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ON ELLIPTIC LINEAR TIMELIKE PARALLEL WEINGARTEN

SURFACES SATISFYING THE CONDITION 2arHr + brKr = cr

CUMALI EKICI, YASIN ÜNLÜTÜRK AND MURADIYE ÇIMDIKER

(Communicated by Sharief DESHMUKH)

Abstract. In this study, firstly, we obtain the parallel Weingarten surfaces
which satisfy the condition 2arHr + brKr = cr in Minkowski 3-space. Then

we give some geometric properties of these kind of surfaces, such as their

Gauss map Nr and conformal structures. By using the conformal structures
induced by arψr−brNr, we derive two fundamental elliptic partial differential

equations which involve the immersion and the Gauss map.

1. Introduction

Parallel surfaces as a subject of differential geometry have been intriguing for
mathematicians throughout history and so it has been a research field. In the theory
of surfaces, there are some special surfaces such as ruled surfaces, minimal surfaces
and surfaces of constant curvature in which differential geometers are interested.
Among these surfaces, parallel surfaces are also studied in many papers [5, 4, 12, 14].
A surface Mr whose points are at a constant distance along the normal from another
surface M is said to be parallel to M . So, there are infinite number of surfaces
because we choose the constant distance along the normal arbitrarily. From the
definition it follows that a parallel surface can be regarded as the locus of points
which are on the normals to M at a non-zero constant distance r from M [19]. Here
Chern, Hopf studied the case of S being closed and Rosenberg-Earp considered the
case of S to be immersed [3, 10, 15]. The surfaces are called H − surfaces, if
they have constant mean curvature H and are called K − surfaces, if they have
constant Gaussian curvature K in Minkowski space. In 1853, Bonnet remarked
that the study of K − surfaces could be as difficult as the study of H − surfaces.

The two principal curvatures k1, k2 satisfy the following equations:

K = k1k2

2H = k1 + k2

and therefore ki = H ∓
√
H2 −K, (i = 1, 2) [10].
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Let S be an orientable surface and ψ : S → R3 be an immersion with Gauss map
η : S → S2. It is said that ψ is a linear Weingarten immersion if there exist three
real numbers a, b, c, not all zero positive real numbers, such that

(1.1) 2aH + bK = c

where H and K are the mean curvature and the Gaussian curvature, respectively.
In such case we say that S is a linear Weingarten surface where σ = aI + bII is a
positive definite metric [8]. The equation above is elliptic only when a2 + bc > 0
[10].

In this paper, we consider parallel Weingarten surfaces satisfying elliptic linear-
ity condition such that b2 − 4ac > 0 for timelike parallel surfaces. Then we give
some differential-geometric properties of these kind of surfaces. By using the con-
formal structure induced by arψr− brηr, we derive two fundamental elliptic partial
differential equations which involve the immersion and the Gauss map in Theorem
3.1 for elliptic linear timelike parallel Weingarten surfaces. In Corollary 3.1, the
result let us to recover the immersion from harmonic local diffeomorphism into the
unit pseudosphere in terms of its Gauss map ηr for an elliptic linear timelike par-
allel Weingarten surfaces. Throught this study, the elliptic linear timelike parallel
Weingarten surfaces will be abbreviated as ELTPW.

2. Preliminaries

Let E3
1 be the three-dimensional Minkowski space, that is, the three-dimensional

real vector space R3 with the metric

〈dx,dx〉=dx2
1 + dx2

2 − dx2
3

where (x1, x2, x3) denotes the canonical coordinates in R3. An arbitrary vector x of
E3

1 is said to be spacelike if 〈x,x〉>0 or x = 0, timelike if 〈x,x〉<0 and lightlike or

null if 〈x,x〉=0 and x 6= 0. For x ∈E3
1, the norm is defined by ‖x‖ =

√
|〈x,x〉|. Then

the vector x is called a spacelike unit vector if 〈x,x〉=1 and a timelike unit vector
if 〈x,x〉= −1. Similarly, a regular curve in E3

1 can locally be spacelike, timelike or
null (lightlike), if all of its velocity vectors are spacelike, timelike or null (lightlike),
respectively [13]. For any two vectors x = (x1, x2, x3) and y = (y1, y2, y3) of E3

1,
the inner product is the real number 〈x,y〉 = x1y1 + x2y2 − x3y3 and the vector
product is defined by x× y = ((x2y3 − x3y2), (x3y1 − x1y3),−(x1y2 − x2y1)) [11].
Let X = X(u, v) be a local parametrization and {Xu, Xv} be a local base of the
tangent plane at each point. The first fundamental form defined by

I = Edu2 + 2Fdudv +Gdv2.

where the differentiable functions

E = 〈Xu, Xu〉 , F = 〈Xu, Xv〉 , G = 〈Xv, Xv〉 ,
are called the coefficients of the first fundamental form I [11].

The second fundamental form defined by

II = edu2 + 2fdudv + gdv2.

where the differentiable functions

e = −〈Xu, Nu〉 = 〈N,Xuu〉
f = −〈Xu, Nv〉 = −〈Xv, Nu〉 = 〈N,Xuv〉
g = −〈Xv, Nv〉 = 〈N,Xvv〉
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are called the coefficients of the second fundamental form II [11]. Isothermic pa-
rameters u, v satisfy the equation below

ds2 = E(du2 + dv2)

[10].
Definition 2.1. ([13]) An immersion φ : M → N is a smooth mapping such

that dφP is one to one for all P ∈M . An immersion ψ : S → E3
1 of a surface M is

called timelike if the induced metric on M is a Lorentzian metric, i.e., the normal
on the surface is a spacelike vector ([1]).

Theorem 2.1. ([7]) A regular surface M ⊂ R3 is orientable if and only if there
is a continuous map P → U(P ) that assigns to each P ∈ M a unit normal vector
U(P ) ∈M⊥P .

Definition 2.2. ([6]) Let S ⊂ R3 be a surface with an orientation η. The map
η : S → R3 takes its values in the unit sphere

S2 =
{

(x, y, z) ∈ R3;x2 + y2 + z2 = 1
}

The map η : S → S2, thus defined, is called the Gauss map of S.
Theorem 2.2. ([16]) Let P,Q,∂P∂y ,

∂Q
∂x be single-valued and continuous in a

simply-connected region R bounded by a simple closed curve C. Then∮
C

Pdx+Qdy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy

where
∮
C

is used to emphasize that C is closed and that it is described in the positive

direction.
Definition 2.3. ([13]) Let n ≥ 2 and 0 ≤ ν ≤ n. Then the psedosphere of

radius r > 0 in Rn+1
ν is the hyperquadric

Snν (r) = q−1(r2) =
{
p ∈ Rn+1

ν : 〈p, p〉 = r2
}

with dimension n and index ν.
Definition 2.4. ([13]) Let M be a surface in Minkowski 3-space and D be the

Levi-Civita connection on Minkowski 3-space. Then,

S : χ(M) −→ χ(M)
X −→ S(X) = DXN

is called the shape operator, where N is the unit normal vector on M.
Definition 2.5. ([13]) A smooth function ψ : M → N of semi-Riemannian

manifolds is conformal provided ψ∗(gN ) = hgM , for some function h ∈ F(M) such
that h > 0 or h < 0.

Definition 2.6. ([13]) The Laplacian ∆f of a function f ∈ F(M) is the diver-
gence of its gradient: ∆f = div(gradf) ∈ F(M). A form w is said to be harmonic
if ∆w = 0 ([17]).

Definition 2.7. ([13]) A point P of M ⊂ M̄ is umbilic provided there is a
normal vector z ∈ TP (M)⊥ such that

II(v, w) = 〈v, w〉 z

for all v, w ∈ TP (M). Then z is called the normal curvature vector of M at P. A
semi-Riemannian submanifold M of M̄ is totally umbilic provided every point of
M is umbilic.
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Definition 2.8. ([9]) Let M and Mr be two surfaces in Minkowski 3-space.
The function

f : M −→ Mr

P −→ f(P ) = P + rNP

is called the parallelization function between SC and SrC and furthermore SrC is
called the parallel surface to SC in E3

1 where r is a given positive real number and
N is the unit normal vector field on SC .

Theorem 2.3. ([9]) Let M be a surface and Mr be a parallel surface of M in
Minkowski 3-space. Let f : M →Mr be the parallelization function. Then for
X ∈ χ(M),

1. f∗(X) = X + rS(X)
2. Sr(f∗(X)) = S(X)
3. f preserves the principal directions of the curvature, that is

Sr(f∗(X)) =
k

1 + rk
f∗(X)

where Sr is the shape operator on Mr, and k is a principal curvature of M at P in
the direction of the vector X.

Definition 2.9 ([1]) A surface in a 3-dimensional Lorentz space is called a
spacelike surface if the induced metric on the surface is a Lorentzian metric, i.e.,
the normal on the surface is a timelike vector.

Definition 2.10. ([18]) Let M be a timelike surface and Mr be a parallel
surface of M in E3

1. Let Nr and Sr be the unit normal vector field and the shape
operator of Mr, respectively. The Gaussian and the mean curvature functions are
defined, respectively,

Kr(f(P )) = detSrf(P ) and Hr(f(P )) =
1

2
izSrf(P ),

where P ∈M , f(P ) ∈Mr and 〈N,N〉 = 1.
Theorem 2.4. ([18]) Let M be a timelike surface and Mr be a parallel surface

of M in E3
1. Let Nr and Sr be a unit normal vector field and the shape operator of

Mr, respectively. The Gaussian and the mean curvatures are given, respectively,
in terms of the coefficients of the fundamental forms Ir and IIr as:

(2.1) Kr =
ergr − fr2

ErGr − F r2
and Hr =

erGr − 2frF r + grEr

2(ErGr − F r2)

Lemma 2.1. ([18]) Let M be a timelike surface and Mr be its parallel surface
in E3

1. The surface M is spacelike one if and only if the surface Mr is timelike
parallel surface.

Corollary 2.1. ([18]) Let M be a timelike surface and Mr be a parallel surface
of M in E3

1. Then we have

K =
Kr

1− 2rHr + r2Kr
and H =

Hr − rKr

1− 2rHr + r2Kr

where the Gaussian and the mean curvatures of M and Mr be denoted by K, H
and Kr, Hr, respectively.



ON ELLIPTIC LINEAR TIMELIKE PARALLEL WEINGARTEN SURFACES 123

3. On elliptic linear timelike parallel Weingarten surfaces satisfying the
condition 2arHr + brKr = cr

Let S be an orientable timelike parallel surface and ψr : S → R3
1 be an immersion

with the Gauss map ηr : S → S2 for S surface. Using Corollary 2.1 in the equation
(1.1), we get

(3.1) 2aHr + bKr = c.

This equation is elliptic if and only if a2 + bc > 0 where Hr and Kr are the mean
curvature and the Gaussian curvature for timelike parallel surfaces. In that case
we say that the immersion ψr is ELTPW if there exist three real numbers a, b, c,
not all zero, positive real numbers.

Some interesting examples of ELTPW immersions are given by the timelike par-
allel surfaces with constant mean curvature, that is b = 0, and the timelike parallel
surfaces with positive constant Gaussian curvature, that is a = 0.

Lemma 3.1. Let ψr : S → R3
1 be an ELTPW immersion satisfying (3.1). Then

there exists a Gauss map ηr : S → S2 and two real numbers α, β such that

(3.2) 2αHr + βKr = γr > 0

and αIr + βIIr is a positive definite metric, where Ir = 〈dψr, dψr〉 and IIr =
〈dψr,−dηr〉 are the first and second fundamental forms of the immersion, respec-
tively.

Proof. Let {f∗(X1), f∗(X2)} be an orthonormal basis consisting of timelike and
spacelike vectors at a point P respectively, which diagonalizes dηr. That is, for

dηr(f∗(Xi)) =
ki

1 + rki
(f∗(Xi)), where i = 1, 2, we have

σr(f∗(X1) ∧ f∗(X2), f∗(X1) ∧ f∗(X2)) = −(−(α+
βk1

1 + rk1
))(α+

βk2

1 + rk2
)

= (α2 + β(2αHr + βKr))

and then

σr(f∗(X1) ∧ f∗(X2), f∗(X1) ∧ f∗(X2)) = (α2 + βγr) > 0

with σr = αIr + βIIr. So, σr is positive definite. �

Thus, we will assume that every ELTPW immersion satisfies the above result.
Moreover, Gauss map ηr given by Lemma 3.1 will be called its associated Gauss
map.

Now, we tried to obtain a condition in order to define associated Gauss map of
ELTPW immersion in Lemma 3.2.

Lemma 3.2. Let ψr : S → R3
1 be an ELTPW immersion satisfying (3.2) with

associated Gauss map ηr : S → S2 and the Gaussian curvature K(P ) > 0. Then
ηr(P ) is the inner normal vector at a point P if and only if α ≥ 0 or β ≥ 0.

Proof. If ηr is not the inner normal at P then the principal curvatures
k1

1 + rk1
(P ),

k2

1 + rk2
(P ) are both negative. Using (3.2), we get �
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(3.3)
k2

1 + rk2
=

γr − αk1

1 + rk1

α+
βk1

1 + rk1

< 0

when β 6= 0.Since σr = αIr + βIIr is positive definite, we get

(3.4) α+
βk1

1 + rk1
< 0.

By using (3.4) in (3.3), we have 0 ≤ γr <
αk1

1 + rk1
. Therefore

αk1

1 + rk1
> 0. Since

k1

1 + rk1
< 0, we have α < 0 and β < 0. If β = 0, the proof of the lemma is obvious.

Namely, since ηr is the inner normal, α > 0 or β > 0.
Conversely, let ηr is the inner normal and α < 0 or β < 0. The following

inequality

(3.5) α+
βk1

1 + rk1
> 0

is satisfied since σr is positive definite. From (3.5), we obtain

α < − βk1

1 + rk1
< 0

βk1

1 + rk1
> 0.

As a result,
k1

1 + rk1
< 0. Thus ηr(P ) is the outer normal. That is a contradiction.

Theorem 3.1. Let ψr : S → R3
1 be an ELTPW immersion satisfying (3.2) with

associated Gauss map ηr : S → S2. Then

∆σr

ψr =
γr + βKr√
α2 + βγr

ηr and ∆σr

ηr = 2
−γr(α+Hrβ)

β
√
α2 + βγr

ηr

where ∆σr

is the Laplacian operator.This is an example of a theorem.

Proof. Let (u, v) be isothermal parameters for σr, that is,

Ir = Er1du
2 + 2F r1 dudv +Gr1dv

2

IIr = Er2du
2 + 2F r2 dudv +Gr2dv

2

These equations using in Lemma 3.1., we get

σr = λr(du2 + dv2)

where λr = αEr1 + βEr2 . �

We can write

(3.6)
αψru + βηru = µ11η

r ∧ ψru + µ12η
r ∧ ψrv

αψrv + βηrv = µ21η
r ∧ ψru + µ22η

r ∧ ψrv
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where ηr ∧ψru and ηr ∧ψrv are on the basis of the tangent plane for timelike parallel
surface for certain real numbers µ11, µ12, µ21, µ22. Now, inner product of this
equations with ψru and ψrv, gives

(3.7) µ12 =
−λr√

|(F r1 )2 − Er1Gr1|
and µ11 = 0

also

(3.8) µ21 =
λr√

|(F r1 )2 − Er1Gr1|
and µ22 = 0

Then using the equations (3.7)-(3.8) in (3.6), we get the following formula:

(3.9)

αψru + βηru =
−λr√

|(F r1 )2 − Er1Gr1|
ηr ∧ ψrv

αψrv + βηrv =
λr√

|(F r1 )2 − Er1Gr1|
ηr ∧ ψru

By using that

(3.10)

−(λr) = (αF r1 + βF r2 )2 − (αEr1 + βEr2)(αGr1 + βGr2)

= α2((F r1 )2 − Er1Gr1) + β(2αF r1F
r
2 − αEr2Gr1 − αEr1Gr2)

+β2((F r2 )2 − Er2Gr2).

If we write equation (2.1) in (3.10), we get

(3.11) (λr)2 = (α2 + βγr)(Er1G
r
1 − (F r1 )2).

Using the equations (3.11) in (3.9), we obtain

(3.12)
αψru + βηru = −

√
α2 + βγrηr ∧ ψrv

αψrv + βηrv =
√
α2 + βγrηr ∧ ψru

and

(3.13)
αψru ∧ ηr + βηru ∧ ηr =

√
α2 + βγrψrv

αψrv ∧ ηr + βηrv ∧ ηr = −
√
α2 + βγrψru

If we extract the derivative of the first equation with respect to v from the derivative
of the second equation with respect to u in (3.13), we get

(3.14) (2αHr + 2βKr)(ψru ∧ ψrv) =
√
α2 + βγr(ψruu + ψrvv)

Using (3.2) in (3.14), we obtain

(3.15) (ψruu + ψrvv) =
γr + βKr√
α2 + βγr

(ψru ∧ ψrv)

On the other hand, if we add the derivative of the first equation with respect to
u to the derivative of the second equation with respect to v in (3.13), we have

(3.16) α(ψruu + ψrvv)− β(ηruu + ηrvv) = −2Hr
√
α2 + βγr(ψru ∧ ψrv)

If we write (3.15) in (3.16), we get

(ηruu + ηrvv) = 2
−γr(α+Hrβ)

β
√
α2 + βγr

(ψru ∧ ψrv)
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(β 6= 0).

Remark 3.1. Since (Hr)2 > Kr on every timelike surface, given an ELTPW im-
mersion satisfying (3.2) the equality in the above inequality occurs when

Kr =



if β, γr 6= 0,
(γr)2

(α∓
√
α2 + βγr)2

if β = 0,
(γr)2

4α2

if β 6= 0 and γr = 0,
4α2

(βr)2

According to expression ∆σr

ηr verfied at Theorem 3.1 we can consider ηr as a
harmonic map, that is,this is an example of a remark element.

Corollary 3.1. Let ψr : S → R3
1 be an ELTPW immersion satisfying (3.2) with

associated Gauss map ηr : S → S2. If we consider the conformal structure induced
by σr = αIr + βIIr on S, then ηr is harmonic. Moreover, if γr 6= 0, ψr can be
recovered as

(3.17) ψr =
α

γr
ηr −

√
α2 + βγr

γr
∫
ηr ∧ ηrv du− ηr ∧ ηru dv

for the isothermal parameters (u, v) on S.This is an example of a theorem.

Proof. From equation (3.12),

(3.18)
αψru = −βηru −

√
α2 + βγr ηr ∧ ψrv

αψrv = −βηrv +
√
α2 + βγr ηr ∧ ψru

There putting ψrv into the first equation in (3.18) where the second equation in
(3.18), we can write

−βγrψru = −αβηru + β
√
α2 + βγr ηr ∧ ηrv

Analogously, putting ψru into the second equation in (3.18) where the first equation
in (3.18), we can write

−βγrψrv = −αβηrv − β
√
α2 + βγr ηr ∧ ηru

Hence, if β 6= 0, the immersion is recovered using (3.17) �
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