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FRACTIONAL ORDER DERIVATIVE AND RELATIONSHIP

BETWEEN DERIVATIVE AND COMPLEX FUNCTIONS

ALI KARCI AND AHMET KARADOGAN

(Communicated by Murat TOSUN)

Abstract. The concept of fractional order derivative can be found in wide

range of many different areas. Due to this case, there are many methods about
fractional order derivative (FOD). The most of them are Euler, Riemann-

Liouville, Grunwald-Letnikov, Oldham-Spanier, Miller-Ross, Kolwankar-Gangal,

and Caputo methods which are fractional order derivatives as mentioned in the
literature. However, they are not sound and complete for constant and identity

functions. This case means that they are curve fitting or curve approximation
methods.

FOD concept was defined in [10]. The deficiencies of Euler, Riemann-

Liouville, Grunwald-Letnikov, Oldham-Spanier, Miller-Ross, Kolwankar-Gangal,
and Caputo methods were illustrated in this study. In this study, the concept

of FOD and its relationships with complex functions was handled.

1. INTRODUCTION

The fractional order derivatives are different approaches instead of classical
derivatives. There are a lot of studies on this subject. The most of these stud-
ies being used are Euler, Riemann-Liouville, Grunwald-Letnikov, Oldham-Spanier,
Miller-Ross, Kolwankar- Gangal, and Caputo fractional order derivatives meth-
ods. Due to this case, this study focused on Euler, Riemann-Liouville, Grunwald-
Letnikov, Oldham-Spanier, Miller-Ross, Kolwankar- Gangal, and Caputo fractional
order derivatives. Some of these studies can be briefly described.

a) Pooseh et al considered finite differences as a subclass of direct methods in
the calculus of variations for Riemann-Liouville method [1].

b) Mirevski et al defined new g-Jacobi functions by using Riemann-Liouville
operator [2].
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c) Schiavone and Lamb discussed theory of fractional powers of operators on
an arbitrary Frechet space, and the authors of this study obtained multi-
variable fractional integrals and derivatives defined on certain space of test
functions and generalized functions [3].

d) Bataineh et al have used the differential equations of fractional order appear
in many applications in physics, chemistry and engineering [4].

e) Diethelm et al presented a collection of numerical algorithms for the solution
of the various problems arising in derivatives of fractional order [5].

f) Chen and Ye presented some approaches based on piecewise interpola-
tion for fractional calculus, and some improvement based on the Simpson
method for the fractional differential equations [6].

g) Li et al (2013) studied on fractional order iterative learning control includ-
ing many theoretical and experimental results, and these results shown the
improvement of transient and steady-state performances [7].

h) Li et al (2011) formulated many models in terms of fractional derivatives
and they also studied the important properties of the Riemann-Liouville
derivative, one of mostly used fractional derivatives [8].

i) Efe modeled sliding mode control in term of fractional order operators [9].
j) The fractional order derivative was redefined in the papers of Karci [10, 11].

This paper is organized as follow. Section 2 describes the deficiencies and errors
for Euler, Riemann-Liouville, Grunwald-Letnikov, Oldham-Spanier, Miller-Ross,
Kolwankar- Gangal, and Caputo methods. Section 3 describes the concept of frac-
tional order derivative and its relationship with complex function. Finally, paper
is concluded in Section 4.
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2. DEFICIENCIES OF FRACTIONAL ORDER DERIVATIVE
METHODS

There are different methods and approximations for fractional order derivatives
since 1730. There is a common property related to these methods and approxi-
mations. The order of derivative as integer caused gamma function involvement in
most of the methods and approximations. We used seven most popular methods in
this study.

a) L.Euler (1730) method:

(2.1)
dnxm

dxn
= m(m− 1) · · · (m− n+ 1)xm−n

b) Grunwald-Letnikov method: It is seen that Grunwald-Letnikov method
uses discrete values as seen in Eq.2.2, so it cannot be a differential method.

(2.2) aD
α
t f(t) = lim

h→0

1

hα

[ t−ah ]∑
j=0

(−1)j
(
α

j

)
f(t− jh)

c) Riemann-Liouville method: The method of Riemann-Liouville is given in
Eq.2.3.

(2.3) aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n t∫
a

f(v)dv

(t− v)α−n+1

d) Oldham-Spanier method: This method is about fractional derivative scaling
property as seen in Eq.2.4.

(2.4)
dqf(βx)

dxq
= βq

dqf(βx)

d(βx)q

e) Miller-Ross method: This method is about the fractional orders as seen in
Eq.2.5.

(2.5) Dεf(t) = Dα1Dα2 · · ·Dαnf(t)

where α = α1 + α2 + · · ·+ αn,∀i, αi < 1
f) Kolwankar-Gangal method: 0<q<1, local fractional order derivative at

point x = y for f : [0, 1] −→ R is

(2.6) Dqf(y) = lim
x→y

dq
(
f(x)− f(y)

)
d(x− y)q

g) Caputo (1967) method: The method of Caputo is seen in Eq.2.7.

(2.7) C
aD

α
t f(t) =

1

Γ(α− n)

t∫
a

f (n)(v)dv

(t− v)α+1−n

2.1. Fractional Order Derivatives of f(x) = cx0.
These seven methods for fractional order derivatives are mostly used methods.

Due to this case, we will investigate the fractional order derivative of each method
in this section for a constant function.

First of all, the results of Euler, Riemann-Liouville, Grunwald-Letnikov, Oldham-
Spanier, Miller-Ross, Kolwankar-Gangal, and Caputo methods for f(x) = cx0 are
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illustrated in Eq.2.8, Eq.2.9, Eq.2.10, Eq.2.11, Eq.2.12 and Eq.2.13. c is a constant,
n = 1

2 for Euler method.

(2.8)
dnxm

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n =

d
1
2x0

dx
1
2

=
Γ(1)

Γ
(

1
2

)c√x
x

Γ(1) = 1 and Γ
(

1
2

)
=
√
π. If n = 1

3 , then Γ
(

1
2

)
is required and it is a transcendental

number such as π and base of natural logarithm e= 2,7134884828. Since

(2.9) Γ
(1

3

)
=

∞∫
0

t−
2
3 e−tdt = 3

∞∑
i=0

3ie−tt

(
3i+1

3

)
i∏

j=0

(3j + 1)

and Eq.2.9 illustrates that it cannot be computed in a simple way.f(x) = cx0 is a
constant function and its change with respect to the change in x is zero. However,
Eq.2.8 depicts that the result obtained from Euler method is not zero and it depends
on variable x. The two conditions must be taken in care.

i) If Γ
(

1
3

)
6= 0, and is finite, then the fractional order derivative of f(x) = cx0

is concluded in dependence on variable x. The change in a constant is zero
in all cases.

ii) If Γ
(

1
3

)
= 0, then dnxm

dxn = Γ(1)

Γ
(

1
3

)c 1
3√
x2

for n = 2
3 is indefinite. The obtained

results in both cases are inconsistent.

Grunwald-Letnikov method:In the case of constant function, there are many unde-
termined terms in the Eq.2.10. For example, it is not clear what the term [ t−ah ]

is.The fractional order derivative for constant function f(x) = cx0 is

(2.10)

aD
α
t f(x) = lim

h→0.001

[ t
0.001 ]∑
j=0

(−1)j
(
α

j

)
c =

1

(0.001)α

[
c−

(
α

1

)
c+

(
α

2

)
c+ · · ·+

(
α

1000t

)
c

]
6= 0

and it is not zero. So, the obtained result is not derivative of constant function.

Riemann-Liouville method :Assume that n = 1 and n = 1
2

(2.11)

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n t∫
a

f(v)dv

(t− v)α−n+1
=a D

1
2
t f(t) =

1

Γ
(

1
2

) d
dt

t∫
a

cdv

(t− v)
1
2

=
c

Γ
(

1
2

) (− 1

(t− a)
1
2

)
6= 0

The obtained result is inconsistent, since the result is a function of x. However,
initial function is a constant function.

Oldham-Spaniermethod:This method can be performed for function f(βt) and it
is undefined for constant functions.

Miller-Ross method:This method is about the differential operator, so, it can be
performed for constant functions.
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Kowankar-Gangalmethod: Assume that q = 1
2

(2.12) Dqf(y) = lim
x→y

dq
(
f(x)− f(y)

)
d(x− y)q

=
dq(c− c)
d(c− c)q

=
0

0

is indefinite.
Caputo method: Assume that n=1 and α = 1

2

(2.13) C
aD

α
t f(t) =

1

Γ(α− n)

t∫
a

f (n)(v)dv

(t− v)α+1−n =
1

Γ
(
− 1

3

) t∫
a

0dv

(t− v)
1
2 +1−1

= 0

The result of Caputo method is consistent.
The Euler, Grunwald-Letnikov, Riemann-Liouville, Oldham-Spanier, and Kowankar-

Gangal methods do not work for constant functions as seen in Eq.2.8, Eq.2.10,
Eq.2.11 and Eq.2.12. There is no change in constant function with respect to any
change in the independent variable(s). If there is any change in constant function,
it is not a constant function. On contrary, any order derivative of constant function
is zero with respect to Miller-Ross and Caputo methods.

2.2. Fractional Order Derivatives of f(x) = x.
Fractional order derivatives of identity function obtained with respect to Euler,

Riemann-Liouville, Grunwald-Letnikov, Oldham-Spanier, Miller-Ross, Kolwankar-
Gangal, and Caputo methods in this section. Assume that n=1 and α = 1

2 .

Euler method:

(2.14)
d

1
2x1

dx
1
2

=
Γ(1 + 1)

Γ
(
1− 1

2 + 1
)x1− 1

2 =
Γ(2)

Γ
(

3
2

)x 1
2 6= 1

Classical definition of derivative is

lim
h→0

f(x+ h)− f(x)

(x+ h)− x
It can be seen from definition, the ratio of the change in dependent variable to the
change in independent is always 1 (one). In this case, the derivative must be 1
in any fractional order derivative. However, fractional order derivative of identity
function with respect to Euler method is different from 1. This means that Euler
method yielded in an inconsistent result.

Grunwald-Letnikov method:Assume that t=x, a=0 and h=0.001.

aD
α
t f(x) = lim

h→0.0001

[
t

0.001

]∑
j=0

(−1)j
(
α

j

)
f(t− jh)

=
1

(0.001)α
[
f(t)−

(
α

1

)
f(t− 0.001) +

(
α

2

)
f(t− 0.002) + · · ·+

(
α

1000t

)
f(0)

]
6= 1

(2.15)

It is seen that the result is not verified that aD
α
t f(x) is not a derivative.
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Riemann-Liouville method: Assume that n=1 and α = 1
2

aD
α
t f(x) =

1

Γ(n− α)

(
d

dt

)n t∫
a

f(v)dv

(t− v)α−n+1
=a D

1
2
t f(t) =

1

Γ
(

1
2

) d
dt

t∫
a

xdx

(t− x)
1
2−1+1

=
1

Γ
(

1
2

) d
dt

t∫
a

xdx

(t− x)
1
2

=
1

Γ
(

1
2

) ( a√
t− a

− 2
√
t− a

)
6= 1

(2.16)

The obtained result with respect to Riemann-Liouville method is an inconsistent
result.

Oldham-Spanier method: Assume that β = 1 for f(x) = x.

(2.17)
dqf(βx)

dxq
=

1

q
x1−q 6= 1

It is clear that the result is not consistent.

Miller-Ross method: Assume that α = α1 + α2 + · · ·+ αn and n = 1. Then

(2.18) Dαf(x) = Dα1Dα2 · · ·Dαn(x) = 1

Kolwankar-Gangal method: 0<q<1, local fractional order derivative at point x = y
for f : [0, 1]→ R is

Dqf(y) = lim
x→y

dq
(
f(x)− f(y)

)
d(x− y)q

.

f(x) is defined for interval [0,1]. In this case, x ∈ [0, 1] and f(x) ∈ [0, 1]. Assume
that q = 1 and f(x) = x, then

(2.19) Dqf(y) = lim
x→y

dq
(
f(x)− f(y)

)
d(x− y)q

=
d(x− y)

d(x− y)
= 1

Caputo method:

C
aD

α
t f()t =

1

Γ(α− n)

t∫
a

f (n)(v)dv

(t− v)α+1−n =
1

Γ
(
− 1

3

) t∫
a

dv

(t− v)
2
3 +1−1

=
1

Γ
(
− 1

3

) (3(t− a)
1
3

)
6= 1

(2.20)

The obtained result with respect to Caputo method is also an inconsistent result.
Euler, Grunwald-Letnikov, Riemann-Liouville, Oldham-Spanier and Caputo have

deficiencies for identity function (f(x)=x) and Miller-Ross and Kolwankar-Gangal
methods are consistent methods for identity function.
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3. A NEW APPROACH FOR FRACTIONAL ORDER DERIVATIVES
AND COMPLEX FUNCTIONS

The fractional order derivative methods in the literature can be divided into
two groups such as mathematical theory of fractional order derivatives and the ap-
plications of fractional order derivatives. There are important shortcomings and
deficiencies in both groups of studies. The sources and reasons for these shortcom-
ings and deficiencies can be summarized as follows:

It was assumed that the order of derivative is integer up to a specific step in the
literature. While derivation reached to that step, the order of derivative was con-
sidered as real number. This process concluded in involvement of gamma functions
due to the assumption of order of derivative as integer and extension of continuity.
This is deficiencies and shortcoming.

Theorem 3.1. The fractional order derivative methods do not include gamma
functions.

Proof. The fractional order derivative must have any real order in each deriva-
tion step. For example, f(x) = xm be a function. Assume that the orders of
derivations are

η1

ϕ1
,
η2

ϕ2
,
η3

ϕ3
, · · · , ηk

ϕk
, ηi, ϕj ∈ Z, 1 ≤ i, j ≤ k

After the first step derivation, the result

f ′(x) = mxm−
η1
ϕ1

is obtained. Then the second derivation step concludes in

f ′′(x) = m

(
m− η1

ϕ1

)
xm−

η1
ϕ1
− η2
ϕ2

After the third step, the result

f (3)(x) = m

(
m− η1

ϕ1

)(
m− η1

ϕ1
− η2

ϕ2

)
xm−

η1
ϕ1
− η2
ϕ2
− η3
ϕ3

is obtained. After the kth step, the derivation result

f (k)(x) = m

(
m− η1

ϕ1

)(
m− η1

ϕ1
− η2

ϕ2

)
· · ·

(
m−

k−1∑
i=1

ηi
ϕi

)
x
m−

k−1∑
i=1

ηi
ϕi

is obtained. f (k)(x) does not include gamma function.

The methods about fractional order derivative in the literature have some defi-
ciencies and shortcomings due to some incomplete assumption. Almost all of them
involve gamma functions, since there are assumptions up to a specific step that
for derivation and extension of continuity. After that point, order of derivation is
assumed as real number. This is the source of deficiencies and shortcomings.

A new definition for fractional order derivative is given in this section, and the
relationship between derivative and complex function is verified. The order of
derivative can be considered as 1 for

f ′(x) = lim
h→0

f(x+ h)− f(x)

(x+ h)− x
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since powers of f(x + h), f(x), (x + h) and x are 1. The powers of all terms in
the derivation definition can be considered as α ∈ R. Then derivative of constant
function f(x) = cx0 is as follow.

lim
h→0

fα(x+ h)− fα(x)

(x+ h)α − xα
= limh→ 0

cα − cα

(x+ h)α − xα
= 0

and the derivative of identity function f(x) = x is as follow.

lim
h→0

f(x+ h)α − f(x)α

(x+ h)α − xα
= lim
h→0

(x+ h)α − xα

(x+ h)α − xα
= 1

The fractional order can be considered in this perspective. The powers of f(x+h),
f(x), (x+h) and x can be considered as a real number for fractional order derivative.

Definition 3.1. f(x) : R → R is a function, α ∈ R and the fractional order
derivative can be considered as follows.

f (α)(x) = lim
h→0

fα(x+ h)− fα(x)

(x+ h)α − xα
In the case of very small value of h, the limit in the Definition 3.1 concluded in
indefinite limit.

f (α)(x) = lim
h→0

fα(x+ h)− fα(x)

(x+ h)α − xα
=

0

0

In this case, the method used for indefinite limit (such as L’Hospital method)
can be used, and the fractional order derivative can be redefined as follows.

Definition 3.2. Assume that f(x) : R → R is a function, α ∈ R and L(.) be a
L’Hospital process. The fractional order derivative of f(x) is

f (α)(x) = lim
h→0

L

(
fα(x+ h)− fα(x)

(x+ h)α − xα

)
= lim
h→0

d
(
fα(x+h)−fα(x)

)
dh

d
(

(x+h)α−xα
)

dh

The fractional order derivative definition can be demonstrated that it obtained
same results as classical derivative definition for α = 1. The concepts of first
derivative, second derivative, and so on are meaningless in the case of fractional
order derivative, since order of derivation is real number. The results of derivation
are not scaler, they are vectors, and complex numbers or complex functions are
also vectors. So, there must be a relationship between derivative and complex
functions (complex numbers). f (α)(x) is a fractional order derivative, so f (α)(x) =
g(x)+ih(x) where g(x) is real part of complex number and h(x) is imaginary part of
complex number. The important point is that g(x) and h(x) should be determined.
The relationship between result of taking derivative and complex number can be
specified in the following theorem.

Theorem 3.2. Assume that f(x) is a function such as f : R → R and α ∈ R.
then f (α)(x) is a function of complex variables.

Proof. Assume that α = β
δ and δ 6= 0. If f(x) ≥ 0, any integer root of f(x) is

a real number. The fractional order derivative of f(x) is

f (α) =
f ′(x)fα−1(x)

xα−1
= f ′(x)

δ

√
fβ−δ(x)

xβ−δ
= f ′(x)

δ

√(
f(x)

x

)β−δ
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If the fractional derivative is a function of complex variables, then f (α)(x) = g(x)+
ih(x) where i is the i =

√
−1.

If f(x) < 0, there will be two cases:

Case 1: Assume that δ is odd.

If
(
f(x)
x

)β−δ
≥ 0 or

(
f(x)
x

)β−δ
< 0,

then the obtained function f (α)(x) is a real function and h(x) = 0 for both cases.
Since the multiplication of any negative number in odd steps yields a negative num-
ber.

Case 2: Assume that δ is even.

If
(
f(x)
x

)β−δ
≥ 0, then h(x) = 0 and f (α)(x) is a real function.

If
(
f(x)
x

)β−δ
< 0,

then the multiplication of any number in even steps yields a positive number
for real numbers. However, it yields a negative result for complex numbers, so,
h(x) 6= 0. This means that f (α)(x) is a complex function. In fact, f (α)(x) is a
complex function for both cases. The h(x) = 0 for some situations.

f (α)(x) = g(x) + ih(x) is a function and assume that α = β
δ where δ 6= 0. So,

f (α) =
f ′(x)fα−1(x)

xα−1
= f ′(x)

δ

√(
f(x)

x

)β−δ
f ′(x) is a real number and the important point is that the parts of

δ

√(
f(x)
x

)β−δ
must be determined. This case is subject to future research, since we cannot deter-
mine the parts (real and imaginary) of f (α)(x) in this study.
The f (α)(x) can be investigated for polynomial, exponential, trigonometric and log-
arithmic functions.

Theorem 3.3. Assume that f(x) = xn, n ∈ Z+, and α = β
δ , β, δ ∈ Z and δ 6= 0.

Then f (α)(x) = nx
β(n−1)

δ .

Proof. Assume that f(x) is any function and the fractional order derivative of
f(x) is

f (α)(x) =

(
f(x)

x

)α−1

f ′(x) =

(
xn

x

) β
δ−1

nxn−1 = nx
β(n−1)

δ

Theorem 3.4. Assume that f(x) = sinn(x) and g(x) = cosn(x), n ∈ Z+, and

α = β
δ , β, δ ∈ Z and δ 6= 0. Then

f (α)(x) = n sin
βn−δ
δ (x) cos(x)

x
β−δ
δ

and g(α)(x) = −n cos
βn−δ
δ (x) sin(x)

x
β−δ
δ

Proof. The fractional order derivatives for both functions are as follows.

f (α)(x) =
(
f(x)
x

)α−1

f ′(x) =
(

sinn

x

) β
δ−1

n sinn−1(x) cos(x) = n sin
βn−δ
δ (x) cos(x)

x
β−δ
δ

and

g(α)(x) =
(
g(x)
x

)α−1

g′(x) =
(

cosn

x

) β
δ−1

n cosn−1(x)(− sin(x)) = −n cos
βn−δ
δ (x) sin(x)

x
β−δ
δ
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Theorem 3.5. Assume that f(x) = (ln(x))n and g(x) = emx,m, n ∈ Z+, and

α = β
δ , β, δ ∈ Z and δ 6= 0. Then

f (α)(x) = n(ln(x))
nβ−δ
δ

x
β
δ

and g(α)(x) = ne
β
δ
mx

x
β−δ
δ

.

Proof. The fractional order derivative of logarithmic function f(x) = (ln(x)) is

f (α)(x) =
(
f(x)
x

)α−1

f ′(x) =

((
ln(x)

)n
x

) β
δ−1

n
(

ln(x)
)n−1

x = n

(
ln(x)

)nβ−δ
δ

x
β
δ

and

the fractional order derivative of exponential function g(x) = emx is

g(α)(x) =
(
g(x)
x

)α−1

g′(x) =
(
emx

x

) β
δ−1

memx = m e
β
δ
mx

x
β−δ
δ

4. CONCLUSIONS

The methods in the literature for fractional order derivatives have important
deficiencies and shortcomings. These are illustrated in this paper, so, it is a re-
quirement to redefine the concept of fractional order derivation.

Thus the fractional order derivative was redefined in this paper. Then the ob-
tained results have magnitudes and directions. This means that the result of deriva-
tion is a vector. So, there must be a relationship between derivative and complex
function. This important point was verified in this paper.

The fractional order derivatives of polynomial, trigonometric, logarithmic and
exponential functions were obtained and illustrated in this paper.
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