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ON GENERALIZED LN-SURFACES IN E4
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Abstract. The envelopes of one- and two-parameter families of spheres are

very important for applied geometry. A surface M in E4 which is considered

as envelopes of its tangent planes are called LN -surface. These surfaces are
quadratically parametrized in E4. In the present study we calculate the Gauss-

ian, normal and mean curvatures of these surfaces. Further, we have pointed
out the flat and minimal points of the surfaces.

1. Introduction

The envelopes of one- and two-parameter families of spheres are very important
for applied geometry [8]. Especially, rational surfaces with rational offsets are
more involved, since the techniques for the curve case cannot be applied directly to
surfaces. Although an explicit representation of all rational surfaces with rational
offsets has been given already in [9], it is not obvious how to decide the rationality
for particular surface classes. It has been proved that rational pipe surfaces [5],
rational ruled surfaces [11] and all regular quadrics [4] possess rational offsets.
These statements can also be found in [10] as specializations of a more general
result concerning envelopes of one-parameter families of cones of revolution. Later
it has been proved in [2] and [3] that rational surfaces with linear normal vector
fields, so called LN-surfaces in E3, possess rational offset surfaces. In [12] it has
been shown that even the convolution surface of an LN -surface and any rational
surface admits rational parametrization.

In [7] M. Peternell and B. Odehnal investigates a class of two-dimensional rational
surfaces M in E4 whose tangent planes satisfy the following property: For any three-
space S in E4 there exists a unique tangent plane T of M which is parallel to S.
The most interesting families of surfaces are constructed explicitly and geometric
properties of these surfaces are derived. Quadratically parameterized surfaces in
E4 occur as special cases. This construction generalizes the concept of LN -surfaces
in E3 to two-dimensional surfaces in E4. The same authors defined seven type of
generalized LN -surfaces in E4.
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The paper is organized as follows: Section 2 explains some geometric properties
of the surfaces in E4. Section 3 tells about the rational construction of the envelope
surfaces of two-parameter families of spheres corresponding to LN - surfaces. Fur-
ther, we calculated the Gaussian curvature, normal curvature and mean curvatures
of generalized LN - surfaces of several types. We have pointed out the flat and
minimal points of these surfaces.

2. Geometric Background

Let M be a smooth surface in E4 given with the patch X(u, v) : (u, v) ∈ D ⊂ E2.
The tangent space to M at an arbitrary point p = X(u, v) of M is spanned by
{Xu, Xv}.In the chart (u, v), the first fundamental form of M is given by

(2.1) I = 〈DX,DX〉 = Edu2 + 2Fdudv +Gdv2

with

(2.2) E = 〈Xu, Xu〉 , F = 〈Xu, Xv〉 , G = 〈Xv, Xv〉
where 〈 , 〉 is the Euclidean inner product. We assume that EG− F 2 6= 0, i.e. the
surface patch X(u, v) is regular.

For each p ∈ M, consider the decomposition TpE4 = TpM ⊕NpM where NpM

is the orthogonal complement of TpM in E4. Let ∇̃ be the Riemannian connection
of E4. Given local vector fields X1, X2 on M . The induced connection on M is

defined by ∇X1X2 =
(
∇̃X1X2

)T
.

Let χ(M) and N(M) be the space of the smooth vector fields tangent to M
and the space of the smooth vector fields normal to M, respectively. Consider the
second fundamental map:

(2.3) h : χ(M)× χ(M)→ N(M), h(X1, X2) = ∇̃Xi
Xj −∇Xi

Xj , 1 ≤ i, j ≤ 2.

This map is well defined, symmetric and bilinear. For an orthonormal normal
frame field {N1, N2} on M recall the shape operator

(2.4) AN : TpM → TpM, ANiX = −
(
∇̃XNi

)T
where T means the tangent component. This operator is bilinear, self-adjoint and
for any X1, X2 ∈ TpM satisfies the following equation:

〈AvX1, X2〉 = 〈h(X1, X2), Ni〉 , 1 ≤ i ≤ 2.

The equation (2.3) is called Gauss formula [1]. It is well-known that the
coefficients of the second fundamental form ckij satisfy

(2.5) ckij = 〈h(Xi, Xj), Nk〉 , i, j, k = 1, 2.

So, the second fundamental form h of M ⊂ E4 is given by

(2.6) h(Xi, Xj) =

2∑
k=1

ckijNk , 1 ≤ i, j ≤ 2

The Gaussian and normal curvatures of the immersed surface M ⊂ E4 are given
by

(2.7) K =
1

W 2

2∑
k=1

(ck11c
k
22 − (ck12)2
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and
(2.8)

KN =
1

W 2

(
E
(
c112c

2
22 − c212c122

)
− F

(
c111c

1
22 − c211c122

)
+G

(
c111c

2
12 − c211c112

))
,

respectively, where EG− F 2 = W 2

Further, the kth mean curvature of a regular patch is given by

(2.9) Hk =
1

2W 2
(ck11G− 2ck12F + ck22E) , 1 ≤ k ≤ 2

respectively (see, [6]). Recall that a surface M ⊂ E4 is said to be minimal if its

mean curvature H =
√
H2

1 +H2
2 vanishes identically [1].

3. Generalized LN-Surfaces in E4

In this section we will consider LN -surfaces in four dimensional Euclidean space
E4. A surface M2 in E4 is called quadratically parametrizable if it admits a
parametrization (i.e. a surface patch)X(u, v) = (x1(u, v), x2(u, v), x3(u, v), x4(u, v)),
where xi are quadratic polynomials. The tangent space of M2 is spanned by the
linear vector fields xu(u, v) and xv(u, v). In [7] the authors determined a class of
surfaces in E4 which generalize quadratically parametrizable surfaces M2 concern-
ing the structure of their tangent planes. Consequently, the two parameter family
of spheres in E3 have envelops which admits rational parametrization. Recently,
Peternell and Odehnal extend LN -surfaces to 4-dimensional Euclidean space.

Definition 3.1. A rational two-dimensional surface M2 in E4 is called generalized
LN -surface if for all 3-spaces S ⊂ E4 the surface parameters u and v can be
expressed in terms of rational functions depending on the coefficients ei of S [7].

The tangent plane T (u, v) is defined by

(3.1) T (u, v) = {T/ T = p+ λXu + µXv}
and similarly the normal plane Np(u, v) is defined by

(3.2) N(u, v) = {N/ N = p+ λN1 + µN2}
where N1 ⊥ Xu, N1 ⊥ Xv and N2 ⊥ Xu, N2 ⊥ Xv.

Generalized LN -surfaces in E4 which generalize quadratically parameterizeable
surfaces M2 concerning the structure of their tangent planes. So, this surfaces are
considered as envelope of its tangent planes. The tangent space of M is spanned
by the linear vector fields Xu(u, v) and Xv(u, v) which are the intersections of
3-spaces

S(u, v) : e1x1 + ...+ e4x4 = NT
1 X = a(u; v);

L(u, v) : f1x1 + ...+ f4x4 = NT
2 X = b(u; v) :(3.3)

where a(u; v) and b(u; v) are rational functions and

N1 = (e1, ..., e4)

N2 = (f1, ..., f4)

X = (x1, ..., x4) .

Actually the parametrization X(u, v) is solution of the system (3.3) is general ra-
tional representation of M . A possible generalization interprets a surface M ⊂ E4

as envelope of its two-parameter family of tangent planes. The tangent planes T of
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M are represented as intersection of 3-spaces S(u, v) and L(u, v), i.e., T = S ∩ L.
We assume that the system of linear equations

S : NT
1 X = a; Su : (N1)TuX = au; Sv : (N1)TvX = av;(3.4)

L : NT
2 X = b; Fu : (N2)TuX = bu; Lv : (N1)TvX = bv;

which has a (unique) solution X(u, v). Differentiating NT
1 X = a with respect to u

and v and taking (N1)TuX = au and (N1)TvX = av into account leads to NT
1 Xu = 0,

NT
1 Xv = 0 [7]. Similarly differentiating NT

2 X = b with respect to u and v and using
(N2)TuX = bu with (N2)TvX = bv we get NT

2 Xu = 0, NT
2 Xv = 0.

For the all suitable normal vector fields N1(u; v) and N2(u; v) M. Peternell,
and B. Odehnal determined the generalized LN -surfaces in E4 which generalize
quadratically parameterizable surfaces M concerning the structure of their tangent
planes [7]. The same authors defined several type of generalized LN -surfaces in E4

(see, Table1).

Table 1. Tangents and normals of LN-surfaces

Type Xi Ni

Type 1
X1 = (−u, 0, 1, 0)
X2 = (0,−v, 0, 1)

n1 = (1, 0, u, 0)
n2 = (0, 1, 0, v)

Type 2
X1 = (−u, v, 1, 0)
X2 = (0, u, 0, 1)

n1 = (1, 0, u, 0)
n2 = ( −uv1+u2 ,−1, v

1+u2 , u)

Type 3
X1 = (u, v, 1, 0)
X2 = (−v, u, 0, 1)

n1 = (1, 0,−u, v)
n2 = (0,−1, v, u)

Type 4
X1 = (u, 0, v, 1)
X2 = (0, v, u, 0)

n1 = (−1, 0, 0, u)

n2 = ( uv2

1+u2 , u,−v, v2

1+u2 )

Type 5
X1 = (u, 0, v, 1)
X2 = (1, v, u, 0)

n1 = (u, 0,−1,−u2 + v)
n2 = (−v − uA, 1, A, uv − (−u2 + v)A)

Type 6
X1 = (−u, 1, 0, 0)
X2 = (−v, 0, 1, 0)

n1 = (1, u, v, 0)
n2 = (0, 0, 0, 1)

where Ni = ni

‖ni‖ is the unit normal vector of the surface and

(3.5) A(u, v) =
uv(−u2 + v − 1)

1 + u2 + (−u2 + v)2
.

These surfaces defined by the following surface patches;

Table 2. Surface patches of LN-surfaces

Type X(u, v)
Type 1 (a− uau, b− vbv, au, bv)
Type 2 (a− uau, vau + ubu − b, au, bu)
Type 3 (a− uau − vav,−b− vau + uav,−au, av)
Type 4 (uau − a, bu, 2vau − bv, au)
Type 5 (uav − bv, b− vbv,−a+ bu − ubv, av)
Type 6 (a− uau − vav, au, av, b)

where a(u, v) and b(u, v) are rational functions defined by

a(u; v) = NT
1 X,

b(u; v) = NT
2 X.
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By the use of (3.4) with the tangent and normal vectors given in Table 1 and
Table 2 we can find the rational functions a(u, v) and b(u, v) (see, Table 3).

Table 3. Rational functions of LN -surfaces

Type a(u, v) b(u, v)
Type 1 a = 1

2u
2, av = 0 b = 1

2v
2, bu = 0

Type 2 a = 1
2u

2, av = 0 b = uv, au − bv = 0
Type 3 a = 1

2 (v2 − u2), au + bv = 0 b = uv, av = bu
Type 4 a = 1

2u
2, av = 0 b = 1

2uv
2, b = vbv + ubu − v2au

Type 5 a = uv − 1
2u

3, bu = vav b = 1
2u

2v − 1
2v

2, bv = −au − uav
Type 6 a = 1

2 (u2 + v2) , a(u, v) b = const

Using (2.2) and (2.5), the normal vectors given in Table 1 and Table 3 we obtain
the coefficients of the first and second fundamental form of LN -surfaces in E4 as
follows:

Table 4. The coefficients of the first and second fundamental form

Type first fund. form second fund. form

Type 1
E = 1 + u2

F = 0
G = 1 + v2

c111 = − 1√
1+u2

c112 = 0
c122 = 0

c211 = 0
c212 = 0
c222 = − 1√

1+v2

Type 2
E = 1 + u2 + v2

F = uv
G = 1 + u2

c111 = − 1√
1+u2

c112 = 0
c122 = 0

c211 = uv√
1+u2
√

v2+(1+u2)2

c212 = −
√
1+u2√

v2+(1+u2)2

c212 = 0

Type 3
E = 1 + u2 + v2

F = 0
G = 1 + u2 + v2

c111 = 1√
1+u2+v2

c112 = 0
c122 = − 1√

1+u2+v2

c211 = 0
c212 = − 1√

1+u2+v2

c222 = 0

Type 4
E = 1 + u2 + v2

F = uv
G = u2 + v2

c111 = − 1√
1+u2

c112 = 0
c122 = 0

c211 = uv2

√
1+u2
√

v4+(u2+v2)(1+u2)

c212 = − v
√
1+u2√

v4+(u2+v2)(1+u2)

c222 = u
√
1+u2√

v4+(u2+v2)(1+u2)

Type 5
E = 1 + u2 + v2

F = u+ uv
G = 1 + u2 + v2

c111 = u√
1+u2+(−u2+v)2

c112 = − 1√
1+u2+(−u2+v)2

c122 = 0

c211 = −v−uA
‖n2‖

c212 = A
‖n2‖

c222 = 1
‖n2‖

Type 6
E = 1 + u2

F = uv
G = 1 + v2

c111 = − 1√
1+u2+v2

c112 = 0
c122 = − 1√

1+u2+v2

c211 = 0
c212 = 0
c222 = 0

where the function A(u, v) is defined in (3.5) and

(3.6) ‖n2‖ =
√

1 +A2 + (Au+ v)2 + (uv − (−u2 + v)A)2.
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By the use of the coefficients of the first and second fundamental form of the
surface we can calculate the Gaussian curvature, normal curvature and mean cur-
vature of the surface. So, using the equations (2.7), (2.8) and (2.9) with Table 4,
we can find the Gaussian and normal curvatures of LN -surfaces (see, Table 5);

Table 5. The Gaussian and normal curvatures of LN -surfaces

Type K KN

Type 1 0 0

Type 2 − 1+u2

(v2+(1+u2)2)2
1+u2

(v2+(1+u2)2)2

Type 3 −2
(u2+v2+1)3

−2
(u2+v2+1)3

Type 4 v2

(v4+(1+u2)(v2+u2))2
v(2u2+v2)

(v4+(1+u2)(v2+u2))2

Type 5 - 1
W 2 ( 1

1+u2+(v−u2)2 + v+Au+A2

‖n2‖2
) - 1

W 2

(1+v)(1+2u2+v2)

‖n2‖
√

1+u2+(v−u2)2

Type 6 1
(u2+v2+1)2 0

where A(u, v) and ‖n2‖ are defined in (3.5) and (3.6) respectively, and

W 2 = (1 + u2 + v2)2 − u2(1 + v)2.

We get the following results;

Proposition 3.1. Let M be a LN -surface of Type k (1 ≤ k ≤ 6). Given any point
p ∈M the following statements are valid;

i) At each point p, the surface of Type 1 has vanishing Gaussian curvature,
ii) At each point p, the surface of Type 2, Type 3 and Type 6 have non-vanishing

Gaussian curvatures,
iii) On the u-parameter curve (i.e. v = 0) of the LN -surface of Type 4 the

Gaussian curvature vanishes identically.

Proposition 3.2. Let M be a LN -surface of Type k (1 ≤ k ≤ 6). Given any point
p ∈M the following statements are valid;

i) At each point p, the surfaces of Type 1 and Type 6 have vanishing normal
curvatures,

ii) At each points p, the surfaces of Type 2 and Type 3 have non-vanishing normal
curvatures,

iii) On the u-parameter curve (i.e. v = 0) of the LN -surface of Type 4 the
normal curvature vanishes identically,

iv) On the u-parameter curve (with v = −1) of the LN -surface of Type 5 the
normal curvature vanishes identically.

Using the equations in (2.9) with Table 4, we can find the kth mean curvature
of these surfaces (see, Table 6);
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Table 6. The kth Mean curvature of LN-surfaces

Type H1 H2

Type 1 −1
2(1+u2)3/2

−1
2(1+v2)3/2

Type 2 −
√
1+u2

2(v2+(1+u2)2)
3uv
√
1+u2

2(v2+(1+u2)2)3/2

Type 3 0 0

Type 4 − u2+v2

2
√
1+u2(v4+(1+u2)(v2+u2))

u((1+u2)2+v2(4u2+v2+3))

2
√
1+u2(v4+(1+u2)(v2+u2))3/2

Type 5 u(3+2v+u2+v2)

2W 2
√

1+u2+(v−u2)2
(1+u2+v2)(1−v−Au)−2Au(1+v)

2W 2‖n2‖

Type 6 − u2+v2+2
2(u2+v2+1)3/2

0

Thus, we obtain the following result.

Proposition 3.3. Let M be a LN -surface of Type k (1 ≤ k ≤ 6). Given any point
p ∈M the following statements are valid;

i)At each point p, the surfaces of Type 1 and Type 3 have vanishing mean cur-
vatures,

ii)At each point p, the surfaces of Type 2, Type 4 and Type 6 have non vanishing
mean curvatures.
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[12] M.L. Sampoli, M. Peternell, B. Jüttler, Exact parameterization of convolution surfaces and
rational surfaces with linear normals, Comp. Aided Geom. Design, 23(2006), 179–192.

Department of Mathematics, Uludağ University, 16059 Bursa, Turkey
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