
ss −ρ

−4
ρ

4
s +3ρ

−2
ρ

2
s θ

2
s +4ρ

−3
ρ

2
s ρss

−4ρ
−1

ρssθ
2
s −θ

4
s +2ρ

−1
ρsθsθss +θ

2
ss.

(51)

From (43) and (50) , we have

k(s) =
1
2
⟨ξss,ξss⟩

=− 1
2

ρ
−2

ρ
2
s +

1
2

θ
2
s +ρ

−1
ρss (52)

=
1
2
[(lnρ)s]

2 +(lnρ)ss +
1
2

θ
2
s ,

From (43), (44) and ⟨ξ ,ξsss⟩= 0, ⟨ξs,ξsss⟩=−⟨ξss,ξss⟩, we have

τ(s)β (s) = ξsss −⟨ξss,ξss⟩ξs −⟨ξss,ξsss⟩ξ (53)

and then

τ
2(s) =⟨−ξsss + ksξ + kxs,−ξsss + ksξ + kξs⟩− k2

=
1
2
⟨ξss,ξss⟩2 + ⟨ξsss,ξsss⟩

=(ρ−1
ρsθs +θss)

2

=(θs(lnρ)s +θss)
2.

This ends the proof. ■

Two examples of timelike curves in Q3 are given below.

Example 17. Let ξ7(s) = (1, 1
2 s2,s, 1

2 s2 −1) be a timelike curve in Q3 with curvature k(s) = 0, τ(s) = 0. Then the structure
functions can be written as

f (s) = 1
s2−1 ,

g(s) = s
s2−1 ,

ρ(s) = s2−1
2 .

Example 18. Let ξ8(s) = (n,
√

m2 −n2 cosh
s√

m2 −n2
,m,

√
m2 −n2 sinh

s√
m2 −n2

) be a timelike curve in Q3 with curvature

k(s)> 0, τ(s) = 0. Then the structure functions can be written as
f (s) = n

2ρ
,

g(s) = m
2ρ
,

2ρ(s) =
√

m2 −n2(cosh s√
m2−n2

+ sinh s√
m2−n2

),

where m2 −n2 > 0.

6. Conclusions
In this paper, we discussed the cone curves in E3

2 and E4
2. By putting forward the concept of structure function of cone curve,

the relationship between curvature function and structure function was obtained. By using the results in this study, cone curves
could be displayed intuitively via drawing software on computer, which will greatly promote the widespread application of
cone curves.
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