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(Communicated by Johann DAVIDOV)

Abstract. In this paper, we consider the idea of Bertrand curves for curves

lying on surfaces in the Minkowski 3-space E3
1 . By considering the Darboux

frame, we define these curves as Bertrand partner D-curves and give the gen-

eral characterizations for those curves. Then, we find the relations between

the geodesic curvatures, the normal curvatures and the geodesic torsions of
these associated curves in some special cases.

1. INTRODUCTION

In the differential geometry of space curves the associated curves, the curves for
which at the corresponding points of them one of the Frenet vectors of a curve
coincides with the one of the Frenet vectors of other curve have an important role
for characterizations of space curves. The well-known examples of such curves are
Bertrand curves. These special curves are characterized as a kind of corresponding
relation between two curves such that the curves have common principal normal
i.e., the Bertrand curve is a curve which shares the normal line with another curve.
These curves have an important role in the theory of curves. Hereby, from the
past to today, a lot of mathematicians have studied on Bertrand curves in different
spaces such as Euclidean space, Minkowski space or Galilean space [1-5,9,12,15].
Also these curves have an important role in the theory of ruled surfaces and in the
characterizations of some other special curves. In [4], Izumiya and Takeuchi have
studied cylindrical helices and Bertrand curves from the view point as curves on
ruled surfaces. Also, they have studied generic properties of cylindrical helices and
Bertrand curves as applications of singularity theory for plane curves and spherical
curves [5]. Furthermore, by considering frames of ruled surfaces, Ravani and Ku
extended the notion of Bertrand curve to the ruled surfaces and called Bertrand
offsets [11]. The corresponding characterizations of the Bertrand offsets of ruled
surfaces in the Minkowski 3-space E3

1 were given by Kasap and Kuruoǧlu [6].
The differential geometry of non-null curves lying fully on a surface in the

Minkowski 3-space E3
1 has been given by Uǧurlu and Çalışkan [13]. They have
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given the Darboux frames of curves according to the Lorentzian characters of sur-
faces and curves.

In this paper, we consider the notion of the Bertrand curve for curves lying
on surfaces in the Minkowski 3-space E3

1 . We call these new associated curves as
Bertrand D-curves and by using the Darboux frame of curves, we give definition
and characterizations of these special curves.

2. PRELIMINARIES

The Minkowski 3-space E3
1 is the real vector space R3

1 provided with the standard
flat metric given by

〈, 〉 = −dx2
1 + dx2

2 + dx2
3

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . An arbitrary vector

~v = (v1, v2, v3) in E3
1 can have one of three Lorentzian causal characters; it can be

spacelike if 〈~v,~v〉 > 0 or ~v = 0, timelike if 〈~v,~v〉 < 0 and null (lightlike) if 〈~v,~v〉 = 0
and ~v 6= 0. Similarly, an arbitrary curve ~α = ~α(s) can locally be spacelike, timelike

or null (lightlike), if all of its velocity vectors ~α′(s) are respectively spacelike, time-
like or null (lightlike) [8]. We say that a timelike vector is future pointing or past
pointing if the first compound of the vector is positive or negative, respectively.
For any vectors ~x = (x1, x2, x3) and ~y = (y1, y2, y3) in E3

1 , the Lorentzian vector
product of ~x and ~y is defined by

~x× ~y =

∣∣∣∣∣∣
e1 −e2 −e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2)

where

δij =

{
1 i = j,
0 i 6= j,

ei = (δi1, δi2, δi3)

and e1 × e2 = −e3, e2 × e3 = e1, e3 × e1 = −e2.

Denote by
{
~T , ~N, ~B

}
the moving Frenet frame along the curve α(s) in the

Minkowski space E3
1 . For an arbitrary spacelike curve α(s) in E3

1 , the following
Frenet formulae are given, ~T ′

~N ′

~B′

 =

 0 k1 0
−εk1 0 k2

0 k2 0

 ~T
~N
~B

 ,
where

〈
~T , ~T

〉
= 1,

〈
~N, ~N

〉
= ε = ±1,

〈
~B, ~B

〉
= −ε,

〈
~T , ~N

〉
=
〈
~T , ~B

〉
=〈

~N, ~B
〉

= 0 and k1 and k2 are curvature and torsion of spacelike curve α(s),

respectively. Here, ε determines the kind of spacelike curve α(s). If ε = 1, then

α(s) is a spacelike curve with spacelike principal normal ~N and timelike binormal
~B. If ε = −1, then α(s) is a spacelike curve with timelike principal normal ~N and

spacelike binormal ~B. Furthermore, for a timelike curve α(s) in E3
1 , the following

Frenet formulae are given as follows,
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 ~T ′

~N ′

~B′

 =

 0 k1 0
k1 0 k2

0 −k2 0

 ~T
~N
~B

 .
where

〈
~T , ~T

〉
= −1,

〈
~N, ~N

〉
=
〈
~B, ~B

〉
= 1,

〈
~T , ~N

〉
=
〈
~T , ~B

〉
=
〈
~N, ~B

〉
= 0

and k1 and k2 are curvature and torsion of the timelike curve α(s) respectively (For
details see [14]).

Definition 2.1. ([10]) i) Hyperbolic angle: Let ~x and ~y be future pointing (or
past pointing) timelike vectors in E3

1 . Then there is a unique real number θ ≥ 0
such that < ~x, ~y >= −‖~x‖ ‖~y‖ cosh θ. This number is called the hyperbolic angle
between the vectors ~x and ~y.

ii) Central angle: Let ~x and ~y be spacelike vectors in E3
1 that span a timelike

vector subspace. Then there is a unique real number θ ≥ 0 such that |< ~x, ~y >| =
‖~x‖ ‖~y‖ cosh θ. This number is called the central angle between the vectors ~x and
~y.

iii) Spacelike angle: Let ~x and ~y be spacelike vectors in E3
1 that span a

spacelike vector subspace. Then there is a unique real number θ ≥ 0 such that
< ~x, ~y >= ‖~x‖ ‖~y‖ cos θ. This number is called the spacelike angle between the
vectors ~x and ~y.

iv) Lorentzian timelike angle: Let ~x be a spacelike vector and ~y be a timelike
vector in E3

1 . Then there is a unique real number θ ≥ 0 such that |< ~x, ~y >| =
‖~x‖ ‖~y‖ sinh θ. This number is called the Lorentzian timelike angle between the
vectors ~x and ~y.

Definition 2.2. ([13])A surface in the Minkowski 3-space E3
1 is called a timelike

(respectively spacelike) surface if the normal vector of the surface is a spacelike
(respectively timelike) vector at each point on the surface.

3. DARBOUX FRAME OF A CURVE LYING ON A SURFACE IN THE
MINKOWSKI 3-SPACE E3

1

Let S be an oriented surface in 3-dimensional Minkowski space E3
1 and let con-

sider a non-null curve x(s) lying fully on S. Since the curve x(s) is also in space,

there exists a Frenet frame
{
~T , ~N, ~B

}
at each point on the curve where ~T is unit

tangent vector field, ~N is principal normal vector field and ~B is binormal vector
field, respectively.

Since the curve x(s) lies on the surface S, there exists another frame of the curve

x(s) which is called Darboux frame and denoted by
{
~T ,~g, ~n

}
. In this frame ~T is

the unit tangent vector field of the curve, ~n is the unit normal vector field of the

surface S along the curve and ~g is a unit vector obtained by ~g = ±~n× ~T . Since the

unit tangent ~T is common in both Frenet frame and Darboux frame, the vectors
~N, ~B, ~g and ~n lie on same plane. Then, if the surface S is an oriented timelike
surface, the relations between these frames can be given as follows:

If the curve x(s) is timelike,
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 ~T
~g
~n

 =

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 ~T
~N
~B

 .
If the curve x(s) is spacelike, ~T

~g
~n

 =

 1 0 0
0 coshϕ sinhϕ
0 sinhϕ coshϕ

 ~T
~N
~B

 .
If the surface S is an oriented spacelike surface, then the curve x(s) lying on S

is a spacelike curve. So, the relations between the frames can be given as follows ~T
~g
~n

 =

 1 0 0
0 coshϕ sinhϕ
0 sinhϕ coshϕ

 ~T
~N
~B

 .
In all cases, ϕ is the angle between the vectors ~g and ~N .
According to the Lorentzian causal characters of the surface S and the curve

x(s) lying on S, the derivative formulae of the Darboux frame can be changed as
follows:

i) If the surface S is a timelike surface, then the curve x(s) lying on S can be a
spacelike or a timelike curve. Thus, the derivative formulae of the Darboux frame
of x(s) are given by

(3.1)

 ~̇T

~̇g

~̇n

 =

 0 kg −εkn
kg 0 ετg
kn τg 0

 ~T
~g
~n

 ,
〈
~T , ~T

〉
= ε = ±1, 〈~g,~g〉 = −ε, 〈~n, ~n〉 = 1.

ii) If the surface S is a spacelike surface, then the curve x(s) lying on S is a
spacelike curve. Thus, the derivative formulae of the Darboux frame of x(s) are
given by

(3.2)

 ~̇T

~̇g

~̇n

 =

 0 kg kn
−kg 0 τg
kn τg 0

 ~T
~g
~n

 ,
〈
~T , ~T

〉
= 1, 〈~g,~g〉 = 1, 〈~n, ~n〉 = −1.

In these formulae, kg, kn and τg are called the geodesic curvature, the normal
curvature and the geodesic torsion, respectively. Here and in the following, we use
“dot” to denote the derivative with respect to the arc length parameter of a curve.

The relations between geodesic curvature, normal curvature, geodesic torsion
and κ, τ are given as follows:

i) If both S and x(s) are timelike or spacelike, then

kg = κ cosϕ, kn = κ sinϕ, τg = τ +
dϕ

ds
.
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ii) If S is timelike and x(s) is spacelike, then

kg = κ coshϕ, kn = κ sinhϕ, τg = τ +
dϕ

ds
.

(For details [13]). Furthermore, the geodesic curvature kg and geodesic torsion
τg of any curve x(s) can be calculated as follows

(3.3) kg = −
〈
dx

ds
,
d2x

ds2
× ~n

〉
, τg = −εµ

〈
dx

ds
, ~n× d~n

ds

〉
,

where µ = 〈~n, ~n〉 = ±1.
In the differential geometry of surfaces, for a curve x(s) lying on a surface S the

followings are well-known
i) x(s) is a geodesic curve ⇔ kg = 0,
ii) x(s) is an asymptotic line ⇔ kn = 0,
iii) x(s) is a principal line ⇔ τg = 0 [7].
The same results also hold for the surfaces in E3

1 .

4. BERTRAND PARTNER D-CURVES IN THE MINKOWSKI 3-SPACE
E3

1

In this section, by considering the Darboux frame, we define Bertrand D-curves
and give the characterizations of these curves in E3

1 .

Definition 4.1. Let S and S1 be two oriented surfaces in E3
1 and let consider the

arc-length parameter curves x(s) and x1(s1) lying fully on S and S1, respectively.

Denote the Darboux frames of x(s) and x1(s1) by
{
~T ,~g, ~n

}
and

{
~T1, ~g1, ~n1

}
, re-

spectively. If there exists a corresponding relationship between curves x and x1

such that at the corresponding points of curves, the Darboux frame element ~g of
x coincides with the Darboux frame element ~g1 of x1, then x is called a Bertrand
D-curve, and x1 is a Bertrand partner D-curve of x. Then, the pair {x, x1} is said
to be a Bertrand D-pair. If there exist such curves lying on the oriented surfaces S
and S1, respectively, we call the surface pair {S, S1} as Bertrand D-pair surfaces.

By considering the non-null Lorentzian casual characters of surfaces and curves,
from Definition 4.1, it is easily seen that there are five different types of the Bertrand
D-curves in E3

1 . Let the pair {x, x1} be a Bertrand D−pair. Then according to
the character of surface S we have the followings:

If both the surface S and the curve x(s) lying on S are spacelike, then there are
two cases; first one is that both the surface S1 and the curve x1(s1) fully lying on
S1 are spacelike. In this case we say that the pair {x, x1} is a Bertrand D-pair of
the type 1. The second case is that both the surface S1 and the curve x1(s1) fully
lying on S1 are timelike. Then the pair {x, x1} is called a Bertrand D-pair of the
type 2. If both the surface S and the curve x(s) lying on S are timelike, then there
are two cases; one is that both the surface S1 and the curve x1(s1) fully lying on S1

are timelike. In this case we say that the pair {x, x1} is a Bertrand D-pair of the
type 3. The other case is that both the surface S1 and the curve x1(s1) fully lying
on S1 are spacelike then the pair {x, x1} is a Bertrand D-pair of the type 4. If the
surface S is timelike and the curve x(s) lying on S is spacelike, then the surface S1

is timelike and the curve x1(s1) fully lying on S1 is spacelike. In this case we say
that the pair {x, x1} is a Bertrand D-pair of the type 5.
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Theorem 4.1. Let S be an oriented surface and x(s) be a curve in E3
1 with arc

length parameter s fully lying on S. If S1 is another oriented surface and x1(s1)
is a curve with arc length parameter s1 fully lying on S1, then x1(s1) is Bertrand
partner D-curve of x(s) if and only if the normal curvature kn of x(s) and the
geodesic curvature kg1 , the normal curvature kn1

and the geodesic torsion τg1 of
x1(s1) satisfy the following equations,

i) if the pair {x, x1} is a Bertrand D-pair of the type 1, then

τ̇g1 =
1

λ

[(
(1− λkg1)2 − λ2τ2

g1

(1− λkg1)

)(
−kn1

+ kn
1− λkg1
cosh θ

)
− λ2τg1 k̇g1

1− λkg1

]
.

ii) if the pair {x, x1} is a Bertrand D-pair of the type 2, then

τ̇g1 =
−1

λ

[(
(1 + λkg1)2 − λ2τ2

g1

(1 + λkg1)

)(
−kn1

+ kn
1 + λkg1

sinh θ

)
−

(
λ2τg1 k̇g1
1 + λkg1

)]
iii) if the pair {x, x1} is a Bertrand D-pair of the type 3, then

τ̇g1 =
−1

λ

[(
(1 + λkg1)2 − λ2τ2

g1

(1 + λkg1)

)(
−kn1

+ kn
1 + λkg1
cosh θ

)
− λ2τg1 k̇g1

1 + λkg1

]
iv) if the pair {x, x1} is a Bertrand D-pair of the type 4, then

τ̇g1 =
1

λ

[(
(1− λkg1)2 − λ2τ2

g1

(1− λkg1)

)(
−kn1

+ kn
1− λkg1

sinh θ

)
− λ2τg1 k̇g1

1− λkg1

]
v) if the pair {x, x1} is a Bertrand D-pair of the type 5, then

τ̇g1 =
1

λ

[(
(1 + λkg1)2 + λ2τ2

g1

(1 + λkg1)

)(
kn1 − kn

1 + λkg1
cos θ

)
+
λ2τg1 k̇g1
1 + λkg1

]
for some nonzero constants λ, where θ is the angle between the tangent vectors

~T and ~T1 at the corresponding points of x and x1.

Proof. i) Suppose that the pair {x, x1} is a Bertrand D-pair of the type 1. Denote

the Darboux frames of x(s) and x1(s1) by
{
~T ,~g, ~n

}
and

{
~T1, ~g1, ~n1

}
, respectively.

Then by the definition we can write

(4.1) x(s1) = x1(s1) + λ(s1)~g1(s1),

for some functions λ(s1). By taking derivative of (4.1) with respect to s1 and
applying the Darboux formulae (3.1) we have

(4.2) ~T
ds

ds1
= (1− λkg1)~T1 + λ̇~g1 + λτg1~n1

Since the direction of ~g1 coincides with the direction of ~g, i.e., the tangent vector
~T of the curve lies on the plane spanned by the vectors ~T1 and ~n1, we get

λ̇(s1) = 0.
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This means that λ is a nonzero constant. Thus, the equality (4.2) can be written
as follows

(4.3) ~T
ds

ds1
= (1− λkg1)~T1 + λτg1~n1.

Furthermore, we have

(4.4) ~T = cosh θ ~T1 + sinh θ~n1,

where θ is the angle between the tangent vectors ~T and ~T1 at the corresponding
points of x and x1. By differentiating last equation with respect to s1, we get

(4.5)
(kg~g + kn~n) dsds1 = (θ̇ + kn1

) sinh θ ~T1

+(kg1 cosh θ + τg1 sinh θ)~g1 + (θ̇ + kn1
) cosh θ~n1

From this equation and the fact that

(4.6) ~n = sinh θ ~T1 + cosh θ~n1,

we get

(4.7)
(kn sinh θ ~T1 + kg~g + kn cosh θ~n1) dsds1 = (θ̇ + kn1

) sinh θ ~T1

+(kg1 cosh θ + τg1 sinh θ)~g1

+(θ̇ + kn1) cosh θ~n1

Since the direction of ~g1 coincides with ~g we have

(4.8) θ̇ = −kn1
+ kn

ds

ds1
.

Using the fact that ~T1 is orthogonal to ~g1, from (4.3) and (4.4) we obtain

(4.9)
ds

ds1
=

1− λkg1
cosh θ

=
λτg1

sinh θ
.

Equality (4.9) gives us

(4.10) tanh θ =
λτg1

1− λkg1
.

By taking the derivative of this equation and applying (4.8) we get

(4.11) τ̇g1 = − 1

λ

[(
(1− λkg1)2 − λ2τ2

g1

(1− λkg1)

)(
−kn1 + kn

1− λkg1
cosh θ

)
− λ2τg1 k̇g1

1− λkg1

]
,

that is desired.
Conversely, assume that equation (4.11) holds for some non-zero constants λ.

Then by using (4.9) and (4.10), (4.11) gives us
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(4.12)
kn

(
ds
ds1

)3

= λτ̇g1(1− λkg1) + λ2τg1 k̇g1

+
(
(1− λkg1)2 − λ2τ2

g1

)
kn1

Let define a curve

(4.13) x(s1) = x1(s1) + λ(s1)~g1(s1).

We will prove that x is a Bertrand D-curve and x1 is the Bertrand partner
D-curve of x. By taking the derivative of (4.13) with respect to s1 twice, we get

(4.14) ~T
ds

ds1
= (1− λkg1)~T1 + λτg1~n1,

and

(4.15)
(kg~g + kn~n)

(
ds
ds1

)2

+ ~T d2s
ds21

= (−λk̇g1 + λτg1kn1
)~T1

+
(
(1− λkg1)kg1 + λτ2

g1

)
~g1

+ ((1− λkg1)kn1
+ λτ̇g1)~n1

respectively. Taking the cross product of (4.14) and (4.15) we have

(4.16)

[kg~n+ kn~g]
(
ds
ds1

)3

=
[
λτg1kg1(1− λkg1) + λ2τ3

g1

]
~T1

+
[
(1− λkg1)2kn1

+ λτ̇g1(1− λkg1) + λ2τg1 k̇g1 − λ2τ2
g1kn1

]
~g1

+
[
kg1(1− λkg1)2 + λτ2

g1(1− λkg1)
]
~n1

By substituting (4.12) in (4.16) we get

(4.17)
[kg~n+ kn~g]

(
ds
ds1

)3

=
(
λτg1kg1(1− λkg1) + λ2τ3

g1

)
~T1 + kn

(
ds
ds1

)3

~g1

+
(
kg1(1− λkg1)2 + λτ2

g1(1− λkg1)
)
~n1

Taking the cross product of (4.14) with (4.17) we have

(4.18)

[kg~g + kn~n]
(
ds
ds1

)4

= kn

(
ds
ds1

)3

λτg1
~T1

+
(
(1− λkg1)2 − λ2τ2

g1

) (
λτ2
g1 + kg1(1− λkg1)

)
~g1

+kn

(
ds
ds1

)3

(1− λkg1)~n1

From (4.17) and (4.18) we obtain

(4.19)

(k2
g − k2

n)
(
ds
ds1

)4

~n =

[
λkgkg1τg1(1− λkg1) dsds1 + λ2kgτ

3
g1

ds
ds1
− λτg1k2

n

(
ds
ds1

)3
]
~T1

+ kn

(
ds
ds1

)2
[
kg

(
ds
ds1

)2

− λτ2
g1 − kg1(1− λkg1)

]
~g1

+

[
kgkg1(1− λkg1)2 ds

ds1
+ λτ2

g1kg(1− λkg1) dsds1 − k
2
n(1− λkg1)

(
ds
ds1

)3
]
~n1

Furthermore, from (4.14) and (4.17) we get
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(4.20)


(
ds
ds1

)2

= (1− λkg1)2 − λ2τ2
g1 ,

kg

(
ds
ds1

)2

= kg1(1− λkg1) + λτ2
g1 ,

respectively. Substituting (4.20) in (4.19) we obtain

(4.21)

(k2
g − k2

n)
(
ds
ds1

)4

~n =

[
λkgkg1τg1(1− λkg1) dsds1 + λ2kgτ

3
g1

ds
ds1
− λτg1k2

n

(
ds
ds1

)3
]
~T1

+

[
kgkg1(1− λkg1)2 ds

ds1
+ λτ2

g1kg(1− λkg1) dsds1 − k
2
n(1− λkg1)

(
ds
ds1

)3
]
~n1

Equality (4.14) and (4.21) shows that the vectors ~T and ~n lie on the plane

sp
{
~T1, ~n1

}
. So, at the corresponding points of the curves, the Darboux frame

element ~g of x coincides with the Darboux frame element ~g1 of x1, i.e, the curves
x and x1 are Bertrand D-curves. �

Let now give the characterizations of Bertrand partner D-curves of the type 1
in some special cases. Assume that x(s) be an asymptotic line. Then, from (4.11)
we have the following special cases:

i) Consider that x1(s1) is a geodesic curve. Then x1(s1) is Bertrand partner
D-curve of x(s) if and only if the following equation holds,

λτ̇g1 = kn1

(
1− λ2τ2

g1

)
ii) Assume that x1(s1) is also an asymptotic line. Then x1(s1) is Bertrand

partner D-curve of x(s) if and only if the geodesic torsion τg1 of x1(s1) satisfies the
following equation,

τ̇g1 =
λτg1 k̇g1
1− λkg1

.

iii) If x1(s1) is a principal line then x1(s1) is Bertrand partner D-curve of x(s)
if and only if the geodesic curvature kg1 and the normal curvature kn1 of x1(s1)
satisfy the following equality,

kn1(1− λkg1) = 0

The proofs of the statement (ii), (iii), (iv) and (v) of Theorem 4.1 and the
particular cases given above can be given by the same way of the proof of statement
(i).

Theorem 4.2. Let the pair {x, x1} be a Bertrand D-pair. Then the relations
between geodesic curvature kg, geodesic torsion τg of x(s)and the geodesic curvature
kg1 , the geodesic torsion τg1 of x1(s1) are given as follows,

i) if the pair {x, x1} is a Bertrand D-pair of the type 1, then

kg − kg1 = λ(kgkg1 + τgτg1)

ii) if the pair {x, x1} is a Bertrand D-pair of the type 2, then

kg + kg1 = −λ(kgkg1 + τgτg1)
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iii) if the pair {x, x1} is a Bertrand D-pair of the type 3, then

kg − kg1 = −λ(kgkg1 − τgτg1)

iv) if the pair {x, x1} is a Bertrand D-pair of the type 4, then

kg + kg1 = λ(kgkg1 + τgτg1)

v) if the pair {x, x1} is a Bertrand D-pair of the type 4, then

kg − kg1 = λ(τgτg1 − kgkg1).

Proof. i) Suppose that the pair {x, x1} is a Bertrand D-pair of the type 1. Then
by definition from (4.13) we can write

(4.22) x1(s1) = x(s1)− λ(s1)~g(s1)

for some constants λ. By differentiating (4.22) with respect to s1 we have

(4.23) ~T1 = (1 + λkg)
ds

ds1

~T − λτg
ds

ds1
~n

By the definition we have

(4.24) ~T1 = cosh θ ~T − sinh θ~n

From (4.23) and (4.24) we obtain

(4.25) cosh θ = (1 + λkg)
ds

ds1
, sinh θ = λτg

ds

ds1

Using (4.9) and (4.25) it is easily seen that

kg − kg1 = λ(kgkg1 + τgτg1).

The proofs of the statements (ii), (iii), (iv) and (v) of Theorem 4.2 can be given
by the same way of the proof of statement (i). �

From Theorem 4.2, we obtain the following special cases:
Let the pair {x, x1} be a Bertrand D-pair of the type 1. Then,
i) if one of the curves x and x1 is a principal line, then the relation between the

geodesic curvatures kg and kg1 is

kg − kg1 = λkgkg1

ii) if x1 is a geodesic curve, then the geodesic curvature of the curve x is given
by

kg = λτgτg1

iii) if x is a geodesic curve, then the geodesic curvature of the curve x1 is given
by

kg1 = −λτgτg1
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Theorem 4.3. Let {x, x1} be Bertrand D-pair of the type 1. Then the following
relations hold:

i) kn1
= kn

ds
ds1
− dθ

ds1

ii) τg
ds
ds1

= kg1 sinh θ − τg1 cosh θ

iii) kg
ds
ds1

= kg1 cosh θ + τg1 sinh θ

iv) τg1 = (−kg sinh θ + τg cosh θ) dsds1

Proof. i) Since the pair {x, x1} is a BertrandD-pair of the type 1, we have
〈
~T , ~T1

〉
=

cosh θ. By differentiating this equation with respect to s1 we have〈
(kg~g + kn~n)

ds

ds1
, ~T1

〉
+
〈
~T , kg1~g1 + kn1

~n1

〉
= sinh θ

dθ

ds1
.

Using the fact that the direction of ~g1 coincides with the direction of ~g and

(4.26) ~T1 = cosh θ ~T − sinh θ~n, ~n1 = − sinh θ ~T + cosh θ~n

we easily get that

kn1 = kn
ds

ds1
− dθ

ds1
.

ii) By definition we have 〈~n,~g1〉 = 0. Differentiating this equation with respect
to s1 we have 〈

(kn ~T + τg~g)
ds

ds1
, ~g1

〉
+
〈
~n,−kg1 ~T1 + τg1~n1

〉
= 0.

By (4.26) we obtain

τg
ds

ds1
= kg1 sinh θ − τg1 cosh θ

iii) By differentiating the equation
〈
~T ,~g1

〉
= 0 with respect to s1 we get〈

(kg~g + kn~n)
ds

ds1
, ~g1

〉
+
〈
~T , (−kg1 ~T1 + τg1~n1

〉
= 0.

From (4.26) it follows that

kg
ds

ds1
= kg1 cosh θ + τg1 sinh θ.

iv) By differentiating the equation 〈~n1, ~g〉 = 0 with respect to s1 we obtain〈
(kn1

~T1 + τg1~g1, ~g
〉

+

〈
~n1, (−kg ~T + τg~n)

ds

ds1

〉
= 0,

and using the fact that direction of ~g1 coincides with the direction of ~g and

~T = cosh θ ~T1 + sinh θ~n1, ~n = sinh θ ~T1 + cosh θ~n1

we get

τg1 = (−kg sinh θ + τg cosh θ)
ds

ds1
.

�
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The statements of Theorem 4.3 for the pairs {x, x1} of the type 2, 3, 4, and 5
can be given as follows and the proofs can be easily done by the same way of the
case the pair {x, x1} is of the type 1.

For the pair {x, x1} of the type 2
i) kn1 = dθ

ds1
+ kn

ds
ds1

ii) τg
ds
ds1

= kg1 cosh θ − τg1 sinh θ

iii) kg
ds
ds1

= kg1 sinh θ + τg1 cosh θ iv) τg1 = (kg cosh θ − τg sinh θ) dsds1
For the pair {x, x1} of the type 3
i) kn1 = kn

ds
ds1

+ dθ
ds1

ii) τg
ds
ds1

= kg1 sinh θ − τg1 cosh θ

iii) kg
ds
ds1

= kg1 cosh θ + τg1 sinh θ iv) τg1 = (−kg sinh θ + τg cosh θ) dsds1
For the pair {x, x1} of the type 4
i) kn1

= kn
ds
ds1
− dθ

ds1
ii) τg

ds
ds1

= kg1 cosh θ + τg1 sinh θ

iii) kg
ds
ds1

= kg1 sinh θ + τg1 cosh θ iv) τg1 = (kg cosh θ − τg sinh θ) dsds1
For the pair {x, x1} of the type 5
i) kn1

= kn
ds
ds1

+ dθ
ds1

ii) τg
ds
ds1

= −kg1 sin θ + τg1 cos θ

iii) kg
ds
ds1

= kg1 cos θ + τg1 sin θ iv) τg1 = (kg sin θ + τg cos θ) dsds1
Let now {x, x1} be a Bertrand D-pair of the type 1. From the first equation of

(3.3) and by using the fact that ~n1 = − sinh θ ~T + cosh θ~n we have

(4.27) kg1 = [(1 + λkg) cosh θ − λτg sinh θ]
[
kg + λk2

g − λτ2
g

]( ds

ds1

)3

.

Then we can give the following corollary.

Corollary 4.1. Let {x, x1} be a Bertrand D-pair of the type 1. Then the relations
between the geodesic curvature kg1 of x1(s1) and the geodesic curvature kg and the
geodesic torsion τg of x(s) are given as follows.

i) If x is a geodesic curve, then the geodesic curvature kg1 of x1(s1)is

(4.28) kg1 = −λτ2
g

(
ds

ds1

)3

(cosh θ − λτg sinh θ).

ii) If x is a principal line, then the relation between the geodesic curvatures kg1
and kg is given by

(4.29) kg1 = (kg + 2λkg + λ2k3
g)

(
ds

ds1

)3

cosh θ.

If the pair {x, x1} is of the type 2, 3, 4 or 5 then the geodesic curvature of the
curve x1(s1) is given as follows

If the pair {x, x1}is of the type 2

kg1 = [(1 + λkg) sinh θ − λτg cosh θ]
[
−kg − λk2

g + λτ2
g

]( ds

ds1

)3

If the pair {x, x1} is of the type 3

kg1 = [(1− λkg) cosh θ + λτg sinh θ]
[
kg − λk2

g + λτ2
g

]( ds

ds1

)3

If the pair {x, x1}is of the type 4
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kg1 = [(1− λkg) sinh θ + λτg cosh θ]
[
−kg + λk2

g − λτ2
g

]( ds

ds1

)3

If the pair {x, x1} is of the type 5

kg1 = [(1− λkg) cos θ + λτg sin θ]
[
kg − λk2

g − λτ2
g

]( ds

ds1

)3

and the statements in Corollary 4.1 are obtained by the same way.
Similarly, From the second equation of (3.3) and by using the fact that ~g coincides

with ~g1, i.e., ~n1 = − sinh θ ~T + cosh θ~n, the geodesic torsion τg1of x1 is given by

(4.30)
τg1 =

[
(τg + λkgτg) cosh2 θ +

(
−kg − λk2

g + λτ2
g

)
sinh θ cosh θ

+λτgkg sinh2 θ
] (

ds
ds1

)2

From (4.30) we can give the following corollary.

Corollary 4.2. Let {x, x1} be a Bertrand D-pair of the type 1. Then the relations
between the geodesic torsion τg1 of x1(s1) and the geodesic curvature kg and the
geodesic torsion τg of x(s) are given as follows.

i) If x is a geodesic curve then the geodesic torsion of x1 is

(4.31) τg1 =
(
τg cosh2 θ + λτ2

g sinh θ cosh θ
)( ds

ds1

)2

.

ii) If x is a principal line then the relation between τg1 and kg is

(4.32) τg1 = −(kg + λk2
g) sinh θ cosh θ

(
ds

ds1

)2

.

Furthermore, by using (4.9) and (4.10), from (4.31) and (4.32) we have the
following corollary.

Corollary 4.3. i) Let {x, x1} be a Bertrand D-pair of the type 1 and let x be a
geodesic line. Then the geodesic torsion τg1 of x1(s1) is given by

(4.33) τg1 = τg(1− λkg1)
[
(1− λkg1) + λ2τgτg1

]
.

ii) Let {x, x1} be a Bertrand D-pair of the type 1 and let x be a principal line.
Then the relation between the geodesic curvatures kg and kg1 is given as follows

(4.34) kg(1 + λkg)(1− λkg1) = − 1

λ
= constant.

When the pair {x, x1} is of the type 2, 3, 4 or 5, then the relations which give
the geodesic torsion τg1of x1(s1) are given as follows.

For the pair {x, x1} of the type 2

τg1 =
[
τg sinh2 θ − λτgkg +

(
λτ2
g − kg − λk2

g)
)

sinh θ cosh θ
]( ds

ds1

)2

For the pair {x, x1} of the type 3
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τg1 =
[
(τg − λkgτg) cosh2 θ +

(
−kg + λk2

g + λτ2
g

)
sinh θ cosh θ −λτgkg sin2 θ

]( ds

ds1

)2

For the pair {x, x1} of the type 4

τg1 =
[
(τg + λkgτg) sinh2 θ−

(
λτ2
g + kg + λk2

g

)
sinh θ cosh θ +λτgkg cosh2 θ

]( ds

ds1

)2

For the pair {x, x1} of the type 5

τg1 =
[
(λkgτg − τg) cos2 θ +

(
−kg + λk2

g − λτ2
g

)
sin θ cos θ −λτgkg sin2 θ

]( ds

ds1

)2

5. CONCLUSIONS

In this paper, the definition and characterizations of Bertrand partner D-curves
in E3

1 are given which is a new study of associated curves lying on surfaces. The
relations between the geodesic curvatures, the normal curvatures and the geodesic
torsions of these curves are given. Moreover, for a special case such as one of the
curves is a geodesic line, principal line or asymptotic line, some special relationships
are obtained in E3

1 .
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