
Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 26, S. 128-132, Temmuz 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

Special Issue 26, pp. 128-132, July 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 128

FPGA Hardware Implementation of a SHA384 Accelerator for

Internet of Things Applications

İhsan Çiçek1*

1 İstinye Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Bölümü, İstanbul, Türkiye (ORCID: 0000-0002-7881-1263)

(3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications June 11-13, 2021)

 (DOI: 10.31590/ejosat.951580)

ATIF/REFERENCE: Cicek, I. (2021). FPGA Hardware Implementation of a SHA384 Accelerator for Internet of Things

Applications. European Journal of Science and Technology, (26), 128-132.

Abstract

The abundance of the IoT devices surrounding us brings new opportunities and challenges. IoT technology enables remote monitoring

and control of cyber-physical systems on a global scale. One key aspect of IoT technology is the security which is usually neglected

by manufacturers. Because of IoT based security breaches, IoT devices need cryptographic functions to provide confidentiality,

integrity and authentication capabilities in modern applications. However, the limited computational power available in the processors

used in IoT systems imposes the development and use of hardware peripherals dedicated for performing cryptographic operations.

One of the most popular cryptographic functions used in the IoT applications is the secure hash algorithms. They are extensively used

for data integrity and authentication applications. In this work, we have designed, verified, and implemented a hardware IP core of the

SHA-384 algorithm. In addition, we have also integrated the SHA-384 hardware module with a synthesizable processor as an AXI4

peripheral to enable in-application testing using custom software. Our design can operate up to 170 MHz and occupies only 982 CLB

slices and one BRAM on a Xilinx Artix-7 FPGA device. The estimated total power consumption is 223 mW when the module is

integrated with a minimal configuration Microblaze processor system.

 Keywords: SHA2, SHA-384, Secure Hash Algortihm, FPGA, Cryptography.

Nesnelerin İnterneti Uygulamaları İçin Bir SHA-384 Hızlandırıcısının

FPGA Donanım Gerçeklemesi

Öz

Çevremizdeki IoT cihazlarının bolluğu yeni fırsatları ve zorlukları getiriyor. IoT teknolojisi, siber-fiziksel sistemlerin küresel ölçekte

uzaktan izlenmesini ve kontrolünü sağlamaktadır. IoT teknolojisinin önemli bir yönü, genellikle üreticiler tarafından ihmal edilen

güvenliktir. güvenlik ihlalleri nedeniyle IoT cihazları, modern uygulamalarda gizlilik, bütünlük ve kimlik doğrulama yetenekleri

sağlamak için kriptografik işlevlere ihtiyaç duyar. Bununla birlikte, IoT sistemlerinde kullanılan işlemcilerin sınırlı hesaplama gücü,

kriptografik işlemleri gerçekleştirmek için adanmış donanım çevre birimlerinin geliştirilmesini ve kullanılmasını zorunlu kılar. IoT

uygulamalarında kullanılan en popüler kriptografik işlevlerden biri güvenli özet algoritmalarıdır. Veri bütünlüğü ve kimlik doğrulama

uygulamaları için yaygın olarak kullanılırlar. Bu çalışmada, SHA-384 algoritmasını bir donanım çekirdeği şeklinde tasarladık,

doğruladık ve gerçekledik. Ek olarak, özel yazılım kullanarak uygulama içi testler yapabilmek için SHA-384 donanım modülünü bir

AXI4 çevre birimi olarak sentezlenebilir bir işlemci ile entegre ettik. Tasarımımız 170 MHz'e kadar çalışabilmektedir ve bir Xilinx

Artix-7 FPGA tümleşik devresinde yalnızca 982 CLB dilimi ve bir BRAM kaplamaktadır. Modül minimum konfigürasyonlu

Microblaze işlemci sistemiyle entegre edildiğinde tahmini olarak toplam 223 mW güç tüketmektedir.

Anahtar Kelimeler: SHA2, SHA-384, Güvenli özet algoritmaları, FPGA, Kriptografi.

* Corresponding Author: İstinye Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Bölümü, İstanbul, Türkiye, ORCID: 0000-0002-7881-

1263, ihsan.cicek@istinye.edu.tr

http://dergipark.gov.tr/ejosat

European Journal of Science and Technology

e-ISSN: 2148-2683 129

1. Introduction

The rise of the Internet-of-Things (IoT) in the last decade

has enabled many beneficial applications that yield new

opportunities and challenges. IoT technology allows remote

monitoring, control and micro-management of cyber-physical

systems on a global scale. Future projections predict that the

number of connected devices will be measured in billions and

the economic impact of the IoT will be significant as presented

in Figure 1 [1]. Accordingly, security became a critical aspect of

the IoT technology. Unfortunately, it is usually overlooked in the

product development cycle. As a result of the factors such as

additional development costs, time-to-market push and lack of

vision, IoT device manufacturers neglect the security

requirements which creates the Achille’s heel and paves the way

for potential security breaches and hazards [2]. Considering

security at the beginning of the design stage can save time and

mitigate later corrective efforts. Additionally, secure-by-design

approach can protect IoT companies against financial and

reputation losses of the unpredictable future.

Figure 1. Global future projection for the deployed IoT devices

toward 2025 [1].

Forward-looking security provisions impose the use of

cryptography due to the raised risks associated with the ever-

increasing connectivity of IoT devices. Cryptographic primitives

and algorithms provide the methods for confidentiality, data

integrity and authentication for communicating parties.

However, the computational requirements of cryptographic

algorithms still pose a problem for the cost-sensitive lightweight

IoT systems. The low-cost processors used in such systems

usually have confined computational power and performance of

the cryptographic algorithms implemented in software is

mediocre. Moreover, cryptographic software will consume the

limited codespace that is mainly reserved for the IoT application

of interest. Conventional approach is to use dedicated

cryptographic hardware peripherals to aid the microprocessor in

performing information security related tasks. This not only

offloads the CPU but also provide additional security at the

hardware level.

In IoT network communication, hash based message

authentication codes (HMACs) are used for message

authentication and/or integrity checking [3]. Although block

ciphers can be used, hash functions are more preferred in

practice, as they are easier to compute and flexible enough to be

used globally without any export restrictions [3]. Thus,

cryptographic strength of the HMAC depends heavily on the

underlying hash function's cryptographic strength, the size of its

hash output, and the size and randomness quality of the key

used. The use of hash-based message authentication codes has

been standardized and adopted to many popular communication

protocols [4]. Today, hash-based message authentication codes

are widely used within the SSH, TLS and IPSEC protocols.

Consequently, it is always necessary to compute the hashes of

the data to be transmitted or received in an IoT device and this

can create a computational performance bottleneck for the local

processor. Any cryptographic hash function, such as SHA-1,

SHA-2 or SHA-3 can be used in the calculation of a hash-based

message authentication code [5]. Secure hash functions are free

of collisions and the generated outputs are unique and

unparalleled for every single data input. Authentication and

integrity are two of the essences needed to build secure network

systems, and SHA algorithms provide both. SHA2 replaced

SHA1 after the success of an attack and it has been further

superceded by SHA3 as an upgrade [6,7]. However, SHA2 still

remains to be the most widely deployed and used secure hash

function. The SSL/TLS certificates today use 384-bit SHA2

(SHA-384) digests to ensure security for internet communi-

cation.

In this work, we present the hardware design of SHA-384

algorithm as an IP core that can be wrapped as a peripheral and

integrated with a processor that targets lightweight and cost-

sensitive IoT applications. Our key contribution is the

development of a small-footprint SHA-384 hardware module

that provides high performance in a small footprint. The paper is

organized as follows: In Section 2, we briefly introduce the

SHA-384 algorithm and its process flow. Section 3 provides the

details of platform used for the development of the IP core along

with functional verification and hardware in the loop validation

of the proposed design. Section 4 discusses the evaluation results

and marks future directions.

2. SHA-384 Secure Hash Algorithm

Overview

Workflow of the SHA-384 algorithm is based on operations

such as message padding, parsing and one way hash functions as

presented in Figure 2. The listed steps below briefly explain how

SHA-384 algorithm performs pre-processing, and how the hash

value is calculated by using the padding, parsing and

compressing functions according to [5]:

1. Padding the message (To make sure that the padded

message is a multiple of 1024 bits).

2. Parsing the message (The massage and its padding are

parsed into N 1024-bit blocks).

3. Setting the initial hash value (Consists of eight 64-bit

words in hexadecimal format).

An overview of the algorithmic flow of the SHA-384 is

shown in Figure 2. At the beginning, the message is divided into

N-blocks, each of which is comprised of 1024 bits. The initial

hash value (H0) is assigned at first, before any operation. After

the initialization process the successive hash values are

computed sequentially, one block at a time, such that every

calculated hash value is transferred to the next block. The final

hash code of the message is determined after the computation of

the N-th message block and set as the final output [5].

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 130

Figure 2. Algorithmic process flow of the SHA-384.

3. Hardware Implementation of the SHA-

384 Secure Hash Algorithm

3.1. Design of the SHA-384 Secure Hash Algorithm

IP Core

The reconfigurability and parallelization features of the field

programmable gate arrays (FPGAs) render them as convenient

platforms for hardware prototyping of algorithms. We used an

FPGA development board that has a Xilinx Artix 7 family device

(XC7A35T-1CPG236C) to design and implement the SHA-384

secure hash algorithm IP core. SHA-384 is primarily based on

scarmbling the input with some predefined constants, then

computing the hash values through corresponding special

functions dedicated for each step, and finally, after the

acquisition of all inputs, the yielding hash values are used to

calculate the SHA-384 final output digest value. The top level

interface of the SHA-384 module is shown in Figure 3. The

design accepts message data in 64-bit blocks and also outputs

the final hash value in six consecutive 64-bits of data, so six 64-

bit or twelve 32-bit registers are needed to keep the 384-bit final

hash value on the host.

We developed and verified the hardware model of the SHA-

384 using Verilog HDL in Xilinx Vivado integrated design

environment. The module remains in idle mode by default after

the power-on event and FPGA loads the configuration bitstream.

The module starts operating after applying a logic high to the

start/stop input. The 1024-bit message is loaded into the module

in 16 clock cycles and hash computation starts right after. When

the computation of the hash value is complete, and 384-bit

computed hash value is output sequentially in six clock cycles

by 64-bit words and the digest_ready flag output is held at logic

high during this period. This signal can be used as an interrupt

generator for the host system.

3.2. Functional Verification of the SHA-384 Secure

Hash Algorithm IP Core

We performed functional verification of our design using

the Vivado ISim HDL simulator. A testbench module is designed

to drive the SHA-384 module and apply the test vectors. The

functional verification simulation results are provided in Figure

4. The input presented in the simulation is “6162636461626364”

corresponds to the hexadecimal value of the “abcdabcd”. The

input message has been sent twice to the SHA-384 IP core,

which means that the message passed to it is actually

“abcdabcdabcdabcd”. After the message input has been received,

the calculation of the hash is performed and the final digest

value is presented by the DataOut signal. The final calculated

digest output for the input message is equal to the expected value

calculated using the software model of the SHA-384 algorithm.

3.3. Hardware Implementation of the SHA-384

Secure Hash Algorithm IP Core

The hardware module designed in Verilog HDL is

synthesized and implemented for the target FPGA device

(XC7A35T-1CPG236C) and the hardware resource utilization of

the module is reported in Table 1 along with other studies in the

literature. SHA-384 design can operate up to a maximum clock

frequency of 170 MHz at the cost of 982 configurable logic

block slices (CLBs) as shown in Table 1. Our design performs

better in terms of both maximum clock frequency and hardware

resource utilization when compared to the similar work in the

literature.

Figure 3. Hardware interface of the proposed SHA-384 module.

Figure 4. Functional verification of the designed SHA-384 module.

European Journal of Science and Technology

e-ISSN: 2148-2683 131

Table 1. FPGA Hardware Resource Utilization for SHA-384 module

Metric Our Design [7] [8] [9]

Max clock frequency

(MHz)
170 74 120.83 128.584

BRAM 1 N/A N/A N/A

CLB Slices 982 1966 4240 4289

Figure 5. SHA-384 module integrated with the Microblaze RISC processor.

Table 2. FPGA Hardware Resource Utilization for the Microblaze Processor System

Clock Frequency (MHz) Power (mW) BRAM CLB Slices LUT FlipFlop DSP

100 223 mW 9 1538 5855 6152 1

The SHA-384 module has been integrated with a

Microblaze synthesizable softcore processor. The use of a

processor enables software control, and provides a convenient

way to transfer data between the FPGA and PC in test scenarios.

A customized AXI IP core that wraps the SHA-384 module and

enables a communication interface with the Microblaze’s AXI4

bus has been created. As MicroBlaze has many options for

configuration, it had to be optimized by choosing the right

specifications to generate a minimum footprint processor. Thus,

a cacheless Microblaze core with a local memory of 32-KBytes

has been chosen as the base hardware platform. The system

clock at which the processor operates is configured as 100 MHz

to reduce clocking hardware overhead. In addition, other IP

cores such as the clocking and reset module and AXI4 bridge

required for the proper operation of Microblaze processor have

been added as shown in Figure 5. We used a UART-Lite IP core

configured at 115200 bps to allow serial communication with a

personal computer using the RS-232 protocol. Table 2 reports

the hardware implementation results of the synthesized

Microblaze based system with the SHA-384 module, and the

total estimated power dissipation is 223 mW.

We have used the software development kit (SDK) provided

by Xilinx to develop a test program using C. Developed software

used SDK generated drivers for communicating with the

synthesized Microblaze hardware system. We have successfully

verified the correct operation of the integrated SHA-384

hardware peripheral in application.

4. Conclusion

In this study, we have designed a hardware IP core of SHA-

384 secure hash algorithm in Verilog HDL for use in IoT

applications such as HMAC generation. We functionally verified

the correct operation of the design using HDL simulations. We

have synthesized and implemeted the design on a Xilinx Artix-7

FPGA device. Our design is better in terms of area and speed

when compared to the other designs in the literature. Designed

SHA-384 hardware module can operate up to 170 MHz clock

speed and consumes only 982 CLB slices on a Xilinx Artix-7

FPGA device. In addition, we have integrated the designed IP

core with a Microblaze synthesizable processor for use in-

application testing by custom software. Estimated total power

consumption was reported to be 223mW. The compact footprint

of the proposed design makes it very suitable for integration

with processors used in IoT applications.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 132

References

[1] Statista. (2016, November 27). Internet of Things - number

of connected devices worldwide 2015-2025.

https://www.statista.com/statistics/471264/iot-number-of-

connected-devices-worldwide/ (Accessed Feb 2, 2021).

[2] CISO Magazine. (2020, January 10). 10 IoT Security

Incidents That Make You Feel Less Secure.

https://cisomag.eccouncil.org/10-iot-security-incidents-that-

make-you-feel-less-secure/ (Accessed Feb 2, 2021).

[3] Bellare M., Canetti R., Krawczyk H. (1996) Keying Hash

Functions for Message Authentication. In: Koblitz N. (eds)

Advances in Cryptology — CRYPTO ’96. CRYPTO 1996.

Lecture Notes in Computer Science, vol 1109. Springer,

Berlin, Heidelberg.

[4] Dang Q. (2008, July). The Keyed-Hash Message

Authentication Code (HMAC), Federal Inf. Process. Stds.

(NIST FIPS 198-1), National Institute of Standards and

Technology, Gaithersburg, MD,

https://doi.org/10.6028/NIST.FIPS.198-1.

[5] National Institute of Standards and Technology (2015,

August) Secure Hash Standard (SHS), Federal Inf. Process.

Stds. (NIST FIPS 180-4), National Institute of Standards and

Technology, Gaithersburg, MD,

https://doi.org/10.6028/NIST.FIPS.180-4.

[6] Lenstra, A. (2005, February 26). Further progress in hashing

cryptanalysis. Lucent Bell Laboratories, http://bell-

labs.co/who/akl/hash.pdf (Accessed Feb 4, 2021).

[7] Sklavos N., Koufopavlou O. (2003). On the hardware

implementation of the SHA-2 (256, 384, 512) Hash

functions. In 2003 International Symposium on Circuits and

Systems (ISCAS), (pp.153-156). IEEE.

https://doi.org/10.1109/ISCAS.2003.1206214.

[8] McLoone M., McCanny J. V. (2003, March 26). Efficient

single-chip implementation of SHA-384 and SHA-512, In

2002 International Conference on Field-Programmable

Technology (FPT), (pp. 311-314,). IEEE.

https://doi.org/10.1109/FPT.2002.1188699.

[9] Li M., Xu J., Yang X., and Yang Z. (2009). Design and

Implementation of Reconfigurable Security Hash

Algorithms Based on FPGA. In 2009 WASE International

Conference on Information Engineering, (pp. 381-384).

IEEE. https://doi.org/10.1109/ICIE.2009.278.

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://cisomag.eccouncil.org/10-iot-security-incidents-that-make-you-feel-less-secure/
https://cisomag.eccouncil.org/10-iot-security-incidents-that-make-you-feel-less-secure/
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.180-4
http://bell-labs.co/who/akl/hash.pdf
http://bell-labs.co/who/akl/hash.pdf
https://doi.org/10.1109/ISCAS.2003.1206214
https://doi.org/10.1109/FPT.2002.1188699
https://doi.org/10.1109/ICIE.2009.278

