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Abstract. In this paper as a generalization of derivation and f -derivation on
a lattice we introduce the notion of generalized (f, g)-derivation of a lattice.

We give illustrative example. If the function g is equal to the function f then
the generalized (f, g)-derivation is the f -derivation defined in [8]. Also if we
choose the function f and g the identity functions both then the derivation we
define coincides with the derivation defined in [22].

1. Introduction

Many kind of derivations on rings, prime rings and lattices are studied by many
authors [3, 4, 5, 10, 11, 12, 13, 16]. The derivation on a lattice was defined by Szasz,
G [21]. X.L. Xin studied the derivation on a lattice and got interesting results.
After these studies the f -derivation, symmetric bi derivation and symmetric f bi-
derivation of lattices were defined and studied respectively in [8], [9] and [18]. In [8]
Ceven and Ozturk gave a generalization of derivation on a lattice which was defined
in [22]. Ceven in [9] introduced the symmetric bi derivations on lattices. The
author investigated some related properties. He characterized the distributive and
modular lattices by the trace of symmetric bi derivations. Ozbal and Firat in [18]
introduced the notion of symmetric f bi-derivation of a lattice. They characterized
the distributive lattice by symmetric f bi-derivation.

The lattice algebra has an important role and has many applications in infor-
mation theory, information retrieval, information access controls and cryptanalysis.
For more information one can see [1, 2, 6, 7, 14, 17, 19, 20, 23].

In this paper we introduce the notion of (f, g)-derivation of a lattice. We give
illustrative example. We also characterize the distributive and isotone lattices by
generalized (f, g)-derivations. We generalize the derivations defined in [8] and [22].
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2. Preliminaries

Definition 2.1. [15] Let L be a nonempty set endowed with operations ∧ and ∨.
If (L,∧,∨) satisfies the following conditions for all x, y, z ∈ L

(1) x ∧ x = x, x ∨ x = x
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z) , (x ∨ y) ∨ z = x ∨ (y ∨ z)
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x

then L is called a lattice.

Definition 2.2. [15] A lattice L is distributive if the identity (5) or (6) holds for
all x, y, z ∈ L:

(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(6) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Definition 2.3. [19] A lattice L is called modular if it satisfies the following con-
ditions for all x, y, z ∈ L:

(7) If x ≤ z, then x ∨ (y ∧ z) = (x ∨ y) ∧ z

Definition 2.4. [15] Let (L,∧,∨) be a lattice. A binary relation ≤ is defined by
x ≤ y if and only if x ∧ y = x and x ∨ y = y.

Definition 2.5. [15] Let L and M be two lattices. The function g : L → M
is called the lattice homomorphism if it satisfies the following conditions for all
x, y ∈ L.

(8) g(x ∧ y) = g(x) ∧ g(y)
(9) g(x ∨ y) = g(x) ∨ g(y).

Lemma 2.1. Let (L,∧,∨) be a lattice. Define the binary relation ≤ as in the
Definition 2.4. Then (L,≤) is a poset and for any x, y ∈ L, x ∧ y is the g.l.b. of
{x, y} and x ∨ y is the l.u.b. of {x, y} .

Definition 2.6. [22] A function D : L → L on a lattice L is called a derivation on
L if D satisfies the following condition

D (x ∧ y) = (Dx ∧ y) ∨ (x ∧Dy)

The abbreviation Dx is used for D(x) in above definition.

Definition 2.7. [22] Let L be a lattice and D be a derivation on L
(i) If x ≤ y implies Dx ≤ Dy then D is called an isotone derivation,
(ii) If D is one to one then D is called monomorphic derivation,
(iii) If D is onto then D is called epimorphic derivation.

3. Generalized (f, g)-Derivations of Lattices

Definition 3.1. Let L be a lattice, a function d : L → L is called generalized
(f, g)-derivation of L if there exist functions f, g : L → L such that

(3.1) d(x ∧ y) = (dx ∧ fy) ∨ (gx ∧ dy)

for all x, y ∈ L.

It is obvious that if the function g equal to the function f then the generalized
(f, g)-derivation is the f -derivation defined in [8]. Also if we choose the functions
f and g the identity functions then the derivation we define in (3.1) coincides with
the derivation defined in [22].
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Example 3.1. Let L be the lattice of Figure 1 and define a function d by d0 =
0, da = a, db = a, dc = c, d1 = a.

Figure 1

Then d is not a derivation on L since a = d (b ∧ c) ̸= (db ∧ c) ∨ (b ∧ dc) =
(a ∧ c) ∨ (b ∧ c) = b. If we define f0 = 0, fa = a, fb = a, fc = 1, f1 = 1 and
g0 = 0, ga = a, gb = a, gc = c, g1 = 1, then d is a generalized (f, g)-derivation
on L.

Proposition 3.1. Let L be a lattice and d be a generalized (f, g)-derivation on L.
Then

dx ≤ fx ∨ gx

for all x ∈ L.

Proof. Since dx ∧ fx ≤ fx and gx ∧ dx ≤ gx then,

dx = d(x ∧ x)

= (dx ∧ fx) ∨ (gx ∧ dx)

≤ fx ∨ gx.

�

Proposition 3.2. Let d be a generalized (f, g)- derivation on a distributive lattice
L then

dx ∧ dy ≤ d(x ∧ y)

for all x, y ∈ L.

Proof. From Proposition (3.1) we have dx ≤ fx ∨ gx. Since

d (x ∧ y) = (dx ∧ fy) ∨ (gx ∧ dy)

then
(dx ∧ fy) ≤ d (x ∧ y)

and

(3.2) (gx ∧ dy) ≤ d (x ∧ y) .
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Also since

d (x ∧ y) = d (y ∧ x) = (dy ∧ fx) ∨ (gy ∧ dx)

then

(3.3) (dy ∧ fx) ≤ d (x ∧ y)

and

(gy ∧ dx) ≤ d (x ∧ y) .

Combining (3.2) and (3.3) we have

(3.4) (dy ∧ fx) ∨ (gx ∧ dy) ≤ d (x ∧ y)

From (3.4), and since L is a distributive lattice then we get

dx ∧ dy ≤ (fx ∨ gx) ∧ dy

= (fx ∧ dy) ∨ (gx ∧ dy)

≤ d (x ∧ y)

It completes the proof. �

Proposition 3.3. Let d be a generalized (f, g)-derivation on a lattice L. Then

d(x ∧ y) ≤ dx ∨ dy

for all x, y ∈ L.

Proof. Since dx ∧ fy ≤ dx and gx ∧ dy ≤ dy then

d (x ∧ y) = (dx ∧ fy) ∨ (gx ∧ dy)

≤ dx ∨ dy

�

Proposition 3.4. Let d be a generalized (f, g)-derivation on a lattice L. If L has
a least element 0,such that f0 = 0 and g0 = 0 then d0 = 0.

Proof. We know that dx ≤ fx ∨ gx for all x ∈ L from Proposition (3.1). Since 0 is
the least element of the lattice then we get 0 ≤ d0 ≤ f0∨g0 = 0 means d0 = 0. �

Proposition 3.5. Let L be a lattice with a greatest element 1, d be a generalized
(f, g)-derivation on L and f1 = g1 = 1. Then the following identities hold;

(i) If fx ≤ d1 and gx ≤ d1 then dx = fx ∨ gx
(ii) If fx ≥ d1 and gx ≥ d1 then dx ≥ d1

Proof. (i) Since dx = d (x ∧ 1) = (dx ∧ f1) ∨ (gx ∧ d1) = dx ∨ gx then

(3.5) gx ≤ dx.

Similarly since dx = d (1 ∧ x) = (d1 ∧ fx) ∨ (g1 ∧ dx) = fx ∨ dx we have

(3.6) fx ≤ dx.

Combining (3.5) and (3.6) then we get

(3.7) gx ∨ fx ≤ dx.

We know dx ≤ fx ∨ gx from Proposition (3.1). Finally

gx ∨ fx ≤ dx ≤ fx ∨ gx.

This means dx = fx ∨ gx.
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(ii) Since

dx = d (x ∧ 1)

= (dx ∧ f1) ∨ (gx ∧ d1)

= dx ∨ d1

then

dx ≥ d1.

�

Definition 3.2. Let L be a lattice and d be a generalized (f, g)-derivation. Define
a set F = {x ∈ L : dx = fx ∨ gx} .

Proposition 3.6. Let L be a lattice, d be an isotone generalized (f, g)-derivation.
If x, y ∈ F and f, g are decreasing functions, then x ∨ y ∈ F .

Proof. Since x ≤ x∨ y then f (x ∨ y) ≤ fx and since y ≤ x∨ y then g (x ∨ y) ≤ gy.
Then we have

f (x ∨ y) ≤ fx ∨ gx

g (x ∨ y) ≤ fy ∨ gy

Since d is an isotone generalized (f, g)-derivation then

f (x ∨ y) ∨ g (x ∨ y) ≤ (fx ∨ gx) ∨ (fy ∨ gy)

= dx ∨ dy

≤ d (x ∨ y) .

We know that d (x ∨ y) ≤ f (x ∨ y) ∨ g (x ∨ y). As a result

d (x ∨ y) = f (x ∨ y) ∨ g (x ∨ y)

and x ∨ y ∈ F. �

Proposition 3.7. Let L be a lattice and d be a generalized (f, g)-derivation of L
Then the following conditions are equivalent;

(i) d is an isotone generalized (f, g)-derivation
(ii) dx ∨ dy ≤ d(x ∨ y)

Proof. (1)⇒(2) Suppose that d is an isotone generalized (f, g)-derivation. We know
that x ≤ x ∨ y and y ≤ x ∨ y. Since d is isotone then dx ≤ d (x ∨ y) and dy ≤
d (x ∨ y) . Hence we get dx ∨ dy ≤ d(x ∨ y).

(2)⇒(1) Suppose that dx∨dy ≤ d(x∨y) and x ≤ y. Then we get dx ≤ dx∨dy ≤
d(x ∨ y) = dy. This means that d is an isotone derivation. �

Theorem 3.1. Let L be a lattice with greatest element 1 and d be an isotone
generalized (f, g)-derivation on L. Let f1 = g1 = 1 and either fx ≥ gx or fx ≤ gx
for all x ∈ L. Then

dx = (fx ∨ gx) ∧ d1

for all x ∈ L.
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Proof. If d is an isotone generalized (f, g)-derivation then dx ≤ d1.
Let fx ≥ gx. Then we have dx ≤ fx∨ gx = fx. From this we get dx ≤ fx∧ d1.

Also

dx = d ((x ∨ 1) ∧ x)

= [d (x ∨ 1) ∧ fx] ∨ [g (x ∨ 1) ∧ dx]

= (d1 ∧ fx) ∨ (g1 ∧ dx)

= (d1 ∧ fx) ∨ (1 ∧ dx)

= (d1 ∧ fx) ∨ dx

= d1 ∧ fx.

Since fx ∨ gx = fx then we can get

dx = (fx ∨ gx) ∧ d1.

Now suppose that gx ≥ fx. Then dx ≤ fx∨gx = gx. From this we get dx ≤ gx∧d1.
Also

dx = d (x ∧ (x ∨ 1))

= [dx ∧ f (x ∨ 1)] ∨ [gx ∧ d (x ∨ 1)]

= (dx ∧ f1) ∨ (gx ∧ d1)

= dx ∨ (gx ∧ d1)

= gx ∧ d1.

Since gx ≥ fx then fx ∨ gx = gx and

dx = (fx ∨ gx) ∧ d1.

This completes the proof. �

4. Conclusion

In this study we introduced the notion of generalized (f, g)-derivation of a lattice.
If the function g is equal to the function f then the (f, g)-derivation is the f -
derivation defined in [8]. Also if we choose the function f and g the identity
functions both, then the derivation we define coincides with the derivation defined
in [22].
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[4] Asci, M., Kecilioglu O., Ceran Ş. Permuting Tri (f,g) derivations on Lattices. Ann. Fuzzy
Math. Inform. (AFMI). Vol 1, No.2 (2011), pp. 189-196. .
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