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TRANSMUTED EXPONENTIATED EXPONENTIAL

DISTRIBUTION

FATON MEROVCI

(Communicated by Murat TOSUN)

Abstract. In this article, we generalize the exponentiated exponential dis-
tribution using the quadratic rank transmutation map studied by Shaw et
al. [6] to develop a transmuted exponentiated exponential distribution. The

properties of this distribution are derived and the estimation of the model pa-
rameters is discussed. An application to real data set are finally presented for
illustration.

1. Introduction

The quality of the procedures used in a statistical analysis depends heavily on
the assumed probability model or distributions. Because of this, considerable effort
has been expended in the development of large classes of standard probability dis-
tributions along with relevant statistical methodologies. However, there still remain
many important problems where the real data does not follow any of the classical
or standard probability models.

The exponentiated exponential distribution has been introduced by Ahuja and
Nash [1] and further studied by Gupta and Kundu [4, 5].

The pdf of exponentiated exponential distribution, also known as the generalized
exponential distribution, is defined as

(1.1) g(x, α, β) = αβ
(
1− e−βx

)α−1

e−βx, x > 0, α > 0, β > 0,

and its cdf is

(1.2) G(x) = (1− e−βx)α, x > 0, α > 0, β > 0.

In this article we use transmutation map approach suggested by Shaw et al.
[6] to define a new model which generalizes the exponentiated exponential model.
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We will call the generalized distribution as the transmuted exponentiated exponen-
tial distribution. According to the Quadratic Rank Transmutation Map(QRTM),
approach the cumulative distribution function(cdf) satisfy the relationship

(1.3) F (x) = (1 + λ)G(x)− λG2(x), |λ| ≤ 1

where G(x) is the cdf of the base distribution.
Observe that at λ = 0, we have the distribution of the base random variable.

Aryal et al. [2] studied the transmuted Gumbel distribution and it has been ob-
served that transmuted Gumbel distribution can be used to model climate data.
In the present study we will provide mathematical formulations of the transmuted
exponentiated exponential distribution and also some of its properties.

2. Transmuted Exponentiated Exponential Distribution

Definition 2.1. A random variable X is said to have the transmuted exponentiated
exponential distribution with parameter α, β and λ if its probability density is
defined as:

(2.1) f(x) = αβ
(
1− e−βx

)α−1

e−βx
[
1 + λ− 2λ(1− e−βx)α

]
,

and its cdf is

(2.2) F (x) =
[
1− e−βx

]α
·
[
1 + λ− λ(1− e−βx)α

]
.

Note that the transmuted exponentiated exponential distribution is an extended
model to analyze more complex data. The exponentiated exponential distribution
is clearly a special case for λ = 0. Figure 1 illustrates some of the possible shapes of
the pdf of a transmuted exponentiated exponential distribution for selected values
of the parameters λ, α and for β = 1.

3. Moments and Quantiles

Now let us consider the different moments of the transmuted exponentiated expo-
nential distribution. Suppose X denote the transmuted exponentiated exponential
distribution random variable with parameter α, β and λ, then

E(Xk) = αβ

∞∫
0

xk
(
1− e−βx

)α−1

e−βx
[
1 + λ− 2λ(1− e−βx)α

]

= αβ(1 + λ)

∞∫
0

xk
(
1− e−βx

)α−1

e−βx − 2αβλ

∞∫
0

xk
(
1− e−βx

)2α−1

e−βx.

Now since 0 < e−βx < 1, for β > 0 and x > 0, therefore by using the series
representation of

(1− e−βx)α−1 =

∞∑
i=0

(−1)ic(α− 1, i)e−iβx,

where c(α− 1, i) = (α−1)···(α−i)
i! , we obtain
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Figure 1. The pdf’s of various transmuted exponentiated expo-
nential distribution for β = 1.

E(Xk) =
α(1 + λ)Γ(k + 1)

βk

∞∑
i=0

(−1)ic(α− 1, i)
1

(i+ 1)k+1

− 2αλΓ(k + 1)

βk

∞∑
i=0

(−1)ic(2α− 1, i)
1

(i+ 1)k+1
.(3.1)

Since (3.1) is a convergent series for any k ≥ 0, therefore all the moments exist and
for integer values of α. Therefore putting k = 1, we obtain the mean as

E(X) =
α(1 + λ)

β

∞∑
i=0

(−1)ic(α− 1, i)
1

(i+ 1)2

− 2αλ

β

∞∑
i=0

(−1)ic(2α− 1, i)
1

(i+ 1)2
,(3.2)

and putting k = 2 we obtain the second moment as

E(X2) =
2α(1 + λ)

β2

∞∑
i=0

(−1)ic(α− 1, i)
1

(i+ 1)3

− 4αλ

β2

∞∑
i=0

(−1)ic(2α− 1, i)
1

(i+ 1)3
.

It is also possible to express the moment generating function in terms of the
gamma function, which in turn can be used to obtain different moments. The
moment generating function of X, say M(t), for 0 < t < β can be written as
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M(t) = E(etX) = αβ

∞∫
0

(
1− e−βx

)α−1

e(t−β)x
[
1 + λ− 2λ(1− e−βx)α

](3.3)

= αβ(1 + λ)

∞∫
0

(
1− e−βx

)α−1

e(t−β)x − 2αβλ

∞∫
0

(
1− e−βx

)2α−1

e(t−β)x.

Making the substitution y = e−βx, (3.3) reduces to

M(t) = α(1 + λ)

1∫
0

(1− y)α−1y−
t
β dy − 2αλ

1∫
0

(1− y)2α−1y−
t
β dy(3.4)

= (1 + λ)
Γ(α+ 1)Γ(1− t

β )

Γ(α− t
β + 1)

− 2αλ
Γ(2α)Γ(1− t

β )

Γ(2α− t
β + 1)

.

Differentiating ln(M(t)) and evaluating at t = 0, we get the mean and the variance
of X as

(3.5) E(X) =
1 + λ

β

(
ψ(α+ 1)− ψ(1)

)
− 2αλ

β

(
ψ(2α+ 1)− ψ(1)

)
,

(3.6) V ar(X) =
1 + λ

β2

(
ψ

′
(1)− ψ

′
(α+ 1)

)
− 2αλ

β2

(
ψ

′
(1)− ψ

′
(2α+ 1)

)
,

where ψ(·) is the digamma function and ψ
′
(·) is its derivative. The higher central

moments can be obtained in terms of the polygamma functions. The qth quantile
xq of the transmuted exponentiated exponential distribution can be obtained from
(2.2) as

(3.7) xq =
1

β

{
− ln

[
1−

α

√
1 + λ−

√
(1 + λ)2 − 4λq

2λ

]}
.

In particular, the distribution median is:

x0.5 =
1

β

{
− ln

[
1− α

√
1 + λ−

√
1 + λ2

2λ

]}
.

4. Random Number Generation and Parameter Estimation

Using the method of inversion we can generate random numbers from the trans-
muted exponentiated exponential distribution as[

1− e−βx
]α

·
[
1 + λ− λ(1− e−βx)α

]
= u,

where u ∼ U(0, 1). After simple calculation this yields

(4.1) x =
1

β

{
− ln

[
1−

α

√
1 + λ−

√
(1 + λ)2 − 4λu

2λ

]}
.

One can use (4.1) to generate random numbers when the parameters α, β and λ
are known. The maximum likelihood estimates, MLE’s, of the parameters that are
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inherent within the transmuted exponentiated exponential probability distribution
function is given by the following:

(4.2) L = (αβ)n
n∏

i=1

(
1− e−βxi

)α−1

· e−βxi ·
[
1 + λ− 2λ(1− e−βxi)α

]
,

and

lnL = n ln(αβ) + (α− 1)
n∑

i=1

ln
(
1− e−βxi

)
− β

n∑
i=1

xi

+

n∑
i=1

ln
[
1 + λ− 2λ(1− e−βxi)α

]
.(4.3)

Now setting

∂ lnL

∂α
= 0,

∂ lnL

∂β
= 0, and

∂ lnL

∂λ
= 0,

we have

n

α
+

n∑
i=1

ln
(
1− e−βxi

)
− 2λ

n∑
i=1

(1− e−βxi) ln(1− e−βxi)

1 + λ− 2λ(1− e−βxi)
= 0,

n

β
+ (α− 1)

n∑
i=1

xie
−βxi

1− e−βxi
−

n∑
i=1

xi − 2αλ
n∑

i=1

xie
−βxi(1− e−βxi)α−1

1 + λ− 2λ(1− e−βxi)α
= 0,

n∑
i=1

1− 2(1− e−βxi)α

1 + λ− 2λ(1− e−βxi)α
= 0.

The maximum likelihood estimator θ̂ = (α̂, β̂, λ̂)
′
of θ = (α, β, λ)

′
is obtained by

solving this nonlinear system of equations. It is usually more convenient to use
nonlinear optimization algorithms such as quasi-Newton to numerically maximize
the log-likelihood function given in (4.2). In order to compute the standard error
and asymptotic confidence interval we use the usual large sample approximation
in which the maximum likelihood estimators of θ can be treated as being approxi-
mately trivariate normal. Hence as n→ ∞ the asymptotic distribution of the MLE

(α̂, β̂, λ̂) is given by α̂

β̂

λ̂

 ∼ N

  α
β
λ

 ,

 V̂11 V̂12 V̂13
V̂21 V̂22 V̂23
V̂31 V̂32 V̂33

  ,
where, Vij = Vij|θ=θ̂ and V11 V12 V13

V21 V22 V23
V31 V32 V33

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

−1

,

is the approximate variance covariance matrix with its elements obtained from

A11 = −∂
2 lnL

∂α2
, A12 = −∂

2 lnL

∂α∂β
,

A22 = −∂
2 lnL

∂β2
, A23 = −∂

2 lnL

∂β∂λ
,
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A33 = −∂
2 lnL

∂γ2
, A13 = −∂

2 lnL

∂α∂λ
.

where lnL is the log-likelihood function given in (4.3). Approximate 100(1− α)%
two sided confidence intervals for α, β and λ are, respectively, given by

α̂± zα/2

√
V̂11, β̂ ± zα/2

√
V̂22, and λ̂± zα/2

√
V̂33,

where zα is the upper α−th percentiles of the standard normal distribution.
Using R we can easily compute the Hessian matrix and its inverse and hence the
values of the standard error and asymptotic confidence intervals.

We can compute the maximized unrestricted and restricted log - likelihoods to
construct the likelihood ratio (LR) statistics for testing some transmuted expo-
nentiated exponential sub-models. For example, we can use LR statistics to check
whether the fitted transmuted exponentiated exponential distribution for a given
data set is statistically ”superior” to the fitted exponentiated exponential distribu-
tion. In any case, hypothesis tests of the type

H0 : Θ = Θ0 versus H0 : Θ ̸= Θ0

can be performed using LR statistics. In this case, the LR statistic for testing H0

versus H1 is

ω = 2(L(Θ̂)− L(Θ̂0)),

where Θ̂ and Θ̂0 are the MLEs under H1 and H0. The statistic ω is asymptotically(
as n→ ∞) distributed as χ2

k, where k is the dimension of the subset Ω of interest.
The LR test rejects H0 if ω > ξγ , where ξγ denotes the upper 100γ% point of the
χ2
k distribution.

5. Reliability Analysis

The reliability function R(t), which is the probability of an item not failing prior
to time t, is defined by R(t) = 1 − F (t). The reliability function of a transmuted
exponentiated exponential distribution is given by

(5.1) R(t) = 1−
[
1− e−βx

]α
·
[
1 + λ− λ(1− e−βx)α

]
.

The other characteristic of interest of a random variable is the hazard rate function
defined by

h(t) =
f(t)

1− F (t)
,

which is an important quantity characterizing life phenomenon. It can be loosely
interpreted as the conditional probability of failure, given it has survived to time
t. The hazard rate function for a transmuted exponentiated exponential random
variable is given by

(5.2) h(t) =
αβ
(
1− e−βx

)α−1

e−βx
[
1 + λ− 2λ(1− e−βx)α

]
1−

[
1− e−βx

]α
·
[
1 + λ− λ(1− e−βx)α

] .
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Figure 2. Reliability function of transmuted exponentiated ex-
ponential for α = 1 and β = 1.

Figure 2 illustrates the reliability behavior of a transmuted exponentiated expo-
nential distribution as the value of the parameter λ varies from −1 to 1. Figure 3
illustrates the behavior of the hazard rate function of a transmuted exponentiated
exponential distribution.

6. Order Statistics

In statistics, the kth order statistic of a statistical sample is equal to its kth-
smallest value. Together with rank statistics, order statistics are among the most
fundamental tools in non-parametric statistics and inference. For a sample of size
n, the nth order statistic (or largest order statistic) is the maximum, that is,

X(n) = max{X1, X2, . . . , Xn}.

The sample range is the difference between the maximum and minimum. It is
clearly a function of the order statistics:

Range{X1, X2, . . . , Xn} = X(n) −X(1).

We know that if X(1) ≤ X(2) ≤ . . . ≤ X(n) denotes the order statistics of a random
sample X1, X2, . . . , Xn from a continuous population with cdf FX(x) and pdf fX(x)
then the pdf of X(j) is given by

(6.1) fX(j)
(x) =

n!

(j − 1)!(n− j)!
fX(x)[FX(x)]j−1[1− FX(x)]n−j ,
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Figure 3. Hazard rate function of transmuted exponentiated ex-
ponential for α = 2 and β = 3

2 .

for j = 1, 2, . . . , n. The pdf of the jth order statistic for transmuted exponentiated
exponential distribution is given by

fX(j)
(x) =

αβn!

(j − 1)!(n− j)!
e−βx

(
1− e−βx

)αj−1[
1 + λ− 2λ(1− e−βx)α

]j
×
[
1−

(
1− e−βx

)α
·
(
1 + λ− λ(1− e−βx)α

)]n−j

.(6.2)

Therefore, the pdf of the largest order statistic X(n) is given by

fX(n)
(x) = αβne−βx

(
1− e−βx

)αn−1[
1 + λ− 2λ(1− e−βx)α

]n
,

and the pdf of the smallest order statistic X(1) is given by

fX(1)
(x) = αβne−βx

(
1− e−βx

)α−1[
1 + λ− 2λ(1− e−βx)α

]
×
[
1−

(
1− e−βx

)α
·
(
1 + λ− λ(1− e−βx)α

)]n−1

.

7. Data Analysis

In this section we fit the transmuted exponentiated exponential distribution
model to one real data set. The data set is obtained from Smith and Naylor [7].
The data are the strengths of 1.5 cm glass fibres, measured at the National Physical
Laboratory, England. Unfortunately, the units of measurement are not given in the
paper. The data set is given in table 1.
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0.55 0.93 1.25 1.36 1.49 1.52 1.58
1.61 1.64 1.68 1.73 1.81 2.0 0.74
1.04 1.27 1.39 1.49 1.53 1.59 1.61
1.66 1.68 1.76 1.82 2.01 0.77 1.11
1.28 1.42 1.50 1.54 1.60 1.62 1.66
1.69 1.76 1.84 2.24 0.81 1.13 1.29
1.48 1.5 1.55 1.61 1.62 1.66 1.70
1.77 1.84 0.84 1.24 1.30 1.48 1.51
1.55 1.61 1.63 1.67 1.70 1.78 1.89

Table 1. The strengths of 1.5 cm glass fibres

Distri. Param.Estim. -2LL AIC BIC KS
Trans. α̂ = 31.153 56.951 61.951 69.380 0.21

EExp. β̂ = 2.909

λ̂ = −0.695
EExpo. α̂ = 31.348 62.766 66.766 71.053 0.23

β̂ = 2.611

Table 2. Criteria for Comparison

In order to compare the distributions, we consider some criterion like −2 log(L),
AIC (Akaike Information Criterion), BIC(Bayesian information criterion) and KS(
Kolmogorow Smirnow)test statistics of the empirical distribution function for the
real data set.

KS = max
1≤i≤n

(
F (Xi)−

i− 1

n
,
i

n
− F (Xi)

)
AIC = 2k − 2 log(L),

and

BIC = k log(n)− 2 logL,

where F (Xi) is cdf, k is the number of parameters in the statistical model, n
the sample size and L is the maximized value of the likelihood function for the
estimated model. The best distribution correspond to lower −2 log(L),AIC, BIC
and KS values.

From table 2, it can be seen that the transmuted exponentiated exponential
distribution fits the subject data better than the exponentiated exponential distri-
bution.

The LR statistics to test the hypotheses H0 : λ = 0 versus H1 : λ ̸= 0 :
ω = 5.81594 > 3.841 = χ2

1(α = 0.05), so we reject the null hypothesis.

8. Conclusion

In this article, we propose a new model so-called the transmuted exponenti-
ated exponential distribution to extend the exponentiated exponential distribution
in the analysis of data with real support. An obvious reason for generalizing a



TRANSMUTED EXPONENTIATED EXPONENTIAL DISTRIBUTION 121

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
n(

x)

Empirical
EExpon.
Tran.EExpon.

Figure 4. Empirical, fitted exponentiated exponential and trans-
muted exponentiated exponential cdf of the strengths of 1.5 cm
glass fibres data

standard distribution is because the generalized form provides greater flexibility in
modeling real data. We derive expansions for the expectation,variance, moments
and the moment generating function. The estimation of parameters is approached
by the method of maximum likelihood. We consider the likelihood ratio statistic to
compare the model with its baseline model. An application of the transmuted expo-
nentiated exponential distribution to real data show that the new distribution can
be used quite effectively to provide better fits than the exponentiated exponential
distribution.
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