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APPROXIMATING CLASSES OF FUNCTIONS DEFINED BY A
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(Communicated by Murat TOSUN)

Abstract. In the present paper, we use a generalised shift operator in or-

der to define a generalised modulus of smoothness. By its means, we define
generalised Lipschitz classes of functions, and we give their constructive char-

acteristics. Specifically, we prove certain direct and inverse types theorems in

approximation theory for best approximation by algebraic polynomials.

1. Introduction

In [4], a generalised shift operator was introduced, by its means the generalised
modulus of smoothness was defined, and Jackson’s and its converse type theorems
were proved for this modulus.

In the present paper, we make use of this modulus of smoothness to define gener-
alised Lipschitz classes of functions. We prove the coincidence of such a generalised
Lipshcitz class wth the class of functions having a given order of decrease of best
approximation by algebraic polynomials.

2. Definitions

By Lp[a, b] we denote the set of functions f such that for 1 ≤ p < ∞ f is a
measurable function on the segment [a, b] and

‖f‖p =

(∫ b

a

|f(x)|p dx
)1/p

<∞,

and for p =∞ the function f is continuos on the segment [a, b] and

‖f‖∞ = max
a≤x≤b

|f(x)|.

In case that [a, b] = [−1, 1] we simply write Lp instead of Lp[−1, 1].
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Denote by Lp,α the set of functions f such that f(x)(1− x2)α ∈ Lp, and put

‖f‖p,α = ‖f(x)(1− x2)α‖p.

Denote by En(f)p,α the best approximation of a function f ∈ Lp,α by algebraic
polynomials of degree not greater than n− 1, in Lp,α metrics, i.e.,

En(f)p,α = inf
Pn

‖f − Pn‖p,α ,

where Pn is an algebraic polynomial of degree not greater than n− 1.
By E(p, α, λ) we denote the class of functions f ∈ Lp,α satisfying the condition

En(f)p,α ≤ Cn−λ,

where λ > 0 and C is a constant not depending on n (n ∈ N).
Define generalised shift operator τ̂t (f, x) by

τ̂t (f, x) =
1

π(1− x2) cos4 t
2

∫ π

0

Bcos t(x, cosϕ,R)f(R) dϕ,

where

R = x cos t−
√

1− x2 sin t cosϕ,

By(x, z,R) = 2
(√

1− x2y + xz
√

1− y2(2.1)

+
√

1− x2(1− y)(1− z2)
)2
− (1−R2).

For a function f ∈ Lp,α, define the generalised modulus of smoothness by

ω̂(f, δ)p,α = sup
|t|≤δ
‖τ̂t (f, x)− f(x)‖p,α .

Consider the class H(p, α, λ) of functions f ∈ Lp,α satisfying the condition

ω̂(f, δ)p,α ≤ Cδλ,

where λ > 0 and C is a constant not depending on δ.
Put y = cos t, z = cosϕ in the operator τ̂t (f, x), denote it by τy (f, x) and

rewrite it in the form

τy (f, x) =
4

π(1− x2)(1 + y)2

∫ 1

−1
By(x, z,R)f(R)

dz√
1− z2

,

where R and By(x, z,R) are defined in (2.1).

By P
(α,β)
ν (x) (ν = 0, 1, . . . ) we denote the Jacobi polynomials, i.e., the algebraic

polynomials of degree ν, orthogonal with the weight function (1 − x)α(1 + x)β on
the segment [−1, 1], and normed by the condition

P (α,β)
ν (1) = 1 (ν = 0, 1, . . . ).

Denote by an(f) the Fourier–Jacobi coefficients of a function f , integrable with
the weight function (1− x2)2 on the segment [−1, 1], with respect to the system of

Jacobi polynomials
{
P

(2,2)
n (x)

}∞
n=0

, i.e.,

an(f) =

∫ 1

−1
f(x)P (2,2)

n (x)(1− x2)2 dx (n = 0, 1, . . . ).
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3. Auxiliary statements

In order to prove our results we need the following theorem.

Theorem 3.1. Let the numbers p and α be such that 1 ≤ p ≤ ∞;

1/2 < α ≤ 1 for p = 1,

1− 1

2p
< α <

3

2
− 1

2p
for 1 < p <∞,

1 ≤ α < 3/2 for p =∞.
If f ∈ Lp,α, then for every natural number n

C1En(f)p,α ≤ ω̂ (f, 1/n)p,α ,

where the positive constant C1 does not depend on f and n.

Theorem 3.1 was proved in [4] and, in more general form, in [5]. It is known as
a Jackson’s type theorem.

We also need the following lemmas.

Lemma 3.1. The operator τy (f, x) has the following properties:

1) it is linear,
2) τ1 (f, x) = f(x),

3) τy

(
P

(2,2)
ν , x

)
= P

(2,2)
ν (x)P

(0,4)
ν (y) (ν = 0, 1, . . . ),

4) τy (1, x) = 1,

5) an(τy (f, x)) = an(f)P
(0,4)
n (y) (n = 0, 1, . . . ).

Lemma 3.1 was proved in [4]

Lemma 3.2. Let the numbers p and α be such that 1 ≤ p ≤ ∞;

1/2 < α ≤ 1 for p = 1,

1− 1

2p
< α <

3

2
− 1

2p
for 1 < p <∞,

1 ≤ α < 3/2 for p =∞.
If f ∈ Lp,α, then

‖τ̂t (f, x)‖p,α ≤
C

cos4 t
2

‖f‖p,α ,

where constant C does not depend on f and t.

Lemma 3.2 was proved in [4].

4. Statement of results

Theorem 4.1. Let p, α and λ be given numbers such that 1 ≤ p ≤ ∞;

1− 1

2p
< α <

3

2
− 1

2p
for 1 ≤ p <∞,

1 ≤ α < 3

2
for p =∞.

and 0 < λ < 2. Let f ∈ Lp,α. If

En(f)p,α ≤Mn−λ,
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then

ω̂(f, δ)p,α ≤ CMδλ,

where constant C does not depend on f , M and δ.

Proof. Let Pn(x) be an algebraical polynomial of degree not greater than n−1 such
that

‖f − Pn‖p,α = En(f)p,α (n = 1, 2, . . .).

We define algebraical polynomials Qk(x) by

Qk(x) = P2k(x)− P2k−1(x) (k = 1, 2, . . .)

and Q0(x) = P1(x). Since for k ≥ 1

‖Qk‖p,α =
∥∥P k2 − P2k−1

∥∥
p,α
≤ ‖P2k − f‖p,α + ‖f − P2k−1‖p,α

= E2k (f)p,α + E2k−1 (f)p,α ,

then by the conditions of the theorem we have

(4.1) ‖Qk‖p,α ≤ C1M2−kλ.

Taking into consideration property 4) in Lemma 3.1 of the operator τy, without
loss of generality we may suppose that t 6= 0. For 0 < |t| ≤ δ we estimate

I = ‖τ̂t (f, x)− f(x)‖p,α .

For every positive integer N , taking into account property 1) in Lemma 3.1 and
the linearity of the operator τt (f, x), we get

I ≤ ‖τ̂t (f − P2N , x)− (f(x)− P2N (x))‖p,α + ‖τ̂t (P2N , x)− P2N (x)‖p,α .

Since

P2N (x) =

N∑
k=0

Qk(x),

we have

I ≤ ‖τ̂t (f − P2N , x)− (f(x)− P2N (x))‖p,α +

N∑
k=0

‖τ̂t (Qk, x)−Qk(x))‖p,α

= J +

N∑
k=1

Ik.

Let N be chosen in such a way that

(4.2)
π

2N
< δ ≤ π

2N−1
.

We prove the following inequalities

(4.3) J ≤ C2Mδλ

and

(4.4) Ik ≤ C3M2−kλ,

where constants C2 and C3 do not depend on f , M , δ and k.



88 FATON M. BERISHA AND NIMETE SH. BERISHA

First we consider J . By Lemma 3.2, taking into account that |t| ≤ δ, we have

‖τ̂t (f − P2N , x)− (f(x)− P2N (x))‖p,α ≤
C4(

cos t2
)4 ‖f − P2N ‖p,α

= C5E2N (f)p,α

Therefore, the condition of the theorem and inequality (4.2) yield

‖τ̂t (f − P2N , x)− (f(x)− P2N (x))‖p,α ≤ C6M2−Nλ ≤ C7Mδλ,

which proves inequality (4.3).
Now we prove inequality (4.4). Note that, taking into consideration Lemma 3.2,

we have

‖τ̂t (Qk)‖p,α ≤
C8(

cos t2
)4 ‖Qk‖p,α .

Hence,

Ik ≤
C9(

cos t2
)4M2−kλ,

which proves inequality (4.4).
Inequalities (4.3), (4.4) and (4.2) yield

I ≤ C10M

(
δλ +

N∑
k=1

2−kλ

)
≤ C11M(δλ + 2−Nλ) ≤ C12Mδλ.

Theorem 4.1 is proved. �

Theorem 4.2. Let p, α and λ be given numbers such that 1 ≤ p ≤ ∞, λ > 0;

1− 1

2p
< α <

3

2
− 1

2p
for 1 ≤ p <∞,

1 ≤ α < 3

2
for p =∞.

Let f ∈ Lp,α. If

ω̂(f, δ)p,α ≤Mδλ,

then
En(f)p,α ≤ CMn−λ,

where constant C does not depend on f , M and n.

Proof. Let δ = 1
n . Then, taking into account Theorem 3.1, we obtain

En(f)p,α ≤
1

C1
ω̂

(
f,

1

n

)
p,α

≤ CMn−λ.

Theorem 4.2 is proved. �

Theorem 4.3. Let p, α and λ be given numbers such that 1 ≤ p ≤ ∞;

1− 1

2p
< α <

3

2
− 1

2p
for 1 ≤ p <∞,

1 ≤ α < 3

2
for p =∞.

Then for 0 < λ < 2 the classes of functions H(p, α, λ) coincide with the class
E(p, α, λ).
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Proof. Note that, under the condition of the theorem, Theorem 4.2 implies the
inclusion

H(p, α, λ) ⊆ E(p, α, λ),

while Theorem 4.1 implies the converse inclusion

E(p, α, λ) ⊆ H(p, α, λ).

Hence we conclude that the assertion of Theorem 4.3 is implied by Theorems 4.2
and 4.1. �

Note that analogues of Theorems 4.2, 4.1 and 4.3 for another generalised shift
operator were proved in [1] and, in more general forms, in [3, 2].
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