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ACTIONS AND COVERINGS OF TOPOLOGICAL GROUPOIDS
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(Communicated by Murat TOSUN)

Abstract. Let R be a topological group-groupoid. We define a category
TGGdCov(R) of coverings of R and a category TGGdOp(R) of actions of R on

topological groups and then prove the equivalence of these categories. Further,

if R is topological ring-groupoid then we define a category TRGdCov(R) of
coverings of R and a category TRGdOp(R) of actions of R on topological rings

and then prove the equivalence of these categories.

1. Introduction

The theory of covering groupoids plays an important role in the application of
groupoids [1]. There is a result that if R is a groupoid then the category GdCov(R)
of groupoid coverings of R is equivalent to the category GdOp(R) of the groupoid
actions of R on sets [6]. The topological version of this problem is proved in [3].
They defined a category TGdCov(R) of topological groupoid coverings of R and
a category TGdOp(R) of topological actions of R on topological spaces for the
topological groupoid R and they proved the equivalence of these categories.

Mucuk in [5] proved that if R is a group-groupoid then the category GGdCov(R)
of group-groupoid coverings of R is equivalent to the category GGdOp(R) of the
group-groupoid actions of R on groups. He also proved that if R is a ring ob-
ject in the category of groupoids which is called ring-groupoid then the cate-
gory RGdCov(R) of ring-groupoid coverings of R is equivalent to the category
RGdOp(R) of the ring-groupoid actions of R on rings [13].

Notion of topological group-groupoid was firstly presented in [8] in the proof of
the equivalence of categories of topological group-groupoids and topological crossed
modules. The topological ring-groupoid is a topological ring object in the category
of topological groupoids, which appeared earlier in [14] in the proof of the equiva-
lence of the categories of UTRCov(X) of coverings of topological ring X in which
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both X and X̃ have universal coverings, and UTRGdCov(π1X) of coverings of

topological ring-groupoid π1X in which X and R̃0 = X̃ have universal coverings.
In this paper, we present similar results for topological group-groupoids and

topological ring-groupoids. If R is a topological group-groupoid then the category
TGGdCov(R) of coverings of R is equivalent to the category TGGdOp(R) of actions
of R on topological groups. In addition to this, we prove that if R is a topological
group-groupoid which is transitive on underlying groupoid with Hausdorff object
space then there exists a topological group-groupoid H and a topological covering
morphism of topological group-groupoids p : H → R.

Further, here we prove that if R is a topological ring-groupoid then the category
TRGdCov(R) of coverings of R is equivalent to the category TRGdOp(R) of actions
of R on topological rings. We also prove that if R is a topological ring-groupoid
which is transitive on underlying groupoid with Hausdorff object space then there
exists a topological ring-groupoid H and a topological covering morphism of topo-
logical ring-groupoids p : H → R.

2. Topological Groupoid Coverings

A groupoid consists of two sets R and R0 called respectively the set of mor-
phisms or elements and the set of objects of the groupoid together with two maps
α, β : R → R0, called source and target maps respectively, a map 1( ) : R0 → R,
x 7→ 1x called the object map and a partial multiplication or composition Rα×βR→
R, (b, a) 7→ b ◦ a defined on the pullback

Rα×βR = {(b, a) : α(b) = β(a)}
These maps are subject to following conditions:

(1) α(b ◦ a) = α(a) and β(b ◦ a) = β(b), for each (b, a) ∈ Rα×βR,
(2) c◦(b◦a) = (c◦b)◦a for all c, b, a ∈ R such that α(b) = β(a) and α(c) = β(b),
(3) α(1x) = β(1x) = x for each x ∈ R0, where 1x is the identity at x,
(4) a ◦ 1α(a) = a and 1β(a) ◦ a = a for all a ∈ R, and

(5) each element a has an inverse a−1 such that α(a−1) = β(a), β(a−1) = α(a)
and a−1 ◦ a = 1α(a), a ◦ a−1 = 1β(a) [4].

Definition 2.1. ([10])A topological groupoid is a groupoid R such that the sets R
and R0 are topological spaces, and source, target, object, inverse and composition
maps are contiuous.

Let R be a topological groupoid. For each x, y ∈ R0 we write R(x, y) as a set of
all morphisms a ∈ R such that α(a) = x and β(a) = y. We will write StRx for the
set α−1(x), and CoStRx for the set β−1(x) for x ∈ R0. The object or vertex group
at x is R(x) = R(x, x) = StRx∩CoStRx. We say R is transitive (resp. 1-transitive,
simply transitive) if for each x, y ∈ R0, R(x, y) is non-empty (resp. a singleton, has
no more than one element).

Let R and H be two topological groupoids. A morphism of topological groupoids
is pair of maps f : H → R and f0 : H0 → R0 such that f and f0 are continuous and
αR ◦f = f0 ◦αH , βR ◦f = f0 ◦βH and f(b◦a) = f(b)◦f(a) for all (b, a) ∈ Hα×βH.

We refer to [1] and [10] for more details concerning the basic concepts.

Definition 2.2. A morphism of topological groupoids p : H → R is called a
topological covering morphism if the map

(p, α) : H → Rα×p0H0
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is a homeomorphism. In such a case the inverse to (p, α) is written sp : Rα×p0H0 →
H and called the lifting map.

Let R be a topological groupoid. Then we have a category of coverings of topo-
logical groupoid R TGdCov(R) whose objects are the covering morphisms of topo-

logical groupoids p : R̃ → R and a morphism from p : R̃ → R to q : H̃ → R is a
morphism of topological groupoids r : R̃→ H̃ such that p = qr. Note that r is also
covering morphism of topological groupoids.

We call a subset U of X liftable if it is open, path connected and the inclusion
U → X maps each fundamental group π1(U, x), x ∈ X, to the trivial subgroup of
π1(X,x). Remark that if X has a universal covering then each point x ∈ X has a
liftable neighbourhood [11].

Let X be a topological space which has a universal covering then the fundamental
groupoid π1X is a topological groupoid [2]. The following example was proved in
[3].

Example 2.1. Let p : X̃ → X be a covering map of topological spaces which
both spaces X̃ and X have universal coverings. Then the induced morphism π1p :
π1X̃ → π1X is a covering morphism of topological groupoids.

Let X be a topological space which has a universal covering. Let TCov(X) be

a category whose objects are the covering maps p : X̃ → X and a morphism from
p : X̃ → X to q : Ỹ → X is a map r : X̃ → Ỹ such that p = qr. So r is also a
covering map.

Let UTCov(X) be the full subcategory of TCov(X) on those objects p : X̃ → X

which both X̃ and X have universal coverings. Let UTGdCov(π1X) be the full

subcategory of TGdCov(π1X) on those objects p : R̃ → π1X such that X and

R̃0 = X̃ have universal coverings. Then we can give the following proposition
which is proved in [13].

Proposition 2.1. The categories UTCov(X) and UTGdCov(π1X) are equivalent.

Definition 2.3. [13]Let R be a topological groupoid and let X be a topological
space. Let w : X → R0 be a continuous map. We say that R acts topologically on
X if there is a continuous map φ : Rα×wX → X, (a, x) 7→ ax where Rα×wX =
{(a, x) : a ∈ R, x ∈ X, α(a) = w(x)} such that

(1) w(ax) = β(a),
(2) b(ax) =b◦a x,
(3) 1w(x)x = x,

whenever these expressions are defined. We also say that X is a left R-space via p.

As an example, if p : H → R is a covering morphism then R acts on H0 via
p0 : H0 → R0.

Example 2.2. ([3]) Let R be a topological groupoid which acts on a topological
space X via w : X → R0 . Then a topological groupoid R ./ X, called topological
action groupoid, with object space X is defined as follows: The morphisms are
the pairs (a, x) of Rα×wX, source and target maps are defined by α(a, x) = x and
β(a, x) = ax and the groupoid multiplication is defined by (b, y)◦ (a, x) = (b◦a, x).
The groupoid R ./ X has product topology. Clearly source, target, object, inverse
and composition maps of groupoid R ./ X are continuous. Thus R ./ X becomes
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a topological groupoid and the projection p : R ./ X → R, (a, x) 7→ a is a covering
morphism of topological groupoids.

Let R be a topological groupoid. We write (X,w) for an topological action of
R on a space X via w : X → R0. A morphism from (X,w) to (X ′, w′) is a map
f : X → X ′ such that w′f = w and f(ax) = af(x). So we have a category
GdOp(R) of topological actions of R on spaces.

Theorem 2.1. ([3]) Let R be a topological groupoid. Then the categories TGdCov(R)
and TGdOp(R) are equivalent.

In a similar way to left R-spaces we define a right R-space. Let R be a topological
groupoid and let X be a topological space. Let w : X → R0 be a continuous map.
We say that X is a right R-space if there is a continuous map φ : Xw×βR → X,
(x, a) 7→ xa, where Xw×βR = {(x, a) : a ∈ R, x ∈ X, β(a) = w(x)} such that

(1) w(xa) = α(a),
(2) x(a)b = xb◦a,
(3) x1w(x) = x,

whenever these expressions are defined [7].
Let R,H be topological groupoids and let X be a topological space. We call that

X is R−H-bispace via w−w′ if X is a left R-space via w and also a right H-space
via w′ such that w′(ax) = w′(x), w(xb) = w(x) and a(xb) = (ax)b whenever x ∈ X,
a ∈ R, b ∈ H and ax, xb are defined [7].

A standard example of R−R-bispace is the groupoid R itself via β−α with left
and right actions given by composition in R.

An important use of R−H-bispaces is in constructing left actions of R on spaces
of H-orbits. Suppose that X is a R−H-bispace via w−w′. Although the left action
of R on X defines a left action of R on X/H, there is difficulty in proving continuity
of this action due to the fact that a pullback of identification maps need not be an
identification map. This difficulty can be overcome in the useful special case given
by the following theorem in [7].

Theorem 2.2. Let H be a topological group and let R be a topological groupoid
such that R0 is Hausdorff. If X is a R −H-bispace via w − w′, then the action of
R on X determines the structure of a left R-space on the orbit space X/H.

Corollary 2.1. If R is a topological groupoid which object space R0 is Hausdorff
and N(x) is a subgroup of R(x), StR(N(x)) becomes a left R-space.

Thus we can give following proposition in [7]

Proposition 2.2. Let R be a transitive topological groupoid with Hausdorff object
space, let x ∈ R0 and let N(x) be a subgroup of R(x). Then there exists a transitive
groupoid H and a topological covering morphism p : H → R. Further there is
y ∈ H0 such that p(H(y)) = N(x).

3. Topological Group-Groupoid Coverings

A topological group is a group X with a topology on the underlying set
such that the group multiplication and inverse map are continuous. A topological
group morphism (topological homomorphism) of a topological group into another
is an abstract group homomorphism which is also a continuous map. A connected
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topological group X is called simply connected if the fundamental group of its un-
derlying topological space consists of only the identity. Let X and X̃ be topological
groups. A map p : X̃ → X is called a covering morphism of topological groups if p
is a morphism of groups and p is a covering map on the underlying spaces.

Definition 3.1. [8]A topological group-groupoid R is a topological groupoid en-
dowed with a topological group structure such that the following maps are mor-
phism of topological groupoids:

(1) m : R×R→ R, (a, b) 7→ a+ b, group multiplication,
(2) u : R→ R, a 7→ −a, group inverse map,
(3) ∗ : (?)→ R, where (?) is a singleton groupoid.

We write a + b for the group multiplication of a and b, and write b ◦ a for the
composition in the topological groupoid R. The group inverse of an element a is
written −a. Also by 3, if e is the identity element of R0 then 1e is that of R.

Note that we have the interchange law

(b ◦ a) + (d ◦ c) = (b+ d) ◦ (a+ c)

whenever both b ◦ a and d ◦ c are defined.

Example 3.1. Let X be a topological group. We obtain a topological group-
groupoid X × X with the object set X. The morphisms are the pairs (y, x), the
source and target maps are defined by α(y, x) = x and β(y, x) = y, the groupoid
composition is defined by (z, y) ◦ (y, x) = (z, x) and the group multiplication is
defined by (z, t) + (y, x) = (z + y, t+ x). The group-groupoid X ×X has product
topology. So source, target, object, inverse, group inverse maps, group multiplica-
tion and composition of X×X are continuous. Then X×X becomes a topological
group-groupoid.

Following two results are proved in [9].

Proposition 3.1. Let R be a topological group-groupoid, e the identity of R0. Then
the transitive component C(R)e of e is a topological group-groupoid.

Proposition 3.2. Let R be a topological group-groupoid, e the identity of R0. Then
the star StRe = {a ∈ R : α(a) = e} of e becomes a topological group.

Let R and H be two topological group-groupoids. A morphism f : H → R
from H to R is a morphism of underlying topological groupoids preserving the
topological group structure, i.e., f(a+ b) = f(a) + f(b) for a, b ∈ H. A morphism
f : H → R of topological group-groupoids is called a topological covering if it is a
covering morphism on the underlying topological groupoids [9].

We know from [8] that if X is a topological group whose underlying space X has
a universal covering, then the fundamental groupoid π1X becomes a topological
group-groupoid. So we can give the following example.

Example 3.2. Let X, X̃ be a topological groups whose underlying spaces X, X̃
have universal covering and let p : X → X̃ be a covering map of topological groups.
Then the induced morphism π1p : π1X → X̃ becomes a covering morphism of
topological group-groupoid.

Let X be a topological space. Then we have a category of coverings of topological
space X denoted by TCov(X) whose objects are covering maps p : X̃ → X and a

morphism from p : X̃ → X to q : Ỹ → X is a map f : X̃ → Ỹ (hence f is a covering
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map) such that p = qf . Further, we have a groupoid π1X called a fundamental
groupoid [1] and have a category of coverings of fundamental groupoid π1X denoted

by GdCov(π1X) whose objects are the groupoid coverings p : R̃ → π1X of π1X

and a morphism from p : R̃ → π1X to q : H̃ → π1X is a morphism f : R̃ → H̃ of
groupoids (hence f is a covering morphism) such that p = qf .

We recall the following result from Brown [1].

Proposition 3.3. Let X be a topological space which has a universal covering.
Then the category TCov(X) of topological coverings of X and the category GdCov(π1X)
of covering groupoids of fundamental groupoid π1X are equivalent.

We have a category of coverings of topological group X denoted by TGCov(X)

whose objects are topological group coverings p : X̃ → X and a morphism from
p : X̃ → X to q : Ỹ → X is a map f : X̃ → Ỹ (hence f is a covering map)
such that p = qf . For a topological group X, the fundamental groupoid π1X
is a group-groupoid and so we have a category denoted by GGdCov(π1X) whose

objects are the group-groupoid coverings p : R̃ → π1X of π1X and a morphism
from p : R̃ → π1X to q : H̃ → π1X is a morphism f : R̃ → H̃ of group-groupoids
(hence f is a covering morphism) such that p = qf .

Thus the following result is given in [5].

Proposition 3.4. Let X be a topological group whose underlying space has a uni-
versal covering. Then the category TGCov(X) of topological group coverings of
X is equivalent to the category GGdCov(π1X) of group-groupoid coverings of the
group-groupoid π1X.

In addition to these results, we can give Theorem 3.1 in [9].
Let UTGCov(X) be the full subcategory of TGCov(X) on those objects p :

X̃ → X in which both X̃ and X have universal coverings. Let UTGGdCov(π1X)

be the full subcategory of TGGdCov(π1X) on those objects p : R̃→ π1X in which

X and R̃0 = X̃ have universal coverings [13].

Theorem 3.1. The categories UTGCov(X) and UTGGdCov(π1X) are equivalent.

Definition 3.2. Let p : R̃→ R be a covering morphism of groupoids and q : H → R
a morphism of groupoids. If there exists a unique morphism q̃ : H → R̃ such that
pq̃ = q then we say that q lifts to q̃ by p.

We recall the following theorem from [1], which is an important result to have
the lifting maps on covering groupoids.

Theorem 3.2. Let p : R̃ → R be a covering morphism of groupoids, x ∈ R0

and x̃ ∈ R̃0 such that p(x̃) = x. Let q : H → R be a morphism of groupoids
such that H is transitive and ỹ ∈ H0 such that q(ỹ) = x. Then the morphism

q : H → R uniquely lifts to a morphism q̃ : H → R̃ such that q̃(ỹ) = x̃ if and only

if q[H(ỹ)] ⊆ p[R̃(x̃)], where H(ỹ) and R̃(x̃) are the object groups.

Let R be a topological group-groupoid, e the identity of R0. Let R̃ be just a
topological groupoid, and let p : R̃ → R be a covering morphism of topological
groupoids such that p(ẽ) = e for the identity ẽ ∈ R̃0. We say the topological group

structure of R lifts to R̃ if there exists a topological group structure on R̃ with the
identity element ẽ ∈ R̃0 such that R̃ is a topological group-groupoid and p : R̃→ R
is a morphism of topological group-groupoids.
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Theorem 3.3. Let R̃ be a topological groupoid and let R be a topological group-
groupoid. Let p : R̃ → R be a universal covering on the underlying groupoids such
that both groupoids R and R̃ are transitive. Let e be the identity element of R0 and
ẽ ∈ R̃0 such that p(ẽ) = e. Then the topological group structure of R lifts to R̃ with
identity ẽ.

Definition 3.3. Let R be a topological group-groupoid and let X be a topological
group. An action of the topological group-groupoid R on X consists of a topological
group morphism w : X → R0 and an action of underlying topological groupoid of
R on the underlying space of X via w : X → R0 such that the following interchange
law holds

(by) + (ax) =b+a (x+ y)

whenever both sides are defined. We write (X,w) for such an action.

Example 3.3. Let p : H → R be a covering morphism of topological group-
groupoids. Then the topological group-groupoid R acts on H0 = X via p0 : H0 →
R. By the definition of topological covering morphism, we have a homeomorphism
sp : Rα×p0H0 → H and morphisms of topological groups p, p0 = w. The composing

sp with target map β̃ : H → H0 of H gives a continuous map φ : Rα×p0H0 →
H0, (a, x̃) 7→ ax̃ = β̃(ã). In addition to these, we can write w(ax̃) = p0(ax̃) =

p0(β̃(ã)) = β(a), b(ax̃) = bβ̃(ã) = β̃(b̃), b◦ax̃ = β̃(b̃◦ ã) = β̃(b̃) and 1p0(x̃) x̃ = β̃(c̃) =

x̃ ,for a, b ∈ R, ã, b̃, c̃ ∈ H and x̃ ∈ H0. Consequently R acts on H0.

Example 3.4. Let R be a topological group-groupoid which acts on a topological
group X. Then from [3], there are a topological action groupoid R ./ X and a
covering morphism of topological groupoids p : R ./ X → R, (a, x) 7→ a. Also
there exists the action group-groupoid R ./ X with group multiplication (a, x) +
(b, y) = (a + b, x + y) and projection p : R ./ X → R is a covering morphism
of group-groupoids [13]. Since group multiplication of R ./ X defined by group
multiplication of topological group-groupoid R, it is continuous. In addition to
these, p((a, x) + (b, y)) = p(a+ b, x+ y) = a+ b = p(a, x) + p(b, y), that is, p holds
topological group structure. Thus R ./ X becomes topological group-groupoid and
p is covering morphism of topological group-groupoids.

Let R be a topological group-groupoid. We have a category of coverings of topo-
logical group-groupoid R denoted by TGGdCov(R) whose objects are topological
group-groupoids coverings p : H → R and morphism from p : H → R to q : K → R
is a morphism r : H → K (hence r is a topological covering morphism) such that
p = qr.

Let X,X ′ be two topological groups and let R be topological group-groupoid.
Also R acts on X via w : X → R0 and let R be acts on X ′ via w′ : X ′ →
R0. We show these actions by (X,w) and (X ′, w′) respectively. A morphism
of topological group-groupoid actions f : (X,w) → (X ′, w′) is a morphism f :
X → X ′ of topological groups such that w′f = w and f(ax) = af(x) whenever
ax is defined. Thus we have a category of actions of topological group-groupoid R
denoted by TGGdOp(R) whose objects are topological actions (X,w) and morphism
from (X,w) to (X ′, w′) is a morphism f : X → X ′ of topological groups such that
w′f = w and f(ax) = af(x) whenever ax is defined. Now we can give following
result.
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Theorem 3.4. Let R be a topological group-groupoid. Then the categories TGGdCov(R)
and TGGdOp(R) are equivalent.

Proof. Define a functor

Γ : TGGdOp(R)→ TGGdCov(R)

as follows: Let R be a topological group-groupoid which acts on a topological
group X. Then from Example 3.4 there are a topological action group-groupoid
R ./ X and a covering morphism of topological group-groupoids p : R ./ X → R,
(a, x) 7→ a.

Conversely, we define a functor

Φ : TGGdCov(R)→ TGGdOp(R)

as follows: Let p : H → R be a covering morphism of topological group-groupoids.
Then from Example 3.3 the topological group-groupoid R acts on H0 = X via
p0 : H0 → R.

The natural equivalencies ΓΦ ' 1 and ΦΓ ' 1 follow. �

Proposition 3.5. Let R be a topological group-groupoid which is transitive on
underlying groupoid with Hausdorff object space. Let e ∈ R0 be the identity element
of R0 and let N(e) be a subgroup of R(e). Then there exists topological group-
groupoid H with the identity ẽ = N(e) of H0 and a topological covering morphism
of topological group-groupoids p : H → R such that p(H(ẽ)) = N(e).

Proof. Let X be the set of all cosets a ◦N(e) for all a ∈ StRe. If we define a group
multiplication on X by

(a ◦N(e)) + (b ◦N(e)) = (a+ b) ◦N(e)

then from [13] we have a action group-groupoid R ./ X = H with (R ./ X)0 = X
such that p(H(ẽ)) = N(e) and covering morphism of group-groupoids p : H → R.
The multiplication on X is continuous for that it consists of the multiplication of
topological group R and the composition of the topological groupoid. So X is a
topological group. R ./ X is also a topological group with group multiplication

(b, a′ ◦N(e)) + (c, a ◦N(e)) = (b+ c, (a′ + a) ◦N(e))

and induced topology from R×X. Since R is a transitive groupoid with Hausdorff
object space, there exist a transitive topological groupoid H and a topological
covering morphism p : H → R [7]. Hence H is a topological group-groupoid and p
is a covering morphism of topological group-groupoids. �

4. Topological Ring-Groupoid Coverings

A topological ring is a ring R with a topology on the underlying set such that
the ring structure maps (i.e., group multiplication, group inverse and ring multipli-
cation) are continuous. A topological ring morphism (topological homomorphism)
of a topological ring into another is an abstract ring homomorphism which is also
a continuous map. Let X and X̃ be topological rings. A map p : X̃ → X is called
a covering morphism of topological rings if p is a morphism of rings and p is a
covering map on the underlying spaces.
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Definition 4.1. [14]A topological ring-groupoid R is a topological groupoid en-
dowed with a topological ring structure such that the following ring structure maps
are morphisms of topological groupoids:

(1) m : R×R→ R, (a, b) 7→ a+ b, group multiplication,
(2) u : R→ R, a 7→ −a, group inverse map,
(3) ∗ : (?)→ R, where (?) is a singleton,
(4) n : R×R→ R, (a, b) 7→ ab, ring multiplication.

We write a + b for the group multiplication, and write ab for the ring multipli-
cation of a and b, and write b ◦ a for the composition in the topological groupoid
R. Also by 3, if 0 is the zero element of R0 then 10 is that of R.

In a topological ring-groupoid R, we have the interchange laws

(1) (c ◦ a) + (d ◦ b) = (c+ d) ◦ (a+ b) and
(2) (c ◦ a)(d ◦ b) = (cd) ◦ (ab)

whenever both (c ◦ a) and (d ◦ b) are defined.

Example 4.1. Let R be a topological ring. Then a topological ring-groupoid
R×R with object set R is defined as follows: The morphisms are the pairs (y, x),
the source and target maps are defined by α(y, x) = x and β(y, x) = y, the groupoid
composition is defined by (z, y) ◦ (y, x) = (z, x), the group multiplication is defined
by (z, t) + (y, x) = (z + y, t+ x) and ring multiplication is defined by (z, t)(y, x) =
(zy, tx). R×R has product topology. So all structure maps of ring-groupoid R×R
become continuous. Hence R×R is a topological ring-groupoid.

Let R and H be two topological ring-groupoids. A morphism f : H → R from H
to R is a morphism of underlying topological groupoids preserving the topological
ring structure, i.e., f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b) for a, b ∈ H. A
morphism f : H → R of topological ring-groupoids is called a topological covering
morphism if it is a covering morphism on the underlying topological groupoids [14].

We know from [14] that if X is a topological ring whose underlying space X has
a universal covering, then the fundamental groupoid π1X becomes a topological
ring-groupoid. So we can give the following example.

Example 4.2. Let X, X̃ be two topological rings whose underlying spaces X, X̃
have universal covering and let p : X → X̃ be covering map of topological rings.
Thus the induced morphism π1p : π1X → X̃ becomes a covering morphism of
topological ring-groupoids.

Now from [14] we can give following propositions.

Proposition 4.1. Let R be a topological ring-groupoid and let 0 ∈ R0 be the zero
element of ring R0. Then the transitive component CR(0) of 0 is a topological
ring-groupoid.

Proposition 4.2. Let R be a topological ring-groupoid and let 0 ∈ R0 be the zero
element in the ring R0. Then the star StR0 = {a ∈ R : α(a) = 0} of 0 becomes a
topological ring.

The following result is given in [12].

Proposition 4.3. Let X be a topological ring whose underlying space has a uni-
versal covering. Then the category TRCov(X) of topological ring coverings of X
is equivalent to the category RGdCov(π1X) of ring-groupoid coverings of the ring-
groupoid π1X.
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In addition to these results, in Theorem 4.1 we quote a similar result in [14].

Let UTRCov(X) be the full subcategory of TRCov(X) on those objects p : X̃ →
X in which both X̃ and X have universal coverings. Let UTRGdCov(π1X) be the

full subcategory of TRGdCov(π1X) on those objects p : R̃→ π1X in which X and

R̃0 = X̃ have universal coverings.

Theorem 4.1. The categories UTRCov(X) and UTRGdCov(π1X) are equivalent.

Let R be a topological ring-groupoid and let 0 ∈ R0 be the zero element of the
ring R0. Let R̃ be just a topological groupoid and let p : R̃→ R be a covering mor-
phism of topological groupoids, 0̃ ∈ R̃0 such that p(0̃) = 0. We say the topological

ring structure of R lifts to R̃ if there exists a topological ring structure on R̃ with
the zero element 0̃ ∈ R̃0 such that R̃ is a topological ring-groupoid and p : R̃→ R
is a morphism of topological ring-groupoids. Thus we can give following theorem
which is proved in [14].

Theorem 4.2. Let R̃ be a topological groupoid and let R be a topological ring-
groupoid. Let p : R̃ → R be a universal covering on the underlying groupoids such
that both groupoids R and R̃ are transitive. Let 0 be the zero element in the ring
R0 and 0̃ ∈ R̃0 such that p(0̃) = 0. Then the topological ring structure of R lifts to

R̃ with zero element 0̃.

Definition 4.2. Let R be a topological ring-groupoid and let X be a topological
ring. A topological action of the topological ring-groupoid R on X consists of a
topological ring morphism w : X → R0 and a continuous action of the underlying
topological groupoid of R on the underlying space of X via w : X → R0 such that
the following interchange laws hold

(1) (by) + (ax) = b+a(y + x),
(2) (by)(ax) = ba(yx),

whenever both sides are defined.

Example 4.3. Let R be a topological ring-groupoid which acts on a topological
ring X via w : X → R0. In [3] it is proved that R ./ X is a topological groupoid with
object set (R ./ X)0 = X and morphism set R ./ X = {(a, x) ∈ R ×X : ax = y}.
Furthermore, the projection p : R ./ X → R, (a, x) 7→ a becomes a covering
morphism of topological groupoids. Also in [13] it is showed that if a ring-groupoid
R acts on a ring X via w : X → R0 then R ./ X becomes a ring-groupoid and the
projection p : R ./ X → R, (a, x) 7→ a is a covering morphism of ring-groupoids.
Clearly, the ring operations

(a, x) + (b, y) = (a+ b, x+ y) and

(a, x)(b, y) = (ab, xy)

are also continuous since they are defined by the operations of the topological rings
R and X. Thus R ./ X becomes a topological ring-groupoid and the projection
p : R ./ X → R, (a, x) 7→ a is a covering morphism of topological ring-groupoids.

Example 4.4. Let p : H → R be a covering morphism of topological ring-
groupoids. Then the topological ring-groupoid R acts on H0 = X via p0 : H0 → R.
In Example 3.3, we showed that there exists the action of underlying topologi-
cal groupoid of R on the underlying space of H0. Because if p : H → R is a
covering morphism of topological ring-groupoids then we have a homeomorphism
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sp : Rα×p0H0 → H and p, p0 = w are topological ring morphisms. Consequently,
R acts on H0.

Example 4.5. Let R be a topological ring-groupoid which acts on a topological
ring X. Then from Example 3.4, there are a topological action group-groupoid
R ./ X and a covering morphism of topological group-groupoids p : R ./ X → R,
(a, x) 7→ a. Also we know that R ./ X is a ring-groupoid with group multiplication
(a, x) + (b, y) = (a + b, x + y) and ring multiplication (a, x)(b, y) = (ab, xy) [13].
The ring multiplication is continuous for that it consists of the multiplications of
topological rings R and X. Thus R ./ X becomes topological ring-groupoid and p
is covering morphism of topological ring-groupoid.

Let R be a topological ring-groupoid. We have a category of coverings of topo-
logical ring-groupoid R denoted by TRGdCov(R) whose objects are topological
ring-groupoid coverings p : H → R and morphism from p : H → R to q : K → R
is a morphism r : H → K (hence r is a topological covering morphism) such that
p = qr.

Let X,X ′ be two topological rings and let R be topological ring-groupoid. Also
R acts on X via w : X → R0 and let R be acts on X ′ via w′ : X ′ → R0. We show
these actions by (X,w) and (X ′, w′) respectively. A morphism of topological ring-
groupoid actions f : (X,w) → (X ′, w′) is a morphism f : X → X ′ of topological
rings such that w′f = w and f(ax) = af(x) whenever ax is defined. Thus we have
a category of actions of topological ring-groupoid R denoted by TRGdOp(R) whose
objects are topological actions (X,w) and morphism from (X,w) to (X ′, w′) is a
morphism f : X → X ′ of topological rings such that w′f = w and f(ax) = af(x)
whenever ax is defined. Now we can give following result.

Theorem 4.3. Let R be a topological ring-groupoid. Then the categories TRGdCov(R)
and TRGdOp(R) are equivalent.

Proof. Define a functor

Γ : TRGdOp(R)→ TRGdCov(R)

as follows: Let R be a topological ring-groupoid which acts on a topological ring X.
In Example 4.5, the action on a topological ring of the topological ring-groupoid R
gives rise to a topological action ring-groupoid R ./ X and a covering morphism of
topological ring-groupoids p : R ./ X → R, (a, x) 7→ a.

Conversely, we define a functor

Φ : TRGdCov(R)→ TRGdOp(R)

as follows: Let p : H → R be a covering morphism of topological ring-groupoids.
Then the topological ring-groupoid R acts on H0 = X via p0 : H0 → R by Example
4.4.

The natural equivalencies ΓΦ ' 1 and ΦΓ ' 1 follow. �

Proposition 4.4. Let R be a topological ring-groupoid which is transitive on un-
derlying groupoid with Hausdorff object space. Let 0 be the zero element of R0 and
let N(0) be a subgroup of R(0). Then there exists a topological ring-groupoid H
such that 0̃ = N(0) is the zero element of H0. There is also a topological covering
morphism of topological ring-groupoids p : H → R such that p(H(0̃)) = N(0).
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Proof. Let X be the set of all cosets a ◦N(0) for all a ∈ StR0. If we define group
multiplication and ring multiplication on X by

(a ◦N(e)) + (b ◦N(e)) = (a+ b) ◦N(e),

(a ◦N(e))(b ◦N(e)) = (ab) ◦N(e),

then from [13] we have a ring-groupoid R ./ X = H with object set (R ./ X)0 = X
such that p(H(0̃)) = N(0) and covering morphism of ring-groupoids p : H → R.
The group and ring multiplications on X are continuous, because they consist of
the multiplications of topological ring R and the composition of the topological
groupoid. So X is a topological ring. R ./ X is also a topological ring with group
and ring multiplications, respectively,

(b, a′ ◦N(e)) + (c, a ◦N(e)) = (b+ c, (a′ + a) ◦N(e)),

(b, a′ ◦N(e))(c, a ◦N(e)) = (bc, (a′a) ◦N(e)),

and induced topology from R×X. Since R is a transitive groupoid with Hausdorff
object space, there exist a transitive topological groupoid H and a topological
covering morphism p : H → R [7]. Hence H is a topological ring-groupoid and p is
a covering morphism of topological ring-groupoids. �
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