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THE PRODUCT OF SHAPE FIBRATIONS

QAMIL HAXHIBEQIRI

(Communicated by Murat TOSUN)

Abstract. The following fact is shown: Let p : E → B, p′ : E′ → B′ be

maps of compact Hausdorff spaces. Then p× p′ : E ×E′ → B ×B′ is a shape

fibration if and only if p and p′ are shape fibrations.Also the following fact on
resolutions is shown:

Let q = (qλ) : E → E = (Eλ, qλλ′ ,Λ) and r = (rµ) : B → B = (Bµ, rµµ′ ,M)

are morphisms of pro-Cpt such that E and B are compact ANR-systems.
Then q × r = (qλ × rµ) : E × B → E × B = (Eλ × Bµ, qλλ′ × rµµ′ ,Λ ×M)

is a resolution of E × B if and only if q and r are resolutions of E and B,

respectively. (Theorem 1).

1. Introduction

The notion of shape fibration for maps between metric compacta was introduced
by S. Mardešić and T. B. Rushing in [5] and [9] In [5] S. Mardešić has extended this
notion to maps of arbitrary topological spaces. The author has established some
further properties of shape fibrations in the noncompact case (see e.g. [1],[2],[3],[4]
).

In this paper we give another proof of the following fact: if p : E → B, p′ : E′ →
B′ are maps, where E,E′, B,B′ are compact Hausdorff spaces, then p×p′ : E×E′ →
B ×B′ is a shape fibration if and only if p and p′ are shape fibrations.

Our proof is designed so that if Proposition 3 bellow holds for some conditions
(weaker than compactness) on space E then the above statement on product of
shape fibrations remains true also in the case when E,E′ satisfy such conditions.
Thus, answer in the

Question: Which conditions (weaker than compactness) must satisfy spaces
E,E′ so that for compact Hausdorff spaces B,B′ holds true: p×p′ : E×E′ → B×B′
is shape fibration if and only if p : E → B and p′ : E′ → B′ are shape fibrations ?
is equivalent to the answer in the following
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Question: Which conditions (weaker than compactness) must satisfy space E
so that for compact Hausdorff spaces B holds true the Proposition 3 bellow ?

2. Preliminaries

By a map p : E → B we mean a continuous function between topological spaces.
If p, q : E → B are maps and U is a covering of B we say that p and q are U- near
maps, and we write(p, q) ≤ U , provided for each x ∈ E there is a U ∈ U such that
p(x), q(x) ∈ U.

If U and V are two coverings of a space E we say that U refines V, and we write
U < V , if for every U ∈ U there is a V ∈ V such that U ⊆ V.

If U is a covering of a space E and A ⊆ E then a star of A with respect to U
is the set St(A, U) =

⋃
{U ∈ U : U ∩A 6= ∅}.

A normal covering of a space E is an open covering U which admits a locally
finite partition of unity subordinated to U. It is well known that every open covering
of a paracompact space is normal (see e.g [10, Corollary 1,p.325] ). Consequently,
every open covering of a compact space (or polyhedron, ANR-space) is normal.

By pro−Top we denote the procategory of topological spaces whose objects are
inverse systems of topological spaces and whose morphisms are equivalent classes
of maps of such systems; pro−Cpt denotes the procategory of compact Hausdorff
spaces whose objects are inverse systems of compact Hausdoorff spaces and whose
morphisms are equivalent classes of maps of such systems. (More on procategories
see [7] or [10]).

Watanabe in [14] ( see also [15, Theorem (3.3)] or [6, Theorem 1] ) has proved
the following fact:

Proposition 1. A morphism q = (qλ) : E → E = (Eλ, qλλ′ ,Λ) of pro−Top is
a resolution of a topological space E if and only if q satisfies the following two
conditions :

(B1) For every λ ∈ Λ and every normal covering Uλ of Eλ there is a λ′ ≥ λ
such that qλλ′(Eλ′) ⊆ St(qλ(E), Uλ).

(B2) For every normal covering U of E there is a λ ∈ Λ and a normal covering
Uλ of Eλ such that q−1λ ( Uλ) < U. �

A level resolution of a map p : E → B is a triple (q, r,p) consisting of resolutions
q = (qλ) : E → E = (Eλ, qλλ′ ,Λ), r = (rλ) : B → B = (Bλ, rλλ′ ,Λ) of spaces E
and B, respectively, and of a level map of inverse systems p = (pλ) : E → B such
that pq = rp, i.e. pλqλ = rλp for every λ ∈ Λ. If all E′λs and B′λs are polyhedrons
(ANR’s) then q : E → E, r : B → B and (q, r,p) are called polyhedral (ANR)-
resolutions of E,B and p, respectively .

It is a well known fact that every topological space and every map of topological
spaces admit a polyhedral (ANR) resolutions ([5, Theorems 10, 11,12,13]). Without
loss of generality we can assume that these resolutions are level resolutions (see [1,
Lemma 4.6 and Remark 4.7]). Also it is known that compact spaces and maps of
such spaces admit compact polyhedral (ANR) level resolutions (see the proof of
Theorem 3.2 and Corollary 3.5 in [3]).

Since every open covering of a compact Hausdorff space is a normal covering and
every open covering of such a space admits a finite subcovering which refines it, if
in the proof of Theorem 11 of [5] we let Γ be the set of all finite open coverings of
B, we obtain the following result
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Proposition 2. Every map p : E → B of topological space E to a compact Haus-
dorf space B admits a polyhedral (ANR) resolution (q, r,p) with r : B → B in
pro−Cpt.

By Lemma 4.6 and Remark 4.7 of [1] in the above Proposition, without loss of
generality, we can assume that such a resolution of a map p is a level resolution.

For further information on resolutions of spaces and maps see [5],[6], [10],[1],[2],[3],
[11],[14],[15]. A level map p : E → B is said to have the approximate ho-
motopy lifting property (abbreviated the AHLP ) with respect to a class of
spaces X provided for each λ ∈ Λ and for any two normal coverings U, V of
Eλ and Bλ respectively, there is a λ′ ≥ λ and there is a normal covering V ′

of Bλ′ with the following property: whenever one has maps h : X → Eλ′ and
H : X × I → Bλ′ , X ∈ X, I = [0, 1], such that (pλ′h,H0) ≤ V ′ then there is a

homotopy H̃ : X × I → Eλ such that

(qλλ′h, H̃0) ≤ U and (pλH̃, rλλ′H) ≤ V .

λ′ and V ′ are called a lifting index and lifting mesh, respectively, for λ, U, and
V with respect to p ([2, Definition 4.2]).

A map of topological spaces p : E → B is called a shape fibration provided
there exists an ANR level resolution (q, r,p) of p such that the level map p : E→ B
has the AHLP with respect to the class of all topological spaces.

(In original definition of shape fibration given in [5] for (q, r,p) is required to be
an approximate polyhedral resolution. But, since every ANR is an approximative
polyhedron, without loss of generality we can require for (q, r,p) to be an ANR
resolution. Also, by [1] we can assume for (q, r,p) to be a level resolution).

From [5], Theorem 4, it follows that whenever (q, r,p) is an ANR resolution of
a shape fibration p : E → B then p has the AHLP with respect to the class of all
topological spaces.

Since we will deal with paracompact (ANR) spaces, all open coverings are nor-
mal.

3. Some auxiliary facts

In this section we will establish some facts which we will need in the sequel.
From [12, Lemma 2, p.375], immediately it follows the following

Proposition 3. Let E and B be compact Hausdorff spaces. Then for every normal
covering U of E×B there are a normal covering V of E and an open covering
W of B such that V × W = {V ×W : V ∈ V , W ∈ W} is a normal covering

of E ×B which refines U.

Proof. By Lemma 2 of [12] there is a normal covering V of E such that every
V ∈ V admits an open (finite) covering WV of B such that the stacked covering
{V × WV : V ∈ V } refines U. Since E is compact, without loss of generality we
can assume that V is a finite covering (otherwise we replace V with finite covering
which refines it). Let V = {V1, V2, . . . , Vn} and WVi = {W1,W2, . . . ,Wni} , i ∈
{1, 2, . . . , n}. Now we put

W = WV1
∧ WV2

∧ · · · ∧ WVn =

{
n⋂
i=1

Wi | (W1,W2, . . .Wn) ∈
n∏
i=1

WVi

}
.
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W is a normal (open) covering of B such that V × W < U. Indeed, since
Vi × WVi < U for i ∈ {1, 2, . . . , n} we conclude that for every Vi ∈ V and every⋂n
i=1Wi ∈ W there is an U ∈ U such that Vi ×

⋂n
i=1Wi ⊆ Vi ×Wi ⊆ U. �

The following propositions are easily proved:

Proposition 4. If U, U ′ are coverings of E, V , V ′ coverings of B and U <
U ′, V < V ′ then U × V < U ′ × V ′. �

Proposition 5. Let U be a covering of E, V a covering of B, P ⊆ E and Q ⊆ B.
Then St(P, U)× St(Q, V ) = St(P ×Q, U × V ). �

Proposition 6. Let U and V be coverings of a topological space E and P ⊆ E.
If U < V then St(P, U) ⊆ St(P, V ). �

Theorem 1. Let q = (qλ) : E → E = (Eλ, qλλ′ ,Λ) and r = (rµ) : B → B =
(Bµ, rµµ′ ,M) are morphisms of pro-Cpt such that E and B are compact ANR-
systems. Then q×r = (qλ×rµ) : E×B → E×B = (Eλ×Bµ, qλλ′×rµµ′ ,Λ×M) is
a resolution of E×B if and only if q and r are resolutions of E and B, respectively.

Proof. First of all we note that the index set Λ×M is ordered in this way:

(λ, µ) ≤ (λ′, µ′) ⇐⇒ λ ≤ λ′ and µ ≤ µ′

Suppose that q× r is a resolution and we show that q and r are resolutions. By
Proposition 1, it suffices to show that q and r satisfy conditions (B1) and (B2).

Condition (B1) for q : E → E. Let λ ∈ Λ and let Uλ be an open covering of Eλ.
Let pr1λ : Eλ × Bµ → Eλ be the projection on the first factor. Then pr−11λ ( Uλ) =
{U × Bµ : U ∈ Uλ} = Uλ × {Bµ} is an open covering of Eλ × Bµ. By (B1) for
q× r there is a (λ′, µ′) ≥ (λ, µ) such that

(qλλ′ × rµµ′)(Eλ′ ×Bµ′) ⊆ St ((qλ × rµ)(E ×B), Uλ × {Bµ})
i.e

qλλ′(Eλ′)× rµµ′(Bµ′) ⊆ St(qλ(E), Uλ)× St(rµ(B), {Bµ}) = St(qλ(E), Uλ)×Bµ.
Consequently,

qλλ′(Eλ′) ⊆ St(qλ(E), Uλ),

and, thus, q satisfies (B1).
Similarly it is shown that r : B → B satisfies (B1).
Condition (B2) for q : E → E. Let U be a normal covering of E and pr1 : E ×

B → E the projection on the first factor. Then pr−11 ( U) = {U × B : U ∈ U} =
U×{B} is a normal covering of E×B. By (B2) for q×r there are a (λ, µ) ∈ Λ×M

and an open covering (normal) U ′ of Eλ × Bµ such that (qλ × rµ)−1( U ′) <
U × {B}. Since pr1λ : Eλ × Bµ → Eλ is an open surjective map we conclude

that Uλ = pr1λ( U ′) = {pr1λ(U ′) : U ′ ∈ U ′} is an open covering of Eλ. Since
qλpr1 = pr1λ(qλ × rµ) we have that

pr−11 q−1λ ( Uλ) = (qλ × rµ)−1pr−11λ ( Uλ) = (qλ × rµ)−1pr−11λ pr1λ( U ′) <

< (qλ × rµ)−1( U ′) < pr−11 ( U),

from which it follows that

pr1pr
−1
1 q−1λ ( Uλ) < pr1pr

−1
1 ( U).

Since pr1 is a surjective map we conclude that q−1λ ( Uλ) < U, which means that
q satisfies (B2).



THE PRODUCT OF SHAPE FIBRATIONS 107

Similarly it is shown that r : B → B satisfies (B2).
Conversely, suppose that q and r are resolutions and show that q× r : E×B →

E×B is a resolution. By Proposition 1, it is sufficient to show that q× r satisfies
conditions (B1) and (B2).

Condition (B1) for q× r. Let (λ, µ) ∈ Λ×M and let W be any open (normal)
covering of Eλ × Bµ. By Proposition 3, there are open coverings U of Eλ and V
of Bµ such that U × V < W. By (B1) for q and r there are indices λ′ ≥ λ and
µ ≥ µ′ such that qλλ′(Eλ′) ⊆ St(qλ(E), U) and rµµ′(Bµ′) ⊆ St(rµ(B), V ). Then
(λ′, µ′) ≥ (λ, µ) and, by Propositions 4 and 5, we obtain that

(qλλ′×rµµ′)(Eλ′×Bµ′) = qλλ′(Eλ′)×rµµ′(Bµ′) ⊆ St(qλ(E), U)×St(rµ(B), V ) =

= St(qλ(E)×rµ(B), U× V ) = St((qλ×rµ)(E×B), U× V ) ⊆ St((qλ×rµ)(E×B), W ),

which means that q× r satisfies (B1).
Condition (B2) for q×r. Let W be a normal covering of E×B. By Proposition

3 there are a normal covering U of E and an open covering V of B such that
U × V < W. Since q : E → E and r : B → B, as resolutions, have property (B2)

there are indices λ ∈ Λ, µ ∈ M and open coverings Uλ of Eλ and V µ of Bµ such

that q−1λ ( Uλ) < U and r−1µ ( V µ) < V . Then Uλ × V µ is an open covering of
Eλ ×Bµ and, by Proposition 4, holds

(qλ × rµ)−1( Uλ × V µ) = q−1λ ( Uλ)× r−1µ ( V µ) < U × V < W,

which means that q× r satisfies (B2). �

Corollary 1. Let q : E → E = (Eλ, qλλ′ ,Λ), q′ : E′ → E′ = (E′µ, q
′
µµ′ ,M), p =

(pλ) : E → B, r : B → B = (Bλ, rλλ′ ,Λ), r′ : B′ → B′ = (B′µ, r
′
µµ′ ,M), p′ =

(p′µ) : E′ → B′ be morphisms of pro−Cpt, such that E,E′, B,B′ are compact
ANR-systems. Then (q×q′, r× r′,p×p′) is a level resolution of p× p′ : E×E′ →
B × B′ if and only if (q, r,p) and (q′, r′,p′) are resolutions of p : E → B and
p′ : E′ → B′, respectively.

Proof. Since pq = rp and p′q′ = r′p′ if and only if (p × p′)(q × q′) =
(r× r′)(p× p′), the assertion of Corollary 1, it follows immediately from Theorem
1. �

4. The main results

Theorem 2. Let E,E′, B,B′ be compact Hausdorff spaces, (q× q′, r× r′,p×p′)
be a level compact ANR (polyhedral)-resolution of p× p′ : E × E′ → B ×B′ such
that (q, r,p), (q′, r′,p′) are compact ANR (polyhedral)-resolutions of p : E → B
and p′ : E′ → B′, respectively. Then, p × p′ : E × E′ → B × B′ has the AHLP
with respect to the class of all topological spaces if and only if p : E → B and
p′ : E′ → B′ have the AHLP with respect to the same class of spaces.

Proof. Necessity. Let p × p′ : E × E′ = (Eλ × E′µ, qλλ′ × q′µµ′ ,Λ × M) →
(Bλ × B′µ, rλλ′ × r′µµ′ ,Λ ×M) = B ×B′ has the AHLP with respect to the class
of all topological spaces. We show that p : E→ B has the AHLP with respect to
that class of spaces.

Let λ ∈ Λ and let Uλ, V λ be open coverings of Eλ and Bλ. Let (λ, µ) ∈ Λ×M
be any index with its first coordinate λ and let pr1λ : Eλ×E′µ → Eλ and pr′1λ : Bλ×
B′µ → Bλ be projections on the first factor. Then pr−11λ ( Uλ) = {U×E′µ : U ∈ Uλ}
and pr

′−1
1λ ( V λ) = {V ×B′µ : V in V λ} are open coverings of Eλ×E′µ and Bλ×B′µ,
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respectively. Let (λ′, µ′) ∈ Λ×M, (λ′, µ′) ≥ (λ, µ), be a lifting index and let an open

covering V ′ of Bλ′ × B′µ′ be a lifting mesh for (λ, µ), pr−11λ ( Uλ) and pr
′−1
1λ ( V λ)

with respect to p×p′. We claim that λ′ ≥ λ is a lifting index and that open covering
pr′1λ′( V

′) of Bλ′ is a lifting mesh for λ, Uλ, V λ with respect to p.
Indeed, let X be arbitrary topological space and h : X → Eλ′ , H : X × I → Bλ′

be maps such that

(pλ′h,H0) ≤ pr′1λ′( V ′). (1)

Let e = (eλ′ , e
′
µ′) ∈ Eλ′ ×E′µ′ be a fixed point and let b = (bλ′ , b

′
µ′) ∈ Bλ′ ×B′µ′ be

such a point that bλ′ = pλ′(eλ′), b
′
µ′ = p′µ′(e

′
µ′). Then (pλ′×p′µ′)(e) = b. Now we put

E∗λ′ = Eλ′ × {e′µ′} and B∗λ′ = Bλ′ × {b′µ′}. Let sλ′ : Eλ′ → E∗λ′ and s′λ′ : Bλ′ → B∗λ′
be maps given by sλ′(x) = (x, e′µ′) for every x ∈ Eλ′ and s′λ′(x) = (x, b′µ′) for every

x ∈ Bλ′ . sλ′ and s′λ′ are homeomorphisms such that

s−1λ′ = pr1λ′ |E∗
λ′
, s

′−1
λ′ = pr′1λ′ |B∗λ′ . (2)

It can easily be shown that

(pλ′ × p′µ′)sλ′ = s′λ′pλ′ . (3)

From (1), it follows that for each x ∈ X there is a V ∈ V ′ such that pλ′h(x), H0(x) ∈
pr′1λ′(V ), and thus,

pr
′−1
1λ′ pλ′h(x), pr

′−1
1λ′ H0(x) ⊆ V.

From this, by (2), it follows that

s′λ′pλ′h(x), s′λ′H0(x) ∈ V ∩B∗λ′ ⊆ V.
Now, by (3), we have that

(pλ′ × p′µ′)sλ′h(x), s′λ′H0(x) ∈ V i.e.
(
(pλ′ × p′µ′)sλ′h, s′λ′H0

)
≤ V ′.

Since (λ′, µ′) is the lifting index and V ′ is the lifting mesh for (λ, µ), pr−11λ ( Uλ), pr
′−1
1λ ( V λ)

with respect to p× p′, we conclude that there exists a map H̃ : X × I → Eλ ×E′µ
such that (

(qλλ′ × q′µµ′)sλ′h, H̃0

)
≤ pr−11λ ( Uλ)

and (
(pλ × p′µ)H̃, (rλλ′ × r′µµ′)s′λ′H

)
≤ pr

′−1
1λ ( V λ).

Then we have (
pr1λ(qλλ′ × q′µµ′)sλ′h, pr1λH̃0

)
≤ Uλ

and (
pr′1λ(pλ × p′µ)H̃, pr′1λ(rλλ′ × r′µµ′)s′λ′H

)
≤ V λ.

Since

pr1λ(qλλ′ × q′µµ′) = qλλ′pr1λ′

pr′1λ(pλ × p′µ) = pλpr1λ

pr′1λ(rλλ′ × r′µµ′) = rλλ′pr
′
1λ′

we conclude that (
qλλ′pr1λ′sλ′h, pr1λH̃0

)
≤ Uλ

and (
pλpr1λH̃, rλλ′pr

′
1λ′s

′
λ′H

)
≤ V λ.
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Now, since pr1λ′sλ′ = 1Eλ′ and pr′1λ′s
′
λ′ = 1Bλ′ , we obtain that(

qλλ′h, pr1λH̃0

)
≤ U and (pλpr1λH̃, rλλ′H) ≤ V ,

which means that p has the AHLP with respect to the class of all topological
spaces.

Similarly it is shown that p′ has the AHLP.
Sufficiency. Let p and p′ have the AHLP with respect to the class of all topo-

logical spaces. We show that p × p′ has the AHLP with respect to the same
class.

Let (λ, µ) ∈ Λ×M and U, V be open coverings of Eλ×E′µ and Bλ×B′µ, respec-
tively. By Proposition 3 there are open coverings Uλ, Uµ, V λ, V µ, of Eλ, E

′
µ, Bλ

and B′µ, respectively, such that Uλ × Uµ < U and V λ × V µ < V .
Let λ′ ≥ λ be a lifting index and let an open covering V λ′ of Bλ′ be a lifting

mesh for λ, Uλ, V λ with respect to p. Similarly, let µ ≥ µ′ be a lifting index and
let an open covering V µ′ of B′µ′ be a lifting mesh for µ, Uµ, V µ with respect to

p′.
We claim that (λ′, µ′) ≥ (λ, µ) is a lifting index and an open covering V λ′ ×

V µ′ = {U×V : U ∈ V λ′ , V ∈ V µ′} of Bλ′×B′µ′ is a lifting mesh for (λ, µ), U, V

with respect to p× p′.
Indeed, letX be an arbitrary topological space and let h : X → Eλ′×E′µ′ , H : X×

I → Bλ′ ×B′µ′ be maps such that(
(pλ′ × p′µ′)h, H0

)
≤ V λ′ × V µ′ . (4)

Let pr1λ′ : Eλ′ ×E′µ′ → Eλ′ and pr′1λ′ : Bλ′ ×B′µ′ → Bλ′ be projections on the first

factor and h′ = pr1λ′h : X → Eλ′ , H
′ = pr′1λ′H : X × I → Bλ′ . Since pλ′pr1λ′ =

pr′1λ′(pλ′ × p′µ′), from (4), it follows that

(pλ′pr1λ′h, pr
′
1λ′H0) ≤ pr′1λ′ ( V λ′ × V µ′) = V λ′ ,

i.e

(pλ′h
′, H ′0) ≤ V λ′ . (5)

Since λ′ is the lifting index and V λ′ is a lifting mesh for λ, Uλ, V λ with respect

to p, from (5), it follows that there is a homotopy H̃ ′ : X × I → Eλ such that

(qλλ′h
′, H̃ ′0) ≤ Uλ (6)

and

(pλH̃ ′, rλλ′H
′) ≤ V λ. (7)

Similarly, let pr2µ′ : Eλ′ ×E′µ′ → E′µ′ and pr′2µ′ : Bλ′ ×B′µ′ → B′µ′ be projections

on the second factor and h′′ = pr2µ′h : X → E′µ′ , H
′′ = pr′2µ′H : X × I → B′µ′ .

Then from (4), it follows that(
pr′2µ′(pλ′ × p′µ′)h, pr′2µ′H0

)
≤ pr′2µ′( V λ′ × V µ′) = V µ′ .

Since pr′2µ′(pλ′ × p′µ′) = p′µ′pr2µ′ we obtain that (p′µ′pr2µ′h, pr
′
2µ′H0) ≤ V µ′ , i.e.

(p′µ′h
′′, H ′′0 ) ≤ V µ′ . (8)

Since µ′ is the lifting index and V µ′ is the lifting mesh for µ, Uµ, V µ with respect

to p′, from (8), we conclude that there is a homotopy H̃ ′′ : X × I → E′µ such that
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(q′µµ′h
′′, H̃ ′′0 ) ≤ Uµ (9)

(p′µH̃
′′, r′µµ′H

′′) ≤ V µ. (10)

Let H̃ = H̃ ′4H̃ ′′ : X × I → Eλ × E′µ be a map given by

H̃(x, t) =
(
H̃ ′(x, t), H̃ ′′(x, t)

)
, ∀ (x, t) ∈ X × I. (11)

Note that for every x ∈ X holds

h(x) = (pr1λ′h(x), pr2µ′h(x)) = (h′(x), h′′(x)) = (h4h′′)(x). (12)

Similarly,

H(x, t) = (H ′4H ′′)(x, t) = (H ′(x, t), H ′′(x, t)), ∀ (x, t) ∈ X × I. (13)

Now, from (6) and (9), it follows that(
(qλλ′ × q′µµ′)h, H̃0

)
≤ Uλ × Uµ. (14)

Similarly, from (7) and (10), it follows that(
(pλ × p′µ)H̃, (rλλ′ × r′µµ′)H

)
≤ V λ × V µ. (15)

Since Uλ × Uµ < U and V λ × V µ < V , from (14) and (15), it follows that(
(qλλ′ × q′µµ′)h, H̃0

)
≤ U and

(
(pλ × p′µ)H̃, (rλλ′ × r′µµ′)H

)
≤ V ,

which means that p×p′ has the AHLP with respect to the class of all topological
spaces. �

Now we are able to state and to prove the main theorem of this paper.

Theorem 3. Let p : E → B, p′ : E′ → B′ be maps of compact Hausdorff spaces.
Then, p×p′ : E×E′ → B×B′ is a shape fibration if and only if p and p′ are shape
fibrations.

Proof. Necessity. Let p × p′ be a shape fibration. We show that p and p′ are
shape fibrations. Let (q, r,p) and (q′, r′,p′) be ANR level resolutions of p and p′,
respectively, with r : B → B and r′ : B′ → B′ in pro−Cpt. Such resolutions exist
by Proposition 2. Then, by Corollary 1, (q × q′, r × r′,p × p′) is an ANR level
resolution of p× p′. Since p× p′ is a shape fibration we may assume that the level
map p×p′ has the AHLP with respect to the class of all topological spaces. From
Theorem 2, it follows that p and p′ have the AHLP with respect to the class of
all topological spaces. This means that p and p′ are shape fibrations.

Sufficiency. Let p and p′ be shape fibrations. Then, there are ANR level res-
olutions (q, r,p) and (q′, r′,p′) of p and p′, respectively, such that p and p′ have
the AHLP with respect to the class of all topological spaces. By Corollary 1 and
Theorem 2 (q×q′, r×r′,p×p′) is an ANR level resolution of p×p′ such that p×p′

has the AHLP with respect to the class of all topological spaces. Consequently,
p× p′ is a shape fibration. �

From Theorem 3, by induction, it follows the following
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Corollary 2. Let pn : En → Bn be a map of a compact Hausdorff spaces for each
n = 1, 2, 3, . . . , and let

p =

∞∏
n=1

pn :

∞∏
n=1

En →
∞∏
n=1

Bn

be the product of maps pn. Then, p is a shape fibration if and only if pn is a shape
fibration for each n = 1, 2, . . . , . �

Question: Does Theorem 3 remains true if E and E′ are arbitrary topological
spaces (not necessary compact Hausdorff) ?

Its worth to be noticed that all the above preparation (all propositions and
theorems ) for the proof of Theorem 3 are designed so that the answer in the above
question will be affirmative if the statement of Proposition 3 remains true when E
and E′ are arbitrary topological spaces.

References

[1] Haxhibeqiri,Q., Shape fibrations for topological spaces, Glas. Mat. 17 (37) (1982), pp. 381-

401.

[2] Haxhibeqiri,Q., The exact sequence of a shape fibration, Glas. Mat. 18 (38) (1983), pp. 157
- 177.

[3] Haxhibeqiri,Q., Shape fibrations for compact Hausdorff spaces, Publications de l’Inst. de

Matém. 31(45) (1982), pp.33-49.
[4] Haxhibeqiri,Q., On the surjectivity of shape fibration, Matem. Vesnik, 37 (1985),pp.379- 384.
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