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ESTIMATION USING COPULA FUNCTION IN REGRESSION

MODEL
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(Communicated by Kamile SANLI KULA)

Abstract. Copula models are becoming an increasingly powerful tool for
modeling the dependencies between random variables, they have useful ap-

plications in many fields such as biostatistics, actuarial science, and finance.

In this paper, we investigate the estimate of a regression model, by use of the
copula representation. Its asymptotic properties are studied; almost surely

convergence and convergence in probability (with rate).

1. Introduction

Copula theory, following the works of Sklar in 1959, allows a flexible modeling
of dependence between two or more random variables. In recent years, the growing
interest for this theory is phenomenal. In [18] Thomas Mikosch stated that in
September 2005, a Google search on the term ”copula” produced 650,000 results.
Then, in January 2007, this same query generates more than 1.13 million. Given
the number of publications in scientific journals and the number of papers available
on Internet, it is undeniable that passion to the copula theory is still booming.

The progress of applications of this theory is wide in the field of finance, risk
management, performance evaluation of assets, the valuation of derivatives, the
extreme value theory, contagion require flexible and practical models of addiction.

The construction and properties of copulas have been studied rather extensively
during the last 15 years or so. Hutchinson and Lai (1990) [15] were among the early
authors who popularized the study of copulas. Nelsen (1999) [20] presented a com-
prehensive treatment of bivariate copulas, while Joe (1997) [16] devoted a chapter
of his book to multivariate copulas. Further authoritative updates on copulas are
given in Nelsen (2006) [19]. Copula methods have many important applications in
insurance and finance Cherubini et al. (2004) [3] and Embrechts et al. (2003) [6].

Briefly speaking, copulas are functions that join multivariate distributions to
their one-dimensional marginal distribution functions. Equivalently, copulas are
multivariate distributions whose marginals are uniform on the interval (0, 1). In
this paper, we restrict our attention to bivariate copulas. Fisher (1997) [13] gave
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two major reasons as to why copulas are of interest to statisticians: firstly, as a way
of studying scale-free measures of dependence; and secondly, as a starting point for
constructing families of bivariate distributions.” Specifically, copulas are an impor-
tant part of the study of dependence between two variables since they allow us to
separate the effect of dependence from the effects of the marginal distributions. This
feature is analogous to the bivariate normal distribution where the mean vectors
are unlinked to the covariance matrix and jointly determine the distribution. Many
authors have studied constructions of bivariate distributions with given marginals:
This may be viewed as constructing a copula.

Nonparametric estimators of copula densities have been suggested by Gijbels and
Mielnicsuk [14] and Fermanian and Scaillet [10], who used kernel methods, Sancetta
[24] and Sancetta and Satchell [25], who used techniques based on Bernstein poly-
nomials. Biau and Wegkamp[1] proposed estimating the copula density through a
minimum distance criterion. Faugeras [7] in his thesis studied the quantile copula
approach to conditional density estimation.

The aim of this paper is devoted to the estimation of a regression model via a
copulae function, the rest of the paper is organized as follows; at first in section
2 we state Sklar’s theorem which elucidates the role that copulas play in the re-
lationship between bivariate distribution functions and their univariate marginals
and at the end of the section we introduce our model, then in section 3 we make
some regularity assumptions on the kernels and the densities which, although far
from being minimal, are somehow customary in kernel density estimation, the main
result and its proof is given in the fourth part of this paper. Then we finish this
work by a small conclusion.

2. The model

Let (Xi;Yi); i = 1, 2, . . . , n be an independent identically distributed sample
from real-valued random variables (X,Y ) sitting on a given probability space. For
predicting the response Y of the input variable X at a given location x, it is of
great interest to estimate not only the conditional mean or regression function
E(Y/X = x), but the full conditional density f(y/x). Indeed, estimating the condi-
tional density is much more informative, since it allows not only to recalculate from
the density the conditional expected value E(Y/X), but also many other charac-
teristics of the distribution such as the conditional variance. In particular, having
knowledge of the general shape of the conditional density, is especially important for
multi-modal or skewed densities, which often arise from nonlinear or non- Gaussian
phenomena, where the expected value might be nowhere near a mode, i.e. the most
likely value to appear.

A natural approach to estimate the conditional density f(y/x) of Y given X = x
would be to exploit the identity

(2.1) f(y/x) =
fXY (x, y)

fX(x)
, fX(x) 6= 0,

where fXY and fX denote the joint density of (X,Y ) and X, respectively.
By introducing Parzen-Rosenblatt [21, 22] kernel estimators of these densities,

namely,

f̂n,XY (x, y) =
1

n

n∑
i=1

K ′h′(Xi − x)Kh(Yi − y),
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f̂n,X(x) =
1

n

n∑
i=1

K ′h′(Xi − x),

where Kh(.) = 1
hK(./h) and K ′h′(.) = 1

h′K
′(./h′) are (rescaled) kernels with their

associated sequence of bandwidth h = hn and h′ = h′n going to zero as n→ 1, one
can construct the quotient

f̂n(y/x) =
f̂n,XY (x, y)

f̂n,X(x)
,

and obtain an estimator of the conditional density.

Formally, Sklar’s theorem below elucidates the role that copulas play in the
relationship between bivariate distribution functions and their univariate marginals
see Sklar[28].

Theorem 2.1. (Sklar 1959) For any bivariate cumulative distribution function
FX,Y on R2, with marginal cumulative distribution functions F of X and G of
Y, there exists some function C : [0, 1]2 → [0, 1], called the dependence or copula
function, such as

(2.2) FX,Y (x, y) = C(F (x), G(y)), −∞ ≤ x, y ≤ +∞.

If F and G are continuous, this representation is unique with respect to (F,G). The
copula function C is itself a cumulative distribution function on [0, 1]2 with uniform
marginals.

This theorem gives a representation of the bivariate c.d.f. as a function of each
univariate c.d.f. In other words, the copula function captures the dependence struc-
ture among the components X and Y of the vector (X,Y ), irrespectively of the
marginal distribution F and G. Simply put, it allows to deal with the randomness
of the dependence structure and the randomness of the marginals separately.

Copulas appear to be naturally linked with the quantile transform: in the case
F and G are continuous, formula (2.2) is simply obtained by defining the copula
function as C(u, v) = FX,Y (F−1(u), G−1(v)), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. For more
details regarding copulas and their properties, one can consult for example the book
of Joe [17]. Copulas have witnessed a renewed interest in statistics, especially in
finance, since the pioneering work of Räuschendorf [23] and Deheuvels [4], who in-
troduced the empirical copula pro- cess. Weak convergence of the empirical copula
process was investigated by Deheuvels [5], Van der Vaart and Wellner [29], Ferma-
nian, Radulovic and Wegkamp [9]. For the estimation of the copula density, refer
to Gijbels and Mielniczuk [14], Fermanian [8] and Fermanian and Scaillet [11].

From now on, we assume that the copula function C(u, v) has a density c(u, v)
with respect to the Lebesgue measure on [0, 1]2 and that F and G are strictly
increasing and differentiable with densities f and g. C(u, v) and c(u, v) are then the
cumulative distribution function (c.d.f.) and density respectively of the transformed
variables (U, V ) = (F (x), G(y)). By differentiating formula (2.2), we get for the joint
density,

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
= f(x)g(y)c(F (x), G(y)),
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where c(u, v) := ∂2C(u,v)
∂u∂v is the above mentioned copula density. Eventually, we

can obtain the following explicit formula of the conditional density

(2.3) f(y/x) =
fXY (x, y)

f(x)
= g(y)c(F (x), G(y)), f(x) 6= 0.

So, let

fn(y/x) = ĝn(y)ĉn(Fn(x), Gn(y)),

be an estimator which builds on the idea of using synthetic data. where ĝn(y), ĉn,
Fn(x), Gn(y) are estimators of the density g of Y, the copula density c, the c.d.f.
F of X and G of Y respectively. Its study then reveals to be particularly simple:
it reduces to the ones already done on nonparametric density estimation.

From now on, we assume that the copula function C(u, v) has a density c(u, v)
with respect to the Lebesgue measure on [0, 1]2 and that F and G are strictly
increasing and differentiable with densities f and g. C(u, v) and c(u, v) are then the
cumulative distribution function (c.d.f.) and density respectively of the transformed
variables (U, V ) = (F (X), G(Y )).

Now, To build an estimator of the conditional density we have to use a Parzen-
Rosenblatt kernel type non parametric estimator of the marginal density g of Y.

ĝn(y) :=
1

nhn

n∑
i=1

K0

(
y − Yi
hn

)
,

the empirical distribution functions Fn(x) and Gn(y) for F (x) and G(y) respec-
tively,

Fn(x) =

n∑
j=1

1Xj≤x and Gn(y) =

n∑
j=1

1Yj≤y.

Concerning the copula density c(u, v), we noted that c(u, v) is the joint den-
sity of the transformed variables (U, V ) := (F (x), G(y)). Therefore, c(u, v) can be
estimated by the bivariate Parzen-Rosenblatt kernel type non parametric density
(pseudo) estimator,

(2.4) cn(u, v) :=
1

nhnbn

n∑
i=1

K

(
u− Ui

hn
,
v − Vi
bn

)
,

where K is a bivariate kernel and hn, bn its associated bandwidth. For simplicity,
we restrict ourselves to product kernels, i.e. K(u, v) = K1(u)K2(v) with the same
bandwidths hn = bn.

Nonetheless, since F and G are unknown, the random variables (Ui, Vi) are not
observable, i.e. cn is not a true statistic. Therefore, we approximate the pseudo-
sample (Ui, Vi), i = 1, 2, . . . , n by its empirical counterpart (Fn(Xi), Gn(Yi)), i =
1, 2, . . . , n. We therefore obtain a genuine estimator of c(u, v).

(2.5) ĉn(u, v) :=
1

nh2n

n∑
i=1

K1

(
u− Fn(Xi)

hn

)
K2

(
v −Gn(Yi)

bn

)
.

Now, let us present Our estimated model, the regression function r(x), is given
as follows:

r(x) = Y cn(F (x), G(y)), |Y | ≤M, Y,m ∈ R.
This regression function r(x) is estimated by a function r̂ = Y ĉn(F (x), G(y)).
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To state our main result, we will have to make some regularity assumptions on
the kernels and the densities which, although far from being minimal, are somehow
customary in kernel density estimation.

3. Notations and Assumptions

Set x and y two fixed points in the interior of supp(f) and supp(g) respectively.
The support of the densities function f and g are noted by

supp(f) = {x ∈ R; f(x) > 0} and supp(g) = {y ∈ R; g(y) > 0},

where A stands for the closure of a set A.

N.B. oP (.) and Op(.) (respectively oa.s(.) and Oa.s(.))will stands for convergence
and boundedness in probability (respectively almost surely).

Assumptions

• (i) the c.d.f F of X and G of Y are strictly increasing and differentiable.

• (ii) the densities g and c are twice continuously differentiable with bounded
second derivatives on their support.

• (iii) the densities g and c are uniformly continuous and non-vanishing al-
most everywhere on a compact set J := [a, b] and D ⊂ (0, 1) × (0, 1)
included in the interior of supp(g) and supp(c), respectively.

• (iv) K and K0 are of bounded support and of bounded variation.
• (v) 0 ≤ K ≤ C and 0 ≤ K0 ≤ C for some constant C.

• (vi) K and K0 are second order kernels.

• (vii) K it is twice differentiable with bounded second partial derivatives.

Recall that cn(u, v) is the kernel copula (pseudo) density estimator from the
unobservable, but fixed with respect to n, pseudo data (F (Xi), G(Yi)), and that
ĉn(u, v) is its analogue made from the approximate data (Fn(Xi), Gn(Yi). The
heuristic of the reason why our estimator works is that the n−1/2 in probability
rate of convergence in uniform norm of Fn and Gn to F and G is faster than
the 1/

√
na2n rate of the non parametric kernel estimator cn of the copula density

c. Therefore, the approximation step of the unknown transformations F and G
by their empirical counterparts Fn and Gn does not have any impact asymptoti-
cally on the estimation step of c by cn. Put in another way, one can approximate
ĉn(Fn(x), Gn(y)) by cn(F (x), G(y)) at a faster rate than the convergence rate of
cn(F (x), G(y)) to c(F (x), G(y)).

4. Main Result

This part of the paper is devoted to the study of almost surely convergence and
convergence in probability (with rate) of our estimator introduced above.
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Theorem 4.1. Let the regularity assumptions (i)-(vii) on the densitie and the
kernel be satisfied, if hn tends to zero as n→∞ in such a way that

na4n →∞,
√

ln lnn

na3n
→ 0,

then,

r̂n(x) = r(x) +OP

(
h2n +

1√
nh2n

+
1

nh4n
+

√
ln lnn

nh3n

)
Proof. Let r̂(x) = Y cn(F (x), G(x)), to demonstrate that r̂(x) converge to r(x) it
is sufficient to prove that ĉn(U, V )→ cn(U, V ), with U = F (x), V = G(x).

For (Xi, i = 1, 2, . . . , n) an i.i.d. sample of a real random variable X with
common c.d.f. F, the Kolmogorov-Smirnov statistic is defined as Dn := ‖Fn − F‖.
Glivenko-Cantelli, Kolmogorov and Smirnov, Chung, Donsker among others have
studied its convergence properties in increasing generality (See e.g. [27] and [28]
for recent accounts). For our purpose, we only need to formulate these results in
the following rough form:

Lemma 4.1. For an i.i.d. sample from a continuous c.d.f. F,

(4.1) ‖Fn − F‖∞ = OP

(
1√
n

)
, i = 1, 2, . . . , n,

(4.2) ‖Fn − F‖∞ = Oa.s

(
ln lnn

n

)
i = 1, 2, . . . , n.

Since F is unknown, the random variables Ui = F (Xi) are not observed. As a
consequence of the preceding lemma, one can naturally approximate these variables
by the statistics Fn(Xi). Indeed,

‖F (Xi)− Fn(Xi)‖ ≤ sup
x∈R
‖F (x)− Fn(x)‖ = ‖Fn − F‖∞a.s.

Let

cn(U, V ) =
1

na2n

n∑
i=1

K1

(
U − Fn(xi)

an

)
K2

(
V −Gn(yi)

an

)
,

ĉn(U, V ) =
1

na2n

n∑
i=1

K1

(
U − Fn(xi)

an

)
K2

(
V −Gn(yi)

an

)
.

So, we must show that Fn(xi) converge to F (xi) and Gn(yi) converge to G(yi).

ĉn(U, V )− cn(U, V ) =
1

na2n

(
n∑

i=1

K1

(
U − Fn(xi)

an

)
K2

(
V −Gn(yi)

an

)

−
n∑

i=1

K1

(
U − F (xi)

an

)
K2

(
V −G(yi)

an

))
,

with

Πi,n = K1

(
U − Fn(xi)

an

)
K2

(
V −Gn(yi)

an

)
−K1

(
U − F (xi)

an

)
K2

(
V −G(yi)

an

)
.
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Let

Zi,n =

(
Fn(xi)− F (xi)
Gn(yi)−G(yi)

)
‖Fn(Xi)− F (Xi)‖ ≤ ‖Fn − F‖∞ and ‖Gn(Yi)−G(Yi)‖ ≤ ‖Gn−G‖ a.s. for every
i = 1,2,. . . , n. Preceding Lemma thus entails that the norm of Zi,n is independent
of i and such that

(4.3) ‖Zi,n‖ = OP

(
1√
n

)
, i = 1, 2, . . . , n,

(4.4) ‖Zi,n‖ = Oa.s

(
ln lnn

n

)
i = 1, 2, . . . , n.

Now, for every fixed (u, v) ∈ [0, 1]2, since the kernel K is twice differentiable,

there exists, by Taylor expansion, random variables Ũi,n and Ṽi,n such that, almost
surely,

Π =
1

na3n

n∑
i=1

ZT
i,n∇

(
K1

(
U − Fn(xi)

an

)
K2

(
V −Gn(yi)

an

))

+
1

2na4n

n∑
i=1

ZT
i,n∇2

(
K1

(
U − Ũi,n

an

)
K2

(
V − Ṽi,n
an

))
Zi,n = Π1 + Π2,

where ZT
i,n denotes the transpose of the vector Zi,n and ∇K and ∇2K the gradient

and the Hessian respectively of the multivariate kernel function K.
By centering at expectations, decompose further the first term Π1 as,

Π1 =
1

na3n

n∑
i=1

Zi,n∇
(
K1

(
U − F (xi)

an

)
K2

(
V −G(yi)

an

))
−E∇

(
K1

(
U − F (xi)

an

)
K2

(
V −G(yi)

an

))

+
1

na3n

n∑
i=1

ZT
i,nE∇

(
K1

(
U − F (xi)

an

)
K2

(
V −G(yi)

an

))
= Π11 + Π12

We again decompose one step further Π11, Set

Ai = ∇
(
K1

(
U − F (xi)

an

)
K2

(
V −G(yi)

an

))
−E∇

(
K1

(
U − F (xi)

an

)
K2

(
V −G(yi)

an

))
.

Then

|Π11| ≤
‖Zi,n‖
na3n

n∑
i=1

(‖Ai‖ − E‖Ai‖) +
‖Zi,n‖
na3n

n∑
i=1

E‖Ai‖ = Π111 + Π112.

We now proceed to the study of the order of each terms in the previous decom-
positions.
• Negligibility of Π2.

By the boundedness assumption on the second-order derivatives of the kernel,
and equations (4.3) and (4.4),

Π2 = OP

(
1

na4n

)
, and Π2 = Oa.s

(
ln lnn

na4n

)
• Negligibility of Π12.
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Bias results on the bivariate gradient kernel estimator (See Scott [26] chapter 6)
entail that

E∇
(
K1

(
U − F (xi)

an

)
K2

(
V −G(yi)

an

))
= a3n∇c(u, v) +O(a5n)

Cauchy-Schwarz inequality yields that

|Π12| ≤
‖nZi,n‖
na3n

∥∥∥∥E∇(K1

(
U − F (xi)

an

)
K2

(
V −G(yi)

an

))∥∥∥∥
In turn, with equations (4.3) and (4.4),

Π12 = OP

(
1√
n

)
, and Π12 = Oa.s

(
ln lnn

n

)
• Negligibility of Π11

• Negligibility of Π111.
Boundedness assumption on the derivative of the kernel imply that ‖Ai‖ ≤ 2C

a.s. We apply Hoeffding inequality for independent, centered, bounded by M, but
non identically distributed random variables (ηj) (e.g. see [2]),

P

 n∑
j=1

ηj > t

 ≤ exp( −t2
2nM2

)

Here, for every ε > 0, with M = 2C, ηj = ‖Ai‖ − E‖Ai‖, t = ε
√

1
n ln lnn,

therefore,
n∑

i=1

(‖Ai‖ − E‖Ai‖) = Op(
√
n ln lnn)

which is the definition of almost complete convergence (a.co.), see e.g. [12] definition
A.3. p. 230. In turn, it means that

n∑
i=1

(‖Ai‖ − E‖Ai‖) = Oa.co

(√
n lnn

)
and by the Borell-Cantelli lemma,

n∑
i=1

(‖Ai‖ − E‖Ai‖) = Oa.s(
√
n lnn)

Therefore, using equations equations (4.3) and (4.4), we have that

Π111 = OP

(√
ln lnn

na3n

)
= Oa.s

(
√

lnn

√
ln lnn

na3n

)
• Negligibility of Π112

The r.h.s. of the previous inequality is, after an integration by parts, of order a3
n by the results on the kernel estimator of the gradient of the density (See Scott
[26] chapter 6). Therefore,

n∑
i=1

E‖Ai‖ = O(na2n)
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Π112 =
‖nZi,n‖
na3n

n∑
i=1

E‖Ai‖ = OP

(
1√
n

)
= Oa.s

(√
ln lnn

n

)
by equations (4.3) and (4.4).

Recollecting all elements, we eventually obtain that

Π = Π111 + Π112 + Π12 + Π2 = OP

(
1√
n

)
+OP

(
ln lnn

na3n

)
+OP

(
1

na4n

)
= Oa.s

(√
ln lnn

n

)
+Oa.s

(√
lnn
√

ln lnn

na3n

)
+Oa.s

(
ln lnn

na4n

)
.

By this last step we conclude the proof of our theorem. �
�

After giving the proof of the convergence in probability, let us present the rate
of convergence in the following corollary.

Corollary 4.1. we get the rate of convergence, by choosing the bandwidth which
balance the bias and variance trade-off: for an optimal choice of hn ' n−1/6, we
get

r̂n(x) = r(x) +OP (n−1/3)

Therefore, our estimator is rate optimal in the sense that it reaches the minimax
rate n−1/3 of convergence.

Now, Almost sure results can be proved in the same way: we have the following
strong consistency result,

Theorem 4.2. Let the regularity assumptions (i)-(vii) on the densitie and the
kernel be satisfied.If the bandwidth hn tends to zero as n→∞ in such a way that

√
lnn ln lnn

nh3n
→ 0,

ln lnn

nh4n
→ 0,

then,

r̂n(x) = r(x) +Oa.s

(
h2n +

√
ln lnn

nh2n
+

ln lnn

nh4n
+

√
lnn ln lnn

nh3n

)
For the proof of this theorem, It is sufficient to follow the same lines as the

preceding theorem , but uses the a.s. results of the consistency of the kernel density
estimators of lemmas 3.13 and 3.15 and of the approximation propositions 3.16 and
3.17. It is therefore similar and omitted [7].

Corollary 4.2. For hn ' (ln lnn/n)1/6 which is the optimal trade-off between the
bias and the stochastic term, one gets the optimal rate

r̂n(x) = r(x) +Oa.s

(
ln lnn

n

)1/3

.

For the he proof, we follow the same way given in in [7]

5. Conclusion

In this paper we established the asymptotic properties of a regression model
via copula function approach, it will be interesting for further work to study the
asymptotic normality of such model, to investigate the recursive estimation, it is
also important to study the asymptotic properties of a conditional copula model.



ESTIMATION USING COPULA FUNCTION IN REGRESSION MODEL 115

References

[1] Biau,G., AND Wegkamp,M.H.,” A note on minimum distance estimation of copulas densi-
ties”., Statist. Probab. Lett., No.73, (2006), pp. 105-114.

[2] Bosq, D., Nonparametric statistics for stochastic processes, second ed., Vol. 110 of Lecture

Notes in Statistics. Springer-Verlag, New York, (1998). Estimation and prediction.
[3] Cherubini, U., Luciano, E., AND Vecchiato, W., Copula Methods in Finance. John Wiley

and Sons, Chichester (2004).
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