THE PRODUCT OF SHAPE FIBRATIONS

QAMIL HAXHIBEQIRI

(Communicated by Murat TOSUN)

Abstract

The following fact is shown: Let $p: E \rightarrow B, p^{\prime}: E^{\prime} \rightarrow B^{\prime}$ be maps of compact Hausdorff spaces. Then $p \times p^{\prime}: E \times E^{\prime} \rightarrow B \times B^{\prime}$ is a shape fibration if and only if p and p^{\prime} are shape fibrations. Also the following fact on resolutions is shown:

Let $\mathbf{q}=\left(q_{\lambda}\right): E \rightarrow \mathbf{E}=\left(E_{\lambda}, q_{\lambda \lambda^{\prime}}, \Lambda\right)$ and $\mathbf{r}=\left(r_{\mu}\right): B \rightarrow \mathbf{B}=\left(B_{\mu}, r_{\mu \mu^{\prime}}, M\right)$ are morphisms of pro-Cpt such that \mathbf{E} and \mathbf{B} are compact $A N R$-systems. Then $\mathbf{q} \times \mathbf{r}=\left(q_{\lambda} \times r_{\mu}\right): E \times B \rightarrow \mathbf{E} \times \mathbf{B}=\left(E_{\lambda} \times B_{\mu}, q_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}, \Lambda \times M\right)$ is a resolution of $E \times B$ if and only if \mathbf{q} and \mathbf{r} are resolutions of E and B, respectively. (Theorem 1).

1. Introduction

The notion of shape fibration for maps between metric compacta was introduced by S. Mardešić and T. B. Rushing in [5] and [9] In [5] S. Mardešić has extended this notion to maps of arbitrary topological spaces. The author has established some further properties of shape fibrations in the noncompact case (see e.g. [1],[2], [3],,[4]).

In this paper we give another proof of the following fact: if $p: E \rightarrow B, p^{\prime}: E^{\prime} \rightarrow$ B^{\prime} are maps, where $E, E^{\prime}, B, B^{\prime}$ are compact Hausdorff spaces, then $p \times p^{\prime}: E \times E^{\prime} \rightarrow$ $B \times B^{\prime}$ is a shape fibration if and only if p and p^{\prime} are shape fibrations.

Our proof is designed so that if Proposition 3 bellow holds for some conditions (weaker than compactness) on space E then the above statement on product of shape fibrations remains true also in the case when E, E^{\prime} satisfy such conditions. Thus, answer in the

Question: Which conditions (weaker than compactness) must satisfy spaces E, E^{\prime} so that for compact Hausdorff spaces B, B^{\prime} holds true: $p \times p^{\prime}: E \times E^{\prime} \rightarrow B \times B^{\prime}$ is shape fibration if and only if $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B^{\prime}$ are shape fibrations? is equivalent to the answer in the following

[^0]Question: Which conditions (weaker than compactness) must satisfy space E so that for compact Hausdorff spaces B holds true the Proposition 3 bellow?

2. Preliminaries

By a map $p: E \rightarrow B$ we mean a continuous function between topological spaces. If $p, q: E \rightarrow B$ are maps and U is a covering of B we say that p and q are \mathcal{U} - near maps, and we $\operatorname{write}(p, q) \leq \mathcal{U}$, provided for each $x \in E$ there is a $U \in \mathcal{U}$ such that $p(x), q(x) \in U$.

If \mathcal{U} and \mathcal{V} are two coverings of a space E we say that \mathcal{U} refines \mathcal{V}, and we write $\mathcal{U} \succcurlyeq V$, if for every $U \in \mathcal{U}$ there is a $V \in \mathcal{V}$ such that $U \subseteq V$.

If U is a covering of a space E and $A \subseteq E$ then a star of A with respect to U is the set $S t(A, U)=\bigcup\{U \in U: U \cap A \neq \emptyset\}$.

A normal covering of a space E is an open covering U which admits a locally finite partition of unity subordinated to U. It is well known that every open covering of a paracompact space is normal (see e.g [10, Corollary 1,p.325]). Consequently, every open covering of a compact space (or polyhedron, ANR-space) is normal.

By pro - Top we denote the procategory of topological spaces whose objects are inverse systems of topological spaces and whose morphisms are equivalent classes of maps of such systems; pro - Cpt denotes the procategory of compact Hausdorff spaces whose objects are inverse systems of compact Hausdoorff spaces and whose morphisms are equivalent classes of maps of such systems. (More on procategories see [7] or [10]).

Watanabe in [14] (see also [15, Theorem (3.3)] or [6, Theorem 1]) has proved the following fact:

Proposition 1. A morphism $\mathbf{q}=\left(q_{\lambda}\right): E \rightarrow \mathbf{E}=\left(E_{\lambda}, q_{\lambda \lambda^{\prime}}, \Lambda\right)$ of pro-Top is a resolution of a topological space E if and only if \mathbf{q} satisfies the following two conditions:
(B1) For every $\lambda \in \Lambda$ and every normal covering U_{λ} of E_{λ} there is a $\lambda^{\prime} \geq \lambda$ such that $q_{\lambda \lambda^{\prime}}\left(E_{\lambda^{\prime}}\right) \subseteq S t\left(q_{\lambda}(E), U_{\lambda}\right)$.
(B2) For every normal covering U of E there is a $\lambda \in \Lambda$ and a normal covering U_{λ} of E_{λ} such that $q_{\lambda}^{-1}\left(U_{\lambda}\right) \succcurlyeq U$.

A level resolution of a map $p: E \rightarrow B$ is a triple ($\mathbf{q}, \mathbf{r}, \mathbf{p}$) consisting of resolutions $\mathbf{q}=\left(q_{\lambda}\right): E \rightarrow \mathbf{E}=\left(E_{\lambda}, q_{\lambda \lambda^{\prime}}, \Lambda\right), \mathbf{r}=\left(r_{\lambda}\right): B \rightarrow \mathbf{B}=\left(B_{\lambda}, r_{\lambda \lambda^{\prime}}, \Lambda\right)$ of spaces E and B, respectively, and of a level map of inverse systems $\mathbf{p}=\left(p_{\lambda}\right): \mathbf{E} \rightarrow \mathbf{B}$ such that $\mathbf{p q}=\mathbf{r} p$, i.e. $p_{\lambda} q_{\lambda}=r_{\lambda} p$ for every $\lambda \in \Lambda$. If all $E_{\lambda}^{\prime} \mathrm{s}$ and $B_{\lambda}^{\prime} \mathrm{s}$ are polyhedrons (ANR's) then $\mathbf{q}: E \rightarrow \mathbf{E}, \mathbf{r}: B \rightarrow \mathbf{B}$ and ($\mathbf{q}, \mathbf{r}, \mathbf{p}$) are called polyhedral (ANR)resolutions of E, B and p, respectively.

It is a well known fact that every topological space and every map of topological spaces admit a polyhedral (ANR) resolutions ([5, Theorems 10, 11,12,13]). Without loss of generality we can assume that these resolutions are level resolutions (see [1, Lemma 4.6 and Remark 4.7]). Also it is known that compact spaces and maps of such spaces admit compact polyhedral (ANR) level resolutions (see the proof of Theorem 3.2 and Corollary 3.5 in [3]).

Since every open covering of a compact Hausdorff space is a normal covering and every open covering of such a space admits a finite subcovering which refines it, if in the proof of Theorem 11 of [5] we let Γ be the set of all finite open coverings of B, we obtain the following result

Proposition 2. Every map $p: E \rightarrow B$ of topological space E to a compact Hausdorf space B admits a polyhedral (ANR) resolution ($\mathbf{q}, \mathbf{r}, \mathbf{p}$) with $\mathbf{r}: B \rightarrow \mathbf{B}$ in pro-Cpt.

By Lemma 4.6 and Remark 4.7 of [1] in the above Proposition, without loss of generality, we can assume that such a resolution of a map p is a level resolution.

For further information on resolutions of spaces and maps see [5], [6], [10], [1], [2], [3], $[11],[14],[15]$. A level map $\mathbf{p}: \mathbf{E} \rightarrow \mathbf{B}$ is said to have the approximate homotopy lifting property (abbreviated the $A H L P$) with respect to a class of spaces X provided for each $\lambda \in \Lambda$ and for any two normal coverings U, V of E_{λ} and B_{λ} respectively, there is a $\lambda^{\prime} \geq \lambda$ and there is a normal covering V^{\prime} of $B_{\lambda^{\prime}}$ with the following property: whenever one has maps $h: X \rightarrow E_{\lambda^{\prime}}$ and $H: X \times I \rightarrow B_{\lambda^{\prime}}, X \in X, I=[0,1]$, such that $\left(p_{\lambda^{\prime}} h, H_{0}\right) \leq V^{\prime}$ then there is a homotopy $\widetilde{H}: X \times I \rightarrow E_{\lambda}$ such that

$$
\left(q_{\lambda \lambda^{\prime}} h, \widetilde{H}_{0}\right) \leq U \quad \text { and } \quad\left(p_{\lambda} \widetilde{H}, r_{\lambda \lambda^{\prime}} H\right) \leq V
$$

λ^{\prime} and V^{\prime} are called a lifting index and lifting mesh, respectively, for λ, U, and V with respect to $\mathbf{p}([2$, Definition 4.2]).

A map of topological spaces $p: E \rightarrow B$ is called a shape fibration provided there exists an $A N R$ level resolution ($\mathbf{q}, \mathbf{r}, \mathbf{p}$) of p such that the level map $\mathbf{p}: \mathbf{E} \rightarrow \mathbf{B}$ has the $A H L P$ with respect to the class of all topological spaces.
(In original definition of shape fibration given in [5] for $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ is required to be an approximate polyhedral resolution. But, since every $A N R$ is an approximative polyhedron, without loss of generality we can require for $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ to be an $A N R$ resolution. Also, by [1] we can assume for ($\mathbf{q}, \mathbf{r}, \mathbf{p}$) to be a level resolution).

From [5], Theorem 4, it follows that whenever ($\mathbf{q}, \mathbf{r}, \mathbf{p}$) is an $A N R$ resolution of a shape fibration $p: E \rightarrow B$ then \mathbf{p} has the $A H L P$ with respect to the class of all topological spaces.

Since we will deal with paracompact (ANR) spaces, all open coverings are normal.

3. Some auxiliary facts

In this section we will establish some facts which we will need in the sequel. From [12, Lemma 2, p.375], immediately it follows the following

Proposition 3. Let E and B be compact Hausdorff spaces. Then for every normal covering U of $E \times B$ there are a normal covering V of E and an open covering W of B such that $V \times W=\{V \times W: V \in V, W \in W\}$ is a normal covering of $E \times B$ which refines U.

Proof. By Lemma 2 of [12] there is a normal covering V of E such that every $V \in V$ admits an open (finite) covering W_{V} of B such that the stacked covering $\left\{V \times W_{V}: V \in V\right\}$ refines U. Since E is compact, without loss of generality we can assume that V is a finite covering (otherwise we replace V with finite covering which refines it). Let $V=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ and $W_{V_{i}}=\left\{W_{1}, W_{2}, \ldots, W_{n_{i}}\right\}, i \in$ $\{1,2, \ldots, n\}$. Now we put

$$
W=W_{V_{1}} \wedge W_{V_{2}} \wedge \cdots \wedge W_{V_{n}}=\left\{\bigcap_{i=1}^{n} W_{i} \mid\left(W_{1}, W_{2}, \ldots W_{n}\right) \in \prod_{i=1}^{n} W_{V_{i}}\right\}
$$

W is a normal (open) covering of B such that $V \times W \succcurlyeq U$. Indeed, since $V_{i} \times W_{V_{i}} \succcurlyeq U$ for $i \in\{1,2, \ldots, n\}$ we conclude that for every $V_{i} \in V$ and every $\bigcap_{i=1}^{n} W_{i} \in W$ there is an $U \in U$ such that $V_{i} \times \bigcap_{i=1}^{n} W_{i} \subseteq V_{i} \times W_{i} \subseteq U$.

The following propositions are easily proved:
Proposition 4. If U, U^{\prime} are coverings of $E, \quad V, V^{\prime}$ coverings of B and $U \succcurlyeq$ $U^{\prime}, \quad V \succcurlyeq V^{\prime}$ then $U \times V \succcurlyeq U^{\prime} \times V^{\prime}$.

Proposition 5. Let U be a covering of E, V a covering of $B, P \subseteq E$ and $Q \subseteq B$. Then $S t(P, U) \times S t(Q, V)=S t(P \times Q, U \times V)$.

Proposition 6. Let U and V be coverings of a topological space E and $P \subseteq E$. If $U \succcurlyeq V$ then $S t(P, U) \subseteq S t(P, V)$.

Theorem 1. Let $\mathbf{q}=\left(q_{\lambda}\right): E \rightarrow \mathbf{E}=\left(E_{\lambda}, q_{\lambda \lambda^{\prime}}, \Lambda\right)$ and $\mathbf{r}=\left(r_{\mu}\right): B \rightarrow \mathbf{B}=$ $\left(B_{\mu}, r_{\mu \mu^{\prime}}, M\right)$ are morphisms of pro-Cpt such that \mathbf{E} and \mathbf{B} are compact $A N R$ systems. Then $\mathbf{q} \times \mathbf{r}=\left(q_{\lambda} \times r_{\mu}\right): E \times B \rightarrow \mathbf{E} \times \mathbf{B}=\left(E_{\lambda} \times B_{\mu}, q_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}, \Lambda \times M\right)$ is a resolution of $E \times B$ if and only if \mathbf{q} and \mathbf{r} are resolutions of E and B, respectively.

Proof. First of all we note that the index set $\Lambda \times M$ is ordered in this way:

$$
(\lambda, \mu) \leq\left(\lambda^{\prime}, \mu^{\prime}\right) \Longleftrightarrow \lambda \leq \lambda^{\prime} \quad \text { and } \quad \mu \leq \mu^{\prime}
$$

Suppose that $\mathbf{q} \times \mathbf{r}$ is a resolution and we show that \mathbf{q} and \mathbf{r} are resolutions. By Proposition 1, it suffices to show that \mathbf{q} and \mathbf{r} satisfy conditions ($B 1$) and ($B 2$).

Condition (B1) for $\mathbf{q}: E \rightarrow \mathbf{E}$. Let $\lambda \in \Lambda$ and let U_{λ} be an open covering of E_{λ}. Let $p r_{1 \lambda}: E_{\lambda} \times B_{\mu} \rightarrow E_{\lambda}$ be the projection on the first factor. Then $p r_{1 \lambda}^{-1}\left(U_{\lambda}\right)=$ $\left\{U \times B_{\mu}: U \in U_{\lambda}\right\}=U_{\lambda} \times\left\{B_{\mu}\right\}$ is an open covering of $E_{\lambda} \times B_{\mu}$. By (B1) for $\mathbf{q} \times \mathbf{r}$ there is a $\left(\lambda^{\prime}, \mu^{\prime}\right) \geq(\lambda, \mu)$ such that

$$
\left(q_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}\right)\left(E_{\lambda^{\prime}} \times B_{\mu^{\prime}}\right) \subseteq S t\left(\left(q_{\lambda} \times r_{\mu}\right)(E \times B), U_{\lambda} \times\left\{B_{\mu}\right\}\right)
$$

i.e
$q_{\lambda \lambda^{\prime}}\left(E_{\lambda^{\prime}}\right) \times r_{\mu \mu^{\prime}}\left(B_{\mu^{\prime}}\right) \subseteq \operatorname{St}\left(q_{\lambda}(E), U_{\lambda}\right) \times \operatorname{St}\left(r_{\mu}(B),\left\{B_{\mu}\right\}\right)=S t\left(q_{\lambda}(E), U_{\lambda}\right) \times B_{\mu}$. Consequently,

$$
q_{\lambda \lambda^{\prime}}\left(E_{\lambda^{\prime}}\right) \subseteq S t\left(q_{\lambda}(E), U_{\lambda}\right)
$$

and, thus, \mathbf{q} satisfies $(B 1)$.
Similarly it is shown that $\mathbf{r}: B \rightarrow \mathbf{B}$ satisfies $(B 1)$.
Condition (B2) for $\mathbf{q}: E \rightarrow \mathbf{E}$. Let U be a normal covering of E and $p r_{1}: E \times$ $B \rightarrow E$ the projection on the first factor. Then $\operatorname{pr}_{1}^{-1}(U)=\{U \times B: U \in U\}=$ $U \times\{B\}$ is a normal covering of $E \times B$. By (B2) for $\mathbf{q} \times \mathbf{r}$ there are a $(\lambda, \mu) \in \Lambda \times M$ and an open covering (normal) U^{\prime} of $E_{\lambda} \times B_{\mu}$ such that $\left(q_{\lambda} \times r_{\mu}\right)^{-1}\left(U^{\prime}\right) \succcurlyeq$ $U \times\{B\}$. Since $p r_{1 \lambda}: E_{\lambda} \times B_{\mu} \rightarrow E_{\lambda}$ is an open surjective map we conclude that $U_{\lambda}=p r_{1 \lambda}\left(U^{\prime}\right)=\left\{p r_{1 \lambda}\left(U^{\prime}\right): U^{\prime} \in U^{\prime}\right\}$ is an open covering of E_{λ}. Since $q_{\lambda} p r_{1}=p r_{1 \lambda}\left(q_{\lambda} \times r_{\mu}\right)$ we have that

$$
\begin{aligned}
p r_{1}^{-1} q_{\lambda}^{-1}\left(U_{\lambda}\right)=\left(q_{\lambda} \times r_{\mu}\right)^{-1} p r_{1 \lambda}^{-1}\left(U_{\lambda}\right) & =\left(q_{\lambda} \times r_{\mu}\right)^{-1} p r_{1 \lambda}^{-1} p r_{1 \lambda}\left(U^{\prime}\right) \succcurlyeq \\
& \succcurlyeq\left(q_{\lambda} \times r_{\mu}\right)^{-1}\left(U^{\prime}\right) \succcurlyeq p r_{1}^{-1}(U),
\end{aligned}
$$

from which it follows that

$$
p r_{1} p r_{1}^{-1} q_{\lambda}^{-1}\left(U_{\lambda}\right) \succcurlyeq p r_{1} p r_{1}^{-1}(U)
$$

Since $p r_{1}$ is a surjective map we conclude that $q_{\lambda}^{-1}\left(U_{\lambda}\right) \succcurlyeq U$, which means that \mathbf{q} satisfies ($B 2$).

Similarly it is shown that $\mathbf{r}: B \rightarrow \mathbf{B}$ satisfies $(B 2)$.
Conversely, suppose that \mathbf{q} and \mathbf{r} are resolutions and show that $\mathbf{q} \times \mathbf{r}: E \times B \rightarrow$ $\mathbf{E} \times \mathbf{B}$ is a resolution. By Proposition 1, it is sufficient to show that $\mathbf{q} \times \mathbf{r}$ satisfies conditions ($B 1$) and ($B 2$).

Condition (B1) for $\mathbf{q} \times \mathbf{r}$. Let $(\lambda, \mu) \in \Lambda \times M$ and let W be any open (normal) covering of $E_{\lambda} \times B_{\mu}$. By Proposition 3, there are open coverings U of E_{λ} and V of B_{μ} such that $U \times V \succcurlyeq W$. By (B1) for \mathbf{q} and \mathbf{r} there are indices $\lambda^{\prime} \geq \lambda$ and $\mu \geq \mu^{\prime}$ such that $q_{\lambda \lambda^{\prime}}\left(E_{\lambda^{\prime}}\right) \subseteq \operatorname{St}\left(q_{\lambda}(E), U\right)$ and $r_{\mu \mu^{\prime}}\left(B_{\mu^{\prime}}\right) \subseteq S t\left(r_{\mu}(B), V\right)$. Then $\left(\lambda^{\prime}, \mu^{\prime}\right) \geq(\lambda, \mu)$ and, by Propositions 4 and 5 , we obtain that
$\left(q_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}\right)\left(E_{\lambda^{\prime}} \times B_{\mu^{\prime}}\right)=q_{\lambda \lambda^{\prime}}\left(E_{\lambda^{\prime}}\right) \times r_{\mu \mu^{\prime}}\left(B_{\mu^{\prime}}\right) \subseteq S t\left(q_{\lambda}(E), U\right) \times S t\left(r_{\mu}(B), V\right)=$ $=S t\left(q_{\lambda}(E) \times r_{\mu}(B), U \times V\right)=S t\left(\left(q_{\lambda} \times r_{\mu}\right)(E \times B), U \times V\right) \subseteq S t\left(\left(q_{\lambda} \times r_{\mu}\right)(E \times B), W\right)$, which means that $\mathbf{q} \times \mathbf{r}$ satisfies $(B 1)$.

Condition (B2) for $\mathbf{q} \times \mathbf{r}$. Let W be a normal covering of $E \times B$. By Proposition 3 there are a normal covering U of E and an open covering V of B such that $U \times V \succcurlyeq W$. Since $\mathbf{q}: E \rightarrow \mathbf{E}$ and $\mathbf{r}: B \rightarrow \mathbf{B}$, as resolutions, have property $(B 2)$ there are indices $\lambda \in \Lambda, \mu \in M$ and open coverings U_{λ} of E_{λ} and V_{μ} of B_{μ} such that $q_{\lambda}^{-1}\left(U_{\lambda}\right) \succcurlyeq U$ and $r_{\mu}^{-1}\left(V_{\mu}\right) \succcurlyeq V$. Then $U_{\lambda} \times V_{\mu}$ is an open covering of $E_{\lambda} \times B_{\mu}$ and, by Proposition 4 , holds

$$
\left(q_{\lambda} \times r_{\mu}\right)^{-1}\left(U_{\lambda} \times V_{\mu}\right)=q_{\lambda}^{-1}\left(U_{\lambda}\right) \times r_{\mu}^{-1}\left(V_{\mu}\right) \succcurlyeq U \times V \succcurlyeq W,
$$

which means that $\mathbf{q} \times \mathbf{r}$ satisfies $(B 2)$.
Corollary 1. Let q: $E \rightarrow \mathbf{E}=\left(E_{\lambda}, q_{\lambda \lambda^{\prime}}, \Lambda\right), \mathbf{q}^{\prime}: E^{\prime} \rightarrow \mathbf{E}^{\prime}=\left(E_{\mu}^{\prime}, q_{\mu \mu^{\prime}}^{\prime}, M\right), \mathbf{p}=$ $\left(p_{\lambda}\right): \mathbf{E} \rightarrow \mathbf{B}, \mathbf{r}: B \rightarrow \mathbf{B}=\left(B_{\lambda}, r_{\lambda \lambda^{\prime}}, \Lambda\right), \mathbf{r}^{\prime}: B^{\prime} \rightarrow \mathbf{B}^{\prime}=\left(B_{\mu}^{\prime}, r_{\mu \mu^{\prime}}^{\prime}, M\right), \mathbf{p}^{\prime}=$ $\left(p_{\mu}^{\prime}\right): \mathbf{E}^{\prime} \rightarrow \mathbf{B}^{\prime}$ be morphisms of pro $-\mathbf{C p t}$, such that $\mathbf{E}, \mathbf{E}^{\prime}, \mathbf{B}, \mathbf{B}^{\prime}$ are compact $A N R$-systems. Then $\left(\mathbf{q} \times \mathbf{q}^{\prime}, \mathbf{r} \times \mathbf{r}^{\prime}, \mathbf{p} \times \mathbf{p}^{\prime}\right)$ is a level resolution of $p \times p^{\prime}: E \times E^{\prime} \rightarrow$ $B \times B^{\prime}$ if and only if $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ and $\left(\mathbf{q}^{\prime}, \mathbf{r}^{\prime}, \mathbf{p}^{\prime}\right)$ are resolutions of $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B^{\prime}$, respectively.

Proof. Since $\mathbf{p q}=\mathbf{r} p$ and $\mathbf{p}^{\prime} \mathbf{q}^{\prime}=\mathbf{r}^{\prime} p^{\prime}$ if and only if $\left(\mathbf{p} \times \mathbf{p}^{\prime}\right)\left(\mathbf{q} \times \mathbf{q}^{\prime}\right)=$ $\left(\mathbf{r} \times \mathbf{r}^{\prime}\right)\left(p \times p^{\prime}\right)$, the assertion of Corollary 1, it follows immediately from Theorem 1.

4. The main results

Theorem 2. Let $E, E^{\prime}, B, B^{\prime}$ be compact Hausdorff spaces, $\left(\mathbf{q} \times \mathbf{q}^{\prime}, \mathbf{r} \times \mathbf{r}^{\prime}, \mathbf{p} \times \mathbf{p}^{\prime}\right)$ be a level compact $A N R$ (polyhedral)-resolution of $p \times p^{\prime}: E \times E^{\prime} \rightarrow B \times B^{\prime}$ such that $(\mathbf{q}, \mathbf{r}, \mathbf{p}),\left(\mathbf{q}^{\prime}, \mathbf{r}^{\prime}, \mathbf{p}^{\prime}\right)$ are compact $A N R$ (polyhedral)-resolutions of $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B^{\prime}$, respectively. Then, $\mathbf{p} \times \mathbf{p}^{\prime}: \mathbf{E} \times \mathbf{E}^{\prime} \rightarrow \mathbf{B} \times \mathbf{B}^{\prime}$ has the AHLP with respect to the class of all topological spaces if and only if $\mathbf{p}: \mathbf{E} \rightarrow \mathbf{B}$ and $\mathbf{p}^{\prime}: \mathbf{E}^{\prime} \rightarrow \mathbf{B}^{\prime}$ have the $A H L P$ with respect to the same class of spaces.

Proof. Necessity. Let $\mathbf{p} \times \mathbf{p}^{\prime}: \mathbf{E} \times \mathbf{E}^{\prime}=\left(E_{\lambda} \times E_{\mu}^{\prime}, q_{\lambda \lambda^{\prime}} \times q_{\mu \mu^{\prime}}^{\prime}, \Lambda \times M\right) \rightarrow$ $\left(B_{\lambda} \times B_{\mu}^{\prime}, r_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}^{\prime}, \Lambda \times M\right)=\mathbf{B} \times \mathbf{B}^{\prime}$ has the $A H L P$ with respect to the class of all topological spaces. We show that $\mathbf{p}: \mathbf{E} \rightarrow \mathbf{B}$ has the $A H L P$ with respect to that class of spaces.

Let $\lambda \in \Lambda$ and let $U_{\lambda}, \quad V_{\lambda}$ be open coverings of E_{λ} and B_{λ}. Let $(\lambda, \mu) \in \Lambda \times M$ be any index with its first coordinate λ and let $p r_{1 \lambda}: E_{\lambda} \times E_{\mu}^{\prime} \rightarrow E_{\lambda}$ and $p r_{1 \lambda}^{\prime}: B_{\lambda} \times$ $B_{\mu}^{\prime} \rightarrow B_{\lambda}$ be projections on the first factor. Then $p r_{1 \lambda}^{-1}\left(U_{\lambda}\right)=\left\{U \times E_{\mu}^{\prime}: U \in U_{\lambda}\right\}$ and $p r_{1 \lambda}^{\prime-1}\left(V_{\lambda}\right)=\left\{V \times B_{\mu}^{\prime}: \operatorname{Vin} V_{\lambda}\right\}$ are open coverings of $E_{\lambda} \times E_{\mu}^{\prime}$ and $B_{\lambda} \times B_{\mu}^{\prime}$,
respectively. Let $\left(\lambda^{\prime}, \mu^{\prime}\right) \in \Lambda \times M,\left(\lambda^{\prime}, \mu^{\prime}\right) \geq(\lambda, \mu)$, be a lifting index and let an open covering V^{\prime} of $B_{\lambda^{\prime}} \times B_{\mu^{\prime}}^{\prime}$ be a lifting mesh for $(\lambda, \mu), p r_{1 \lambda}^{-1}\left(U_{\lambda}\right)$ and $p r_{1 \lambda}^{\prime-1}\left(V_{\lambda}\right)$ with respect to $\mathbf{p} \times \mathbf{p}^{\prime}$. We claim that $\lambda^{\prime} \geq \lambda$ is a lifting index and that open covering $p r_{1 \lambda^{\prime}}^{\prime}\left(V^{\prime}\right)$ of $B_{\lambda^{\prime}}$ is a lifting mesh for $\lambda, U_{\lambda}, \quad V_{\lambda}$ with respect to \mathbf{p}.

Indeed, let X be arbitrary topological space and $h: X \rightarrow E_{\lambda^{\prime}}, H: X \times I \rightarrow B_{\lambda^{\prime}}$ be maps such that

$$
\begin{equation*}
\left(p_{\lambda^{\prime}} h, H_{0}\right) \leq p r_{1 \lambda^{\prime}}^{\prime}\left(V^{\prime}\right) \tag{1}
\end{equation*}
$$

Let $e=\left(e_{\lambda^{\prime}}, e_{\mu^{\prime}}^{\prime}\right) \in E_{\lambda^{\prime}} \times E_{\mu^{\prime}}^{\prime}$ be a fixed point and let $b=\left(b_{\lambda^{\prime}}, b_{\mu^{\prime}}^{\prime}\right) \in B_{\lambda^{\prime}} \times B_{\mu^{\prime}}^{\prime}$ be such a point that $b_{\lambda^{\prime}}=p_{\lambda^{\prime}}\left(e_{\lambda^{\prime}}\right), b_{\mu^{\prime}}^{\prime}=p_{\mu^{\prime}}^{\prime}\left(e_{\mu^{\prime}}^{\prime}\right)$. Then $\left(p_{\lambda^{\prime}} \times p_{\mu^{\prime}}^{\prime}\right)(e)=b$. Now we put $E_{\lambda^{\prime}}^{*}=E_{\lambda^{\prime}} \times\left\{e_{\mu^{\prime}}^{\prime}\right\}$ and $B_{\lambda^{\prime}}^{*}=B_{\lambda^{\prime}} \times\left\{b_{\mu^{\prime}}^{\prime}\right\}$. Let $s_{\lambda^{\prime}}: E_{\lambda^{\prime}} \rightarrow E_{\lambda^{\prime}}^{*}$ and $s_{\lambda^{\prime}}^{\prime}: B_{\lambda^{\prime}} \rightarrow B_{\lambda^{\prime}}^{*}$ be maps given by $s_{\lambda^{\prime}}(x)=\left(x, e_{\mu^{\prime}}^{\prime}\right)$ for every $x \in E_{\lambda^{\prime}}$ and $s_{\lambda^{\prime}}^{\prime}(x)=\left(x, b_{\mu^{\prime}}^{\prime}\right)$ for every $x \in B_{\lambda^{\prime}} . s_{\lambda^{\prime}}$ and $s_{\lambda^{\prime}}^{\prime}$ are homeomorphisms such that

$$
\begin{equation*}
s_{\lambda^{\prime}}^{-1}=\left.p r_{1 \lambda^{\prime}}\right|_{E_{\lambda^{\prime}}^{*}}, \quad s_{\lambda^{\prime}}^{\prime-1}=\left.p r_{1 \lambda^{\prime}}^{\prime}\right|_{B_{\lambda^{\prime}}^{*}} . \tag{2}
\end{equation*}
$$

It can easily be shown that

$$
\begin{equation*}
\left(p_{\lambda^{\prime}} \times p_{\mu^{\prime}}^{\prime}\right) s_{\lambda^{\prime}}=s_{\lambda^{\prime}}^{\prime} p_{\lambda^{\prime}} . \tag{3}
\end{equation*}
$$

From (1), it follows that for each $x \in X$ there is a $V \in V^{\prime}$ such that $p_{\lambda^{\prime}} h(x), H_{0}(x) \in$ $p r_{1 \lambda^{\prime}}^{\prime}(V)$, and thus,

$$
p r_{1 \lambda^{\prime}}^{\prime-1} p_{\lambda^{\prime}} h(x), p r_{1 \lambda^{\prime}}^{\prime-1} H_{0}(x) \subseteq V .
$$

From this, by (2), it follows that

$$
s_{\lambda^{\prime}}^{\prime} p_{\lambda^{\prime}} h(x), s_{\lambda^{\prime}}^{\prime} H_{0}(x) \in V \cap B_{\lambda^{\prime}}^{*} \subseteq V .
$$

Now, by (3), we have that

$$
\left(p_{\lambda^{\prime}} \times p_{\mu^{\prime}}^{\prime}\right) s_{\lambda^{\prime}} h(x), s_{\lambda^{\prime}}^{\prime} H_{0}(x) \in V \quad \text { i.e. } \quad\left(\left(p_{\lambda^{\prime}} \times p_{\mu^{\prime}}^{\prime}\right) s_{\lambda^{\prime}} h, s_{\lambda^{\prime}}^{\prime} H_{0}\right) \leq V^{\prime}
$$

Since $\left(\lambda^{\prime}, \mu^{\prime}\right)$ is the lifting index and V^{\prime} is the lifting mesh for $(\lambda, \mu), p r_{1 \lambda}^{-1}\left(U_{\lambda}\right), p r_{1 \lambda}^{\prime-1}\left(V_{\lambda}\right)$ with respect to $\mathbf{p} \times \mathbf{p}^{\prime}$, we conclude that there exists a map $\widetilde{H}: X \times I \rightarrow E_{\lambda} \times E_{\mu}^{\prime}$ such that

$$
\left(\left(q_{\lambda \lambda^{\prime}} \times q_{\mu \mu^{\prime}}^{\prime}\right) s_{\lambda^{\prime}} h, \widetilde{H}_{0}\right) \leq p r_{1 \lambda}^{-1}\left(U_{\lambda}\right)
$$

and

$$
\left(\left(p_{\lambda} \times p_{\mu}^{\prime}\right) \widetilde{H},\left(r_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}^{\prime}\right) s_{\lambda^{\prime}}^{\prime} H\right) \leq p r_{1 \lambda}^{\prime-1}\left(V_{\lambda}\right)
$$

Then we have

$$
\left(p r_{1 \lambda}\left(q_{\lambda \lambda^{\prime}} \times q_{\mu \mu^{\prime}}^{\prime}\right) s_{\lambda^{\prime}} h, p r_{1 \lambda} \widetilde{H}_{0}\right) \leq U_{\lambda}
$$

and

$$
\left(p r_{1 \lambda}^{\prime}\left(p_{\lambda} \times p_{\mu}^{\prime}\right) \widetilde{H}, p r_{1 \lambda}^{\prime}\left(r_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}^{\prime}\right) s_{\lambda^{\prime}}^{\prime} H\right) \leq V_{\lambda}
$$

Since

$$
\begin{gathered}
p r_{1 \lambda}\left(q_{\lambda \lambda^{\prime}} \times q_{\mu \mu^{\prime}}^{\prime}\right)=q_{\lambda \lambda^{\prime}} p r_{1 \lambda^{\prime}} \\
p r_{1 \lambda}^{\prime}\left(p_{\lambda} \times p_{\mu}^{\prime}\right)=p_{\lambda} p r_{1 \lambda} \\
p r_{1 \lambda}^{\prime}\left(r_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}^{\prime}\right)=r_{\lambda \lambda^{\prime}} p r_{1 \lambda^{\prime}}^{\prime}
\end{gathered}
$$

we conclude that

$$
\left(q_{\lambda \lambda^{\prime}} p r_{1 \lambda^{\prime}} s_{\lambda^{\prime}} h, p r_{1 \lambda} \widetilde{H}_{0}\right) \leq U_{\lambda}
$$

and

$$
\left(p_{\lambda} p r_{1 \lambda} \widetilde{H}, r_{\lambda \lambda^{\prime}} p r_{1 \lambda^{\prime}}^{\prime} s_{\lambda^{\prime}}^{\prime} H\right) \leq V_{\lambda}
$$

Now, since $p r_{1 \lambda^{\prime}} s_{\lambda^{\prime}}=1_{E_{\lambda^{\prime}}}$ and $p r_{1 \lambda^{\prime}}^{\prime} s_{\lambda^{\prime}}^{\prime}=1_{B_{\lambda^{\prime}}}$, we obtain that

$$
\left(q_{\lambda \lambda^{\prime}} h, p r_{1 \lambda} \widetilde{H}_{0}\right) \leq U \quad \text { and } \quad\left(p_{\lambda} p r_{1 \lambda} \tilde{H}, r_{\lambda \lambda^{\prime}} H\right) \leq V
$$

which means that \mathbf{p} has the $A H L P$ with respect to the class of all topological spaces.

Similarly it is shown that \mathbf{p}^{\prime} has the $A H L P$.
Sufficiency. Let \mathbf{p} and \mathbf{p}^{\prime} have the $A H L P$ with respect to the class of all topological spaces. We show that $\mathbf{p} \times \mathbf{p}^{\prime}$ has the $A H L P$ with respect to the same class.

Let $(\lambda, \mu) \in \Lambda \times M$ and $U, \quad V$ be open coverings of $E_{\lambda} \times E_{\mu}^{\prime}$ and $B_{\lambda} \times B_{\mu}^{\prime}$, respectively. By Proposition 3 there are open coverings $U_{\lambda}, U_{\mu}, V_{\lambda}, V_{\mu}$, of $E_{\lambda}, E_{\mu}^{\prime}, B_{\lambda}$ and B_{μ}^{\prime}, respectively, such that $U_{\lambda} \times U_{\mu} \succcurlyeq U$ and $V_{\lambda} \times V_{\mu} \succcurlyeq V$.

Let $\lambda^{\prime} \geq \lambda$ be a lifting index and let an open covering $V_{\lambda^{\prime}}$ of $B_{\lambda^{\prime}}$ be a lifting mesh for $\lambda, U_{\lambda}, V_{\lambda}$ with respect to \mathbf{p}. Similarly, let $\mu \geq \mu^{\prime}$ be a lifting index and let an open covering $V_{\mu^{\prime}}$ of $B_{\mu^{\prime}}^{\prime}$ be a lifting mesh for μ, U_{μ}, V_{μ} with respect to \mathbf{p}^{\prime}.

We claim that $\left(\lambda^{\prime}, \mu^{\prime}\right) \geq(\lambda, \mu)$ is a lifting index and an open covering $V_{\lambda^{\prime}} \times$ $V_{\mu^{\prime}}=\left\{U \times V: U \in V_{\lambda^{\prime}}, V \in V_{\mu^{\prime}}\right\}$ of $B_{\lambda^{\prime}} \times B_{\mu^{\prime}}^{\prime}$ is a lifting mesh for $(\lambda, \mu), U, V$ with respect to $\mathbf{p} \times \mathbf{p}^{\prime}$.

Indeed, let X be an arbitrary topological space and let $h: X \rightarrow E_{\lambda^{\prime}} \times E_{\mu^{\prime}}^{\prime}, H: X \times$ $I \rightarrow B_{\lambda^{\prime}} \times B_{\mu^{\prime}}^{\prime}$ be maps such that

$$
\begin{equation*}
\left(\left(p_{\lambda^{\prime}} \times p_{\mu^{\prime}}^{\prime}\right) h, H_{0}\right) \leq V_{\lambda^{\prime}} \times V_{\mu^{\prime}} . \tag{4}
\end{equation*}
$$

Let $p r_{1 \lambda^{\prime}}: E_{\lambda^{\prime}} \times E_{\mu^{\prime}}^{\prime} \rightarrow E_{\lambda^{\prime}}$ and $p r_{1 \lambda^{\prime}}^{\prime}: B_{\lambda^{\prime}} \times B_{\mu^{\prime}}^{\prime} \rightarrow B_{\lambda^{\prime}}$ be projections on the first factor and $h^{\prime}=p r_{1 \lambda^{\prime}} h: X \rightarrow E_{\lambda^{\prime}}, H^{\prime}=p r_{1 \lambda^{\prime}}^{\prime} H: X \times I \rightarrow B_{\lambda^{\prime}}$. Since $p_{\lambda^{\prime}} p r_{1 \lambda^{\prime}}=$ $p r_{1 \lambda^{\prime}}^{\prime}\left(p_{\lambda^{\prime}} \times p_{\mu^{\prime}}^{\prime}\right)$, from (4), it follows that

$$
\left(p_{\lambda^{\prime}} p r_{1 \lambda^{\prime}} h, p r_{1 \lambda^{\prime}}^{\prime} H_{0}\right) \leq p r_{1 \lambda^{\prime}}^{\prime}\left(V_{\lambda^{\prime}} \times V_{\mu^{\prime}}\right)=V_{\lambda^{\prime}}
$$

i.e

$$
\begin{equation*}
\left(p_{\lambda^{\prime}} h^{\prime}, H_{0}^{\prime}\right) \leq V_{\lambda^{\prime}} \tag{5}
\end{equation*}
$$

Since λ^{\prime} is the lifting index and $V_{\lambda^{\prime}}$ is a lifting mesh for $\lambda, U_{\lambda}, V_{\lambda}$ with respect to \mathbf{p}, from (5), it follows that there is a homotopy $\widetilde{H^{\prime}}: X \times I \rightarrow E_{\lambda}$ such that

$$
\begin{equation*}
\left(q_{\lambda \lambda^{\prime}} h^{\prime}, \widetilde{H_{0}^{\prime}}\right) \leq U_{\lambda} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(p_{\lambda} \widetilde{H^{\prime}}, r_{\lambda \lambda^{\prime}} H^{\prime}\right) \leq V_{\lambda} \tag{7}
\end{equation*}
$$

Similarly, let $p r_{2 \mu^{\prime}}: E_{\lambda^{\prime}} \times E_{\mu^{\prime}}^{\prime} \rightarrow E_{\mu^{\prime}}^{\prime}$ and $p r_{2 \mu^{\prime}}^{\prime}: B_{\lambda^{\prime}} \times B_{\mu^{\prime}}^{\prime} \rightarrow B_{\mu^{\prime}}^{\prime}$ be projections on the second factor and $h^{\prime \prime}=p r_{2 \mu^{\prime}} h: X \rightarrow E_{\mu^{\prime}}^{\prime}, H^{\prime \prime}=p r_{2 \mu^{\prime}}^{\prime} H: X \times I \rightarrow B_{\mu^{\prime}}^{\prime}$. Then from (4), it follows that

$$
\left(p r_{2 \mu^{\prime}}^{\prime}\left(p_{\lambda^{\prime}} \times p_{\mu^{\prime}}^{\prime}\right) h, p r_{2 \mu^{\prime}}^{\prime} H_{0}\right) \leq p r_{2 \mu^{\prime}}^{\prime}\left(V_{\lambda^{\prime}} \times V_{\mu^{\prime}}\right)=V_{\mu^{\prime}} .
$$

Since $p r_{2 \mu^{\prime}}^{\prime}\left(p_{\lambda^{\prime}} \times p_{\mu^{\prime}}^{\prime}\right)=p_{\mu^{\prime}}^{\prime} p r_{2 \mu^{\prime}}$ we obtain that $\left(p_{\mu^{\prime}}^{\prime} p r_{2 \mu^{\prime}} h, p r_{2 \mu^{\prime}}^{\prime} H_{0}\right) \leq V_{\mu^{\prime}}$, i.e.

$$
\begin{equation*}
\left(p_{\mu^{\prime}}^{\prime} h^{\prime \prime}, H_{0}^{\prime \prime}\right) \leq V_{\mu^{\prime}} \tag{8}
\end{equation*}
$$

Since μ^{\prime} is the lifting index and $V_{\mu^{\prime}}$ is the lifting mesh for μ, U_{μ}, V_{μ} with respect to \mathbf{p}^{\prime}, from (8), we conclude that there is a homotopy $\widetilde{H^{\prime \prime}}: X \times I \rightarrow E_{\mu}^{\prime}$ such that

$$
\begin{gather*}
\left(q_{\mu \mu^{\prime}}^{\prime} h^{\prime \prime}, \widetilde{H_{0}^{\prime \prime}}\right) \leq U_{\mu} \tag{9}\\
\left(p_{\mu}^{\prime} \widetilde{H^{\prime \prime}}, r_{\mu \mu^{\prime}}^{\prime} H^{\prime \prime}\right) \leq V_{\mu} \tag{10}
\end{gather*}
$$

Let $\widetilde{H}=\widetilde{H^{\prime}} \triangle \widetilde{H^{\prime \prime}}: X \times I \rightarrow E_{\lambda} \times E_{\mu}^{\prime}$ be a map given by

$$
\begin{equation*}
\widetilde{H}(x, t)=\left(\widetilde{H^{\prime}}(x, t), \widetilde{H^{\prime \prime}}(x, t)\right), \quad \forall(x, t) \in X \times I \tag{11}
\end{equation*}
$$

Note that for every $x \in X$ holds

$$
\begin{equation*}
h(x)=\left(p r_{1 \lambda^{\prime}} h(x), p r_{2 \mu^{\prime}} h(x)\right)=\left(h^{\prime}(x), h^{\prime \prime}(x)\right)=\left(h \triangle h^{\prime \prime}\right)(x) \tag{12}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
H(x, t)=\left(H^{\prime} \triangle H^{\prime \prime}\right)(x, t)=\left(H^{\prime}(x, t), H^{\prime \prime}(x, t)\right), \quad \forall(x, t) \in X \times I \tag{13}
\end{equation*}
$$

Now, from (6) and (9), it follows that

$$
\begin{equation*}
\left(\left(q_{\lambda \lambda^{\prime}} \times q_{\mu \mu^{\prime}}^{\prime}\right) h, \widetilde{H_{0}}\right) \leq U_{\lambda} \times U_{\mu} \tag{14}
\end{equation*}
$$

Similarly, from (7) and (10), it follows that

$$
\begin{equation*}
\left(\left(p_{\lambda} \times p_{\mu}^{\prime}\right) \widetilde{H},\left(r_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}^{\prime}\right) H\right) \leq V_{\lambda} \times V_{\mu} \tag{15}
\end{equation*}
$$

Since $U_{\lambda} \times U_{\mu} \succcurlyeq U$ and $V_{\lambda} \times V_{\mu} \succcurlyeq V$, from (14) and (15), it follows that

$$
\left(\left(q_{\lambda \lambda^{\prime}} \times q_{\mu \mu^{\prime}}^{\prime}\right) h, \widetilde{H_{0}}\right) \leq U \quad \text { and } \quad\left(\left(p_{\lambda} \times p_{\mu}^{\prime}\right) \widetilde{H},\left(r_{\lambda \lambda^{\prime}} \times r_{\mu \mu^{\prime}}^{\prime}\right) H\right) \leq V
$$

which means that $\mathbf{p} \times \mathbf{p}^{\prime}$ has the $A H L P$ with respect to the class of all topological spaces.

Now we are able to state and to prove the main theorem of this paper.
Theorem 3. Let $p: E \rightarrow B, p^{\prime}: E^{\prime} \rightarrow B^{\prime}$ be maps of compact Hausdorff spaces. Then, $p \times p^{\prime}: E \times E^{\prime} \rightarrow B \times B^{\prime}$ is a shape fibration if and only if p and p^{\prime} are shape fibrations.

Proof. Necessity. Let $p \times p^{\prime}$ be a shape fibration. We show that p and p^{\prime} are shape fibrations. Let $(\mathbf{q}, \mathbf{r}, \mathbf{p})$ and $\left(\mathbf{q}^{\prime}, \mathbf{r}^{\prime}, \mathbf{p}^{\prime}\right)$ be $A N R$ level resolutions of p and p^{\prime}, respectively, with $\mathbf{r}: B \rightarrow \mathbf{B}$ and $\mathbf{r}^{\prime}: B^{\prime} \rightarrow \mathbf{B}^{\prime}$ in pro- $\mathbf{C p t}$. Such resolutions exist by Proposition 2. Then, by Corollary $1,\left(\mathbf{q} \times \mathbf{q}^{\prime}, \mathbf{r} \times \mathbf{r}^{\prime}, \mathbf{p} \times \mathbf{p}^{\prime}\right)$ is an $A N R$ level resolution of $p \times p^{\prime}$. Since $p \times p^{\prime}$ is a shape fibration we may assume that the level map $\mathbf{p} \times \mathbf{p}^{\prime}$ has the $A H L P$ with respect to the class of all topological spaces. From Theorem 2, it follows that \mathbf{p} and \mathbf{p}^{\prime} have the $A H L P$ with respect to the class of all topological spaces. This means that p and p^{\prime} are shape fibrations.

Sufficiency. Let p and p^{\prime} be shape fibrations. Then, there are $A N R$ level resolutions ($\mathbf{q}, \mathbf{r}, \mathbf{p}$) and $\left(\mathbf{q}^{\prime}, \mathbf{r}^{\prime}, \mathbf{p}^{\prime}\right)$ of p and p^{\prime}, respectively, such that \mathbf{p} and \mathbf{p}^{\prime} have the $A H L P$ with respect to the class of all topological spaces. By Corollary 1 and Theorem $2\left(\mathbf{q} \times \mathbf{q}^{\prime}, \mathbf{r} \times \mathbf{r}^{\prime}, \mathbf{p} \times \mathbf{p}^{\prime}\right)$ is an $A N R$ level resolution of $p \times p^{\prime}$ such that $\mathbf{p} \times \mathbf{p}^{\prime}$ has the $A H L P$ with respect to the class of all topological spaces. Consequently, $p \times p^{\prime}$ is a shape fibration.

From Theorem 3, by induction, it follows the following

Corollary 2. Let $p_{n}: E_{n} \rightarrow B_{n}$ be a map of a compact Hausdorff spaces for each $n=1,2,3, \ldots$, and let

$$
p=\prod_{n=1}^{\infty} p_{n}: \prod_{n=1}^{\infty} E_{n} \rightarrow \prod_{n=1}^{\infty} B_{n}
$$

be the product of maps p_{n}. Then, p is a shape fibration if and only if p_{n} is a shape fibration for each $n=1,2, \ldots$,

Question: Does Theorem 3 remains true if E and E^{\prime} are arbitrary topological spaces (not necessary compact Hausdorff) ?

Its worth to be noticed that all the above preparation (all propositions and theorems) for the proof of Theorem 3 are designed so that the answer in the above question will be affirmative if the statement of Proposition 3 remains true when E and E^{\prime} are arbitrary topological spaces.

References

[1] Haxhibeqiri,Q., Shape fibrations for topological spaces, Glas. Mat. 17 (37) (1982), pp. 381401.
[2] Haxhibeqiri,Q., The exact sequence of a shape fibration, Glas. Mat. 18 (38) (1983), pp. 157 - 177.
[3] Haxhibeqiri,Q., Shape fibrations for compact Hausdorff spaces, Publications de l'Inst. de Matém. 31(45) (1982), pp.33-49.
[4] Haxhibeqiri, Q., On the surjectivity of shape fibration, Matem. Vesnik, 37 (1985),pp.379-384.
[5] Mardešić, S., Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. 114 (1981), pp. 53-78.
[6] Mardešić, S., On resolutions for pairs of spaces, Tsukuba J. Math. Vol. 8, No. 1(1984), pp.8193.
[7] Mardešić, S., The foundations of shape theory, Lecture Notes, Univ. of Kentucky, 1978.
[8] Mardešić, S. and Rushing, T,. Shape fibrations I, Gen.Top. and Appl. 9(1978), pp. 193-215.
[9] Mardešić, S. and Rushing, T,. Shape fibrations II, Gen.Top. and Appl. 9(1979), pp. 283-298.
[10] Mardešić, S. and Segal, J., Shape theory, North-Holland Pub.Comp., Amsterdam, 1982.
[11] Mardešić, S. and Watanabe, T., Approximate resolutions of spaces and mappings, Glas.Mat. $24(44)(1989), 587-637$.
[12] Lisica, Ju. and Mardešić, S., Coherent prohomotopy and strong shape theory, Glas. Mat. 19 (39) (1984), pp. 335-399.
[13] Spanier, E., Algebraic Topology, McGraw-Hill book Comp., New-York, 1966.
[14] Watanabe, T., Approximative shape theory, Mimeographed Notes, Univ. of Yamaguchi, 1982.
[15] Watanabe, T., Approximative shape theory I, Tsukuba J. Math. Vol.11, No. 1 (1987), pp.1759.

Prishtinë-KOSOV/"E
E-mail address: qamil.haxhibeqiri@uni-pr.edu

[^0]: Date: Received: October 11, 2012; Accepted: May 19, 2013.
 2010 Mathematics Subject Classification. 55 P 55, 54 B 25, 54 B 10.
 Key words and phrases. Shape fibrations,resolution, approximate homotopy lifting property.
 This article is the written version of author's plenary talk delivered on September 03-07, 2012 at 1st International Euroasian Conference on Mathematical Sciences and Applications IECMSA2012 at Prishtine, Kosovo.

