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FURTHER RESULTS ON THE UNIQUENESS OF

MEROMORPHIC FUNCTIONS SHARING THREE SETS

ABHIJIT BANERJEE AND SUJOY MAJUMDER

(Communicated by Indrajit LAHIRI)

Abstract. We use the notion of weighted sharing of sets to deal with the
problem of uniqueness of meromorphic functions sharing three sets and obtain

some results which in turn improve and extend a series of results obtained in

[2] and [3]. One example is exhibited to show that one condition in one of our
results is the best possible.

1. Introduction, Definitions and Results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. We denote by T (r) the maximum of T (r, f) and T (r, g). The
notation S(r) denotes any quantity satisfying S(r) = o(T (r)) as r −→ ∞, outside
a possible exceptional set of finite linear measure.
If for some a ∈ C ∪ {∞}, f and g have the same set of a-points with same multi-
plicities then we say that f and g share the value a CM (counting multiplicities).
If we do not take the multiplicities into account, f and g are said to share the value
a IM (ignoring multiplicities).

Let S be a set of distinct elements of C∪{∞} and Ef (S) =
⋃
a∈S
{z : f(z)−a = 0},

where each zero is counted according to its multiplicity. If we do not count the

multiplicity the set Ef (S) =
⋃
a∈S
{z : f(z)− a = 0} is denoted by Ef (S).

If Ef (S) = Eg(S) we say that f and g share the set S CM. On the other hand

if Ef (S) = Eg(S), we say that f and g share the set S IM.
In 1976 F. Gross [5] posed the following question:

Question A Can one find two finite sets Sj (j = 1, 2) such that any two non-
constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be
identical ?
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For meromorphic function it is natural to ask the following question .
Question B[17] Can one find three finite sets Sj (j = 1, 2, 3) such that any two non-
constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2, 3
must be identical ?

The above question can be considered as the inception of the new era in the
study of relationship between two meromorphic functions via their pre-image sets
and as a result during the last couple of years or so several authors explored the
possible answer to Question B under weaker hypothesis. {cf.[1]-[4], [11], [14], [15],
[17], [20]}.

In the direction of Question B Fang and Xu [4] proved the following result.

Theorem A. [4] Let S1 = {z : z3−z2−1 = 0}, S2 = {0} and S3 = {∞}. Suppose
that f and g are two non-constant meromorphic functions satisfying Θ(∞; f) > 1

2

and Θ(∞; g) > 1
2 . If Ef (Sj) = Eg(Sj) for j = 1, 2, 3 then f ≡ g.

In 2002, Qiu and Fang [15] further generalized Theorem A as follows.

Theorem B. [15] Let n ≥ 3 be a positive integer S1 = {z : zn − zn−1 − 1 = 0},
S2 = {0} and let f and g be two non-constant meromorphic functions whose poles
are of multiplicities at least 2. If Ef ({∞}) = Eg({∞}) and Ef (Si) = Eg(Si) for
i = 1, 2, then f ≡ g.

In [15] example were provided by the authors to show that the condition that
the poles of f(z) and g(z) are of multiplicities at least 2 can not be removed in
Theorem B.

It should be noted that if two meromorphic functions f and g have no simple
pole then clearly Θ(∞, f) ≥ 1

2 and Θ(∞, g) ≥ 1
2 .

Lahiri and Banerjee [11] investigate the situation for Θ(∞, f) ≤ 1
2 and Θ(∞, g) ≤

1
2 in Theorem A and proved the following result.

Theorem C. [11] Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and S3 = {∞},
where a, b are nonzero constants such that zn + azn−1 + b = 0 has no repeated root
and n (≥ 4) is an integer. If for two non-constant meromorphic functions f and g
Ef (Si) = Eg(Si) for i = 1, 2, 3 and Θ(∞; f) + Θ(∞; g) > 0, then f ≡ g.

In 2004 Yi and Lin [20] proved the following theorem.

Theorem D. [20] Let S1 = {z : zn + azn−1 + b = 0}, S2 = {0} and S3 = {∞},
where a,b are nonzero constants such that zn + azn−1 + b = 0 has no repeated root
and n (≥ 3) is an integer. If for two non-constant meromorphic functions f and g,
Ef (Si) = Eg(Si) for i = 1, 2, 3 and Θ(∞; f) > 1

2 , then f ≡ g.

The introduction of the new notion of the scaling between CM and IM, known
as weighted sharing of values and sets by I. Lahiri [8, 9] in 2001 further expedite
the investigations in the direction of Question B.

Definition 1.1. [8, 9] Let k be a nonnegative integer or infinity. For a ∈ C∪ {∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.
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Definition 1.2. [8] Let S be a set of distinct elements of C ∪ {∞} and k be a

nonnegative integer or ∞. We denote by Ef (S, k) the set Ef (S, k) =
⋃
a∈S

Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

In 2007 the first present author further invigorate the three set sharing problem
in the direction of Question B by showing that weighted sharing rendered an useful
tool to relax the nature of sharing the image sets. Though Banerjee proved a
number of results in the direction of Question B, we only recall a few of them to
make the discussion pertinent in context of the paper.

In [2] the first present author proved the following result:

Theorem E. [2] Let S1, S2 and S3 be defined as in Theorem C. If for two
non-constant meromorphic functions f and g Ef (S1, 3) = Eg(S1, 3), Ef (S2, 0) =
Eg(S2, 0), Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > max{0, 20−4n7n−11}, then
f ≡ g.

Theorem F. [2] Let S1, S2 and S3 be defined as in Theorem C. If for two
non-constant meromorphic functions f and g Ef (S1, 2) = Eg(S1, 2), Ef (S2, 0) =
Eg(S2, 0), Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > max{0, 32−4n5n−4 }, then
f ≡ g.

Further in 2009 the first present author proved a series of results as follows.

Theorem G. [3] Let S1, S2 and S3 be defined as in Theorem C. If for two
non-constant meromorphic functions f and g Ef (S1, 3) = Eg(S1, 3), Ef (S2,∞) =
Eg(S2,∞), Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 0, then f ≡ g.

Theorem H. [3] Let S1, S2 and S3 be defined as in Theorem C. If for two
non-constant meromorphic functions f and g Ef (S1, 2) = Eg(S1, 2), Ef (S2,∞) =
Eg(S2,∞), Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 4

3n−5 , then f ≡ g.

Theorem I. [3] Let S1, S2 and S3 be defined as in Theorem D. If for two non-
constant meromorphic functions f and g Ef (S1, 5) = Eg(S1, 5), Ef (S2, 0) = Eg(S2, 0),
Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 1, then f ≡ g.

Theorem J. [3] Let S1, S2 and S3 be defined as in Theorem D. If for two non-
constant meromorphic functions f and g Ef (S1, 4) = Eg(S1, 4), Ef (S2,∞) =
Eg(S2,∞), Ef (S3,∞) = Eg(S3,∞) and Θ(∞; f) + Θ(∞; g) > 1, then f ≡ g.

From Theorems E, F and H it is to be noted that to further relax the nature
of sharing the set S1 or S2 from a standard weight in [2]-[3], lower bound of the
deficiency has to be increased accordingly. Naturally the following questions are
inevitable.
Question 1: Is there any significant contribution of the deficiencies of other values
not deviating the lower bound of the same, to improve the above Theorems E, F,
G and H ?
Question 2: Can one further relax the nature of sharing of the set S1 in the
Theorem I and S2 in the Theorems H and J by taking the possible answer to
Question B in background ?

The above questions are the motivation of the paper. In the paper we will dras-
tically improve and extend all the results stated so far. Following three theorems
are the main results of the paper.
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Next we suppose

Θf (n) =

{
Θ(∞; f) + Θ(−an−1n ; f), if n ≥ 4
Θ(∞; f), if n = 3

Θg(n) can be similarly defined.

Theorem 1.1. Let S1, S2 and S3 be defined as in Theorem C. If for two non-
constant meromorphic functions f and g Ef (S1, 3) = Eg(S1, 3), Ef (S2, 0) = Eg(S2, 0),
Ef (S3,∞) = Eg(S3,∞) and Θf (n) + Θg(n) > 0, then f ≡ g.

Theorem 1.2. Let S1, S2 and S3 be defined as in Theorem C. If for two non-
constant meromorphic functions f and g Ef (S1, 2) = Eg(S1, 2), Ef (S2, 0) = Eg(S2, 0),
Ef (S3,∞) = Eg(S3,∞) and Θf (n) + Θg(n) > 4

6n−15 , then f ≡ g.

Theorem 1.3. Let S1, S2 and S3 be defined as in Theorem D. If for two non-
constant meromorphic functions f and g Ef (S1, 4) = Eg(S1, 4), Ef (S2, 0) = Eg(S2, 0),
Ef (S3,∞) = Eg(S3,∞) and Θf (n) + Θg(n) > 1, then f ≡ g.

Remark 1.1. Clearly Theorem 1.1 improves Theorems E and G, Theorem 1.2 ex-
tends and improves Theorems F and H and that Theorem 1.3 improves Theorems
I and J.

The following example shows that the condition Θf (n) + Θg(n) > 0 is sharp in
Theorem 1.1

Example 1.1. Let f = −a 1−e(n−1)z

1−enz and g = −aez 1−e(n−1)z

1−enz , where n(≥ 3) is an

integer and S,is be as in Theorem 1.2. Then Ef (Si,∞) = Eg(Si,∞) for i = 1, 2, 3
because fn−1(f + a) ≡ gn−1(g + a) and g ≡ ezf .

Then T (r, f) = (n−1)T (r, ez) +O(1) and T (r, g) = (n−1)T (r, ez) +O(1). Here

Θ(∞; f) = 1− lim sup
r−→∞

n−1∑
k=1

N(r, βk; ez)

(n− 1)T (r, ez) +O(1)
= 0

and

Θ(∞; g) = 1− lim sup
r−→∞

n−1∑
k=1

N(r, βk; ez)

(n− 1)T (r, ez) +O(1)
= 0,

where β = exp ( 2πi
n ). We note that the polynomial (n − 1)zn − nzn−1 + 1 has

double zero at the point z = 1. Consequently it has n− 1 distinct zeros which are
denoted as uk, k = 1, . . . , n− 1. So

Θ(−an− 1

n
; f) = 1− lim sup

r−→∞

n−1∑
k=1

N(r, uk; ez)

(n− 1)T (r, ez) +O(1)
= 0

and

Θ(−an− 1

n
; g) = 1− lim sup

r−→∞

n−1∑
j=1

N(r, vj ; e
z)

(n− 1)T (r, ez) +O(1)
= 0,

where vj = 1
uj
, j = 1, . . . , n− 1. Therefore Θf (n) + Θg(n) = 0 but f 6≡ g.

We now explain some notations which are used in the paper.
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Definition 1.3. [7] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the count-
ing function of the simple a-points of f . For a positive integer m we denote by
N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those a-points of f whose
multiplicities are not greater(less) than m where each a-point is counted according
to its multiplicity.
N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the

a-points of f we ignore the multiplicities.
Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are

defined analogously.

Definition 1.4. [1] We denote by N(r, a; f | = k) the reduced counting function of
those a-points of f whose multiplicities are exactly k, where k ≥ 2 is an integer.

Definition 1.5. [1] Let f and g be two non-constant meromorphic functions such
that f and g share (a, k) where a ∈ C ∪ {∞}. Let z0 be an a-point of f with
multiplicity p, an a-point of g with multiplicity q. We denote by NL(r, a; f) the

counting function of those a-points of f and g where p > q,by N
(k+1

E (r, a; f) the
counting function of those a-points of f and g where p = q ≥ k + 1; each point
in this counting function is counted only once. In the same way we can define

NL(r, a; g) and N
(k+1

E (r, a; g).

Definition 1.6. [8, 9] Let f , g share a value a ∈ C IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.

ClearlyN∗(r, a; f, g) ≡ N∗(r, a; g, f) andN∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

Definition 1.7. [12] Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f |
g 6= b1, b2, . . . , bq) the counting function of those a-points of f , counted according
to multiplicity, which are not bi-points of g for i = 1, 2, . . . , q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two non-constant meromorphic functions defined as follows.

(2.1) F =
fn−1(f + a)

−b
, G =

gn−1(g + a)

−b
,

where a, b two nonzero constants defined as in Theorem C.
Henceforth we shall denote by H, Φ and V the following three functions

H = (
F
′′

F ′
− 2F

′

F − 1
)− (

G
′′

G′
− 2G

′

G− 1
),

Φ =
F
′

F − 1
− G

′

G− 1
and

V =
f
′

f
− g

′

g
.

Lemma 2.1. ([9], Lemma 1) Let F , G share (1, 1) and H 6≡ 0. Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).
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Lemma 2.2. Let S1, S2 and S3 be given as Theorem 1.1 and F , G be given as (2.1).
If for two non-constant meromorphic functions f and g Ef (S1, 0) = Eg(S1, 0),
Ef (S2, 0) = Eg(S2, 0), Ef (S3, 0) = Eg(S3, 0) and H 6≡ 0 then

N(r,H) ≤ N∗(r, 0, f, g) +N∗(r, 1;F,G) +N(r,−an− 1

n
; f) +N(r,−an− 1

n
; g)

+N∗(r,∞; f, g) +N0(r, 0; f
′
) +N0(r, 0; g

′
),

where N0(r, 0; f
′
) is the reduced counting function of those zeros of f

′
which are

not the zeros of f(F − 1) and N0(r, 0; g
′
) is similarly defined.

Proof. Since Ef (S1, 0) = Eg(S1, 0) it follows that F and G share (1, 0). We have
from (2.1) that

F
′

=
[nf + (n− 1)a]fn−2f

′

(−b)
and

G
′

=
[ng + (n− 1)a]gn−2g

′

(−b)
.

We can easily verify that possible poles of H occur at (i) those zeros of f and g
whose multiplicities are different related to f and g, (ii)zeros of nf + a(n− 1) and
ng + a(n− 1), (iii) those poles of f and g whose multiplicities are different related
to f and g, (iv) those 1-points of F and G with different multiplicities, (v) zeros

of f
′

which are not the zeros of f(F − 1), (vi) zeros of g
′

which are not zeros of
g(G− 1).

Since H has only simple poles, the lemma follows from above. This proves the
lemma. �

Lemma 2.3. [16] Let f be a non-constant meromorphic function and P (f) =
a0 + a1f + a2f

2 + . . . + anf
n, where a0, a1, a2 . . . , an are constants and an 6= 0.

Then T (r, P (f)) = nT (r, f) +O(1).

Lemma 2.4. [3] Let F and G be given as (2.1). If f , g share (0, 0) and 0 is not
an Picard exceptional value of f and g. Then Φ ≡ 0 implies F ≡ G.

Lemma 2.5. [3] Let F and G be given as (2.1), n ≥ 3 an integer and Φ 6≡ 0. If
F , G share (1,m), f , g share (0, p), (∞, k),where 0 ≤ p <∞ then

[(n− 1)p+ (n− 2)] N(r, 0; f | ≥ p+ 1) ≤ N∗(r, 1;F,G) +N∗(r,∞;F,G)

+S(r, f) + S(r, g).

Lemma 2.6. Let f , g be two nonconstant meromorphic functions. Also let F , G
be given as (2.1), n ≥ 3 an integer and V 6≡ 0. If F , G share (1,m) and f , g share
(0, p), (∞, k), where 1 ≤ m ≤ ∞ then

mN∗(r, 1;F,G) ≤ N∗(r, 0; f, g) +N∗(r,∞; f, g) + S(r, f) + S(r, g).

Proof. Note that

mN∗(r, 1;F,G)

≤ N(r, 0;V )

≤ N(r, V ) + S(r, f) + S(r, g)

≤ N∗(r, 0; f, g) +N∗(r,∞; f, g) + S(r, f) + S(r, g).

�
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Lemma 2.7. Let f , g be two nonconstant meromorphic functions. Also let F , G
be given as (2.1), n ≥ 3 an integer and V 6≡ 0, Φ 6≡ 0. If F , G share (1,m), where
m ≥ 2, if n ≥ 3 ; m ≥ 1, if n ≥ 4 and f , g share (0, 0), (∞, k), 0 ≤ k ≤ ∞ then

N(r, 0; f) ≤ m+ 1

(n− 2)m− 1
N∗(r,∞; f, g) + S(r, f) + S(r, g),

Similar result holds for g also.

Proof. Using Lemma 2.5 and Lemma 2.6 for p = 0 we see that

(n− 2)N(r, 0; f) ≤ N∗(r, 1;F,G) +N∗(r,∞; f, g) + S(r, f) + S(r, g)

≤ 1

m
N(r, 0; f) +

m+ 1

m
N∗(r,∞; f, g) + S(r, f) + S(r, g),

from which the lemma follows. �

Lemma 2.8. ([10], Lemma 5) If two nonconstant meromorphic functions f , g
share (∞, 0) then for n ≥ 2

fn−1(f + a)gn−1(g + a) 6≡ b2,

where a, b are finite nonzero constants.

Lemma 2.9. [13] If N(r, 0; f (k) | f 6= 0) denotes the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according
to its multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 2.10. Let F , G be given as (2.1), F , G share (1,m), 2 ≤ m < ∞ and
Φ 6≡ 0 and n ≥ 3.Also f ,g share (0, 0) and (∞,∞). Then

N(r, 0; f) ≤ 1

m(n− 2)− 1
N(r,∞; f) + S(r, f).

Proof. Using Lemma 2.3 and Lemma 2.9 we see that

N∗(r, 1;F,G) ≤ N(r, 1;F |≥ m+ 1)

≤ 1

m

(
N(r, 1 : F )−N(r, 1;F )

)
≤ 1

m
[

n∑
j=1

(
N(r, ωj ; f)−N(r, ωj ; f)

)
]

≤ 1

m

(
N(r, 0; f

′
| f 6= 0)

)
≤ 1

m

[
N(r, 0; f) +N(r,∞; f)

]
+ S(r, f),

where ω1, ω2 . . . ωn are the distinct roots of the equation zn + azn−1 + b = 0. Rest
of the proof follows from the Lemma 2.5 for p = 0.This proves the lemma. �

Lemma 2.11. Let F , G be given as (2.1), F , G share (1,m), 2 ≤ m < ∞ and
Φ 6≡ 0 and n ≥ 3.Also f , g share (0, 0) and (∞,∞). Then

NL(r, 1;F ) ≤ m(n− 2)

(m+ 1)[m(n− 2)− 1]
N(r,∞; f) + S(r, f).
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Proof. Using Lemma 2.10 and then proceeding as in the proof of Lemma 2.11 we
have

NL(r, 1;F ) ≤ N(r, 1;F |≥ m+ 2)

≤ 1

m+ 1

[
N(r, 0; f) +N(r,∞; f)

]
+ S(r, f).

�

Lemma 2.12. [1] Let f and g be two nonconstant meromorphic functions sharing
(1,m), where 2 ≤ m <∞. Then

N(r, 1; f | = 2) + 2 N(r, 1; f | = 3) + . . .+ (m− 1) N(r, 1; f | = m) +m NL(r, 1; f)

+(m+ 1) NL(r, 1; g) +m N
(m+1

E (r, 1; g) ≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.13. Let F , G be given by (2.1) and they share (1,m). If f , g share
(0, p), (∞, k), where 0 ≤ p ≤ ∞, 0 ≤ k ≤ ∞ and 2 ≤ m <∞ and H 6≡ 0.

nT (r, f) ≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+N(r, 0; f) +N(r, 0; g) +N∗(r, 0; f, g) +N∗(r,∞; f, g)

−(m− 2)N∗(r, 1;F,G)−NL(r, 1;G) + S(r, f) + S(r, g).

Similar result holds for g.

Proof. Using Lemma 2.9 and Lemma 2.12 we see that

N0(r, 0; g
′
) +N(r, 1;F |≥ 2) +N∗(r, 1;F,G)(2.2)

≤ N0(r, 0; g
′
) +N(r, 1;F | = 2) +N(r, 1;F | = 3) + . . .+N(r, 1;F | = m)

+N
(m+1

E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N∗(r, 1;F,G)

≤ N0(r, 0; g
′
)−N(r, 1;F | = 3)− . . .− (m− 2)N(r, 1;F | = m)

−(m− 1)NL(r, 1;F )−mNL(r, 1;G)− (m− 1)N
(m+1

E (r, 1;F )

+N(r, 1;G)−N(r, 1;G) +N∗(r, 1;F,G)

≤ N0(r, 0; g
′
) +N(r, 1;G)−N(r, 1;G)− (m− 2)NL(r, 1;F )

−(m− 1)NL(r, 1;G)

≤ N(r, 0; g
′
| g 6= 0)− (m− 2)NL(r, 1;F )− (m− 1)NL(r, 1;G)

≤ N(r, 0; g) +N(r,∞; g)− (m− 2)N∗(r, 1;F,G)−NL(r, 1;G),
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where N0(r, 0; g
′
) has the same meaning as in the Lemma 2.2. Hence using (2.2),

Lemmas 2.1, 2.2, Lemma 2.3 get from second fundamental theorem that

n T (r, f)(2.3)

≤ N(r, 0; f) +N(r,∞; f) +N(r, 1;F |= 1) +N(r, 1;F |≥ 2)

−N0(r, 0; f
′
) + S(r, f)

≤ N(r, 0; f) +N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,−an− 1

n
; g)

+N∗(r, 0; f, g) +N∗(r,∞; f, g) +N∗(r, 1;F,G) +N(r, 1;F | ≥ 2)

+N0(r, 0; g
′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+N(r, 0; f) +N(r, 0; g) +N∗(r,∞; f, g) +N∗(r, 0; f, g)

−(m− 2)N∗(r, 1;F,G)−NL(r, 1;G) + S(r, f) + S(r, g).

This proves the Lemma. �

Lemma 2.14. Let f , g be two non-constant meromorphic functions sharing (0,∞),
(∞,∞) and Θf (n) + Θg(n) > 0. Then fn−1(f + a) ≡ gn−1(g + a) implies f ≡ g,
where n (≥ 3) is an integer and a is a nonzero finite constant.

Proof. Let

fn−1(f + a) ≡ gn−1(g + a)(2.4)

and suppose f 6≡ g. We consider two cases:
Case I Let y = g

f be a constant. Then from (2.4) it follows that y 6= 1, yn−1 6= 1,

yn 6= 1 and f ≡ −a 1−yn−1

1−yn , a constant, which is impossible.

Case II Let y = g
f be non-constant. Then

f ≡ −a 1− yn−1

1− yn
≡ a

(
yn−1

1 + y + y2 + . . .+ yn−1
− 1

)
.(2.5)

and

f + a
(n− 1)

n
≡ −a (n− 1)yn − nyn−1 + 1

n(1− yn)
.(2.6)

If we assume

p(z) = (n− 1)zn − nzn−1 + 1,

then p(0) 6= 0 and p(1) = p
′
(1) = 0. From (2.5) we see in view of Lemma 2.3 that

T (r, f) = (n− 1)T (r, y) + S(r, y).

Since f , g share (0,∞) and (∞,∞) we see that y has no zeros and pole. So from
(2.5) and (2.6) we see that

n−1∑
j=1

N(r, uj ; y) ≤ N(r,−an− 1

n
; f),

n−1∑
k=1

N(r, αk; y) ≤ N(r,∞; f)

where uj , j = 1, 2, . . . , n − 1 has the same meaning as used in Example 1.1 and

αk = exp ( 2kπi
n ) for k = 1, 2, . . . , n− 1.
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By the second fundamental theorem we get

(2n− 2) T (r, y) ≤
n−1∑
j=1

N(r, uj ; y) +

n−1∑
k=1

N(r, αk; y) + S(r, y)

≤ N(r,−an− 1

n
; f) +N(r,∞; f) + S(r, y)

≤ (2−Θf (n) + ε) T (r, f) + S(r, y)

= (n− 1) (2−Θf (n) + ε) T (r, y) + S(r, y)

i.e.,

2n− 2

n− 1
T (r, y) ≤ (2−Θf (n) + ε) T (r, y) + S(r, y),(2.7)

where 0 < 2ε < Θf (n) + Θg(n).
Again putting y1 = 1

y and noting that T (r, y) = T (r, y1) +O(1) and proceeding

as above we get that

2n− 2

n− 1
T (r, y) ≤ (2−Θg(n) + ε) T (r, y) + S(r, y).(2.8)

Adding (2.7) and (2.8) we get(
4n− 4

n− 1
− 4 + Θf (n) + Θg(n)− 2ε

)
T (r, y) ≤ S(r, y),

which is a contradiction.
Hence f ≡ g and this proves the lemma. �

Lemma 2.15. ([19], Lemma 6) If H ≡ 0, then F , G share (1,∞). If further F ,
G share (∞, 0) then F , G share (∞,∞).

Lemma 2.16. Let F , G be given by (2.1) and F , G share (1,m), where 1 ≤ m <∞
and n(≥ 3) is an integer. Also let f , g share (0, 0), (∞, k) and H ≡ 0. Then f ≡ g
if Θf (n) + Θg(n) > 0.

Proof. Since H ≡ 0 we get from Lemma 2.13, F and G share (1,∞) and (∞,∞)
and so f and g share (∞,∞). Also

(2.9) F ≡ AG+B

CG+D
,

where A, B, C, D are constants and AD −BC 6= 0. Again

(2.10) T (r, f) = T (r, g) +O(1).

We now consider the following cases:
Case 1. Let AC 6= 0. Since f , g share (∞,∞), it follows from (2.9) that f , g have
no pole. Again since

F ≡
A+ B

G

C + D
G

,

it follows that F − A
C has no zero. So by the second fundamental theorem we get

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r,
A

C
;F ) + S(r, F )

= N(r, 0; f) +N(r,−a; f) + S(r, f)

≤ 2T (r, f) + S(r, f),



FURTHER RESULTS ON THE UNIQUENESS OF MEROMORPHIC FUNCTIONS 201

which in view of by Lemma 2.3 gives a contradiction for n ≥ 3.
Case 2. Let A 6= 0 and C = 0. Then F ≡ αG+ β, where α = A

D 6= 0 and β = B
D .

Subcase 2.1: Let β = 0. Then we get F ≡ αG. From the definitions of F , G and
the statement of the lemma it follows that 1 can not be a Picard exceptional value
(e.v.P.) of F and G. For if it happens, then f omits atleast 3 distinct values, which
is impossible. Since F , G share (1,∞), it follows that α = 1 and so F ≡ G. This
together with the assumption that f and g share (0, 0) implie that f and g share
(0,∞). Hence by Lemma 2.14 we get f ≡ g.
Subcase 2.2: Let β 6= 0. Clearly α 6= 1, as F , G share (1,∞). Since f , g share
(0, 0), it follows that f , g have no zero. First we note that β can not be an e.v.P.
value of F . For, if it happens then f omits the values 0 together with the distinct
roots of the equation zn+azn−1 + bβ = 0. Since there can be at most one repeated
root of the equation zn + azn−1 + bβ = 0 at the point z = −an−1n , it follows that f
omits 0 and at least n− 1 non zero distinct values for n ≥ 3, which is impossible.

First we suppose that F − β has no repeated zero. We note that N(r, β;F ) ≤
N(r,−a; g). So by the second fundamental theorem we get

nT (r, f) ≤ N(r, 0; f) +N(r,∞; f) +N(r, β;F ) + S(r, F )

≤ N(r,∞; f) +N(r,−a; g) + S(r, F )

≤ 2T (r, f) + S(r, f),

which is a contradiction for n ≥ 3.
Next we suppose that F − β has repeated zeros. Clearly F − β can have only

one repeated zero of multiplicity 2. Now in the view of (2.10) we get by the second
fundamental theorem that

(n− 1) T (r, f) ≤ N(r, 0; f) +N(r,∞; f) +N(r, β;F ) + S(r, f)

≤ N(r,∞; f) +N(r,−a; g) + S(r, f)

≤ 2 T (r, f) + S(r, f),

which is a contradiction for n ≥ 4.
When n = 3 we get from above

2 T (r, f) ≤ (2−Θf (n) +
1

2
ε)T (r, f) + S(r, f).

Similarly we have

2 T (r, g) ≤ (2−Θg(n) +
1

2
ε)T (r, g) + S(r, g).

Adding we get in view of (2.10),

4 T (r, f) ≤ (4−Θf (n)−Θg(n) + ε) T (r, f) + S(r, f),

which is impossible since Θf (n) + Θg(n) > 0.

Case 3: Let A = 0 and C 6= 0. Then F ≡ 1
γG+δ , where γ = C

B 6= 0 and δ = D
B .

Subcae 3.1: Let δ = 0. Then F ≡ 1
γG . Since F , G share (1,∞), it follows that

γ = 1 and then FG ≡ 1, which is impossible by Lemma 2.8.
Subcase 3.2: Let δ 6= 0. Clearly γ 6= 1, as F , G share (1,∞). Since f , g share
(0, 0), it follows that f , g have no zero. Again since F , G share (∞,∞), it follows
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that F , G have no pole. Consequently G + δ
γ has no zero. Then by the second

fundamental theorem we get

T (r,G) ≤ N(r, 0;G) +N(r,∞;G) +N(r,
−δ
γ

;G) + S(r,G)

≤ N(r,−a; g) + S(r, g),

which is impossible for n ≥ 3.
This completes the proof of the Lemma. �

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1). Then F and G share (1, 3),
(∞,∞).
We consider the following cases.
Case 1. Let H 6≡ 0. Clarly F 6≡ G. Suppose 0 is not an e.v.P of f and g then by
Lemma 2.4 we get Φ 6≡ 0.
Subcase 1.1: Suppose that V 6≡ 0. Since f , g share (0, 0) it follows that
N∗(r, 0; f, g) ≤ N(r, 0; f). Now from Lemma 2.7 with m = 3 and Lemma 2.13 we
obtain for ε > 0,

nT (r, f)(3.1)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+3 N(r, 0; f)−N∗(r, 1;F,G)−NL(r, 1;G) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+
12

3n− 7
N∗(r,∞; f, g) + S(r, f) + S(r, g)

≤
(

2−Θf (n) +
1

2
ε

)
T (r, f) +

(
2−Θg(n) +

1

2
ε

)
T (r, g) + S(r, f) + S(r, g)

≤ (4−Θf (n)−Θg(n) + ε)T (r) + S(r).

In a similar way we can obtain

nT (r, g) ≤ (4−Θf (n)−Θg(n) + ε)T (r) + S(r).(3.2)

Combining (3.1) and (3.2) we get

(n− 4 + Θf (n) + Θg(n)− ε)T (r) ≤ S(r).(3.3)

Since ε > 0, (3.3) leads to a contradiction.
Subcase 1.2: Suppose V ≡ 0. Then integrating we get f ≡ cg, where c is a
non-zero constant. Since f and g share (0, 0), it follow that f and g share (0,∞)
and hence N∗(r, 0; f, g) = 0. Now from Lemma 2.5 with p = 0 and Lemma 2.13 we
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obtain for ε > 0

nT (r, f)(3.4)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+2 N(r, 0; f)−N∗(r, 1;F,G)−NL(r, 1;G) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+
2

n− 2
N∗(r, 1;F,G)−N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+S(r, f) + S(r, g)

≤
(

2−Θf (n) +
1

2
ε

)
T (r, f) +

(
2−Θg(n) +

1

2
ε

)
T (r, g) + S(r, f) + S(r, g)

≤ (4−Θf (n)−Θg(n) + ε)T (r) + S(r).

So by the similar argument as done in Subcase 1.1 we get

(n− 4 + Θf (n) + Θg(n)− ε)T (r) ≤ S(r).(3.5)

Since ε > 0, (3.5) leads to a contradiction.
If 0 is an e.v.P of f and g then (3.1) and (3.4) automatically hold.
Case 2. Let H ≡ 0. Then the theorem follows from Lemma 2.16. �

Proof of Theorem 1.2. Let F , G be given by (2.1). Then F and G share (1, 2),
(∞,∞).
We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Suppose 0 is not an e.v.P. of f and g then by
Lemma 2.4 we get Φ 6≡ 0.
Subcase 1.1: Suppose that V 6≡ 0. Now from Lemma 2.7 with m = 2 and Lemma
2.13 we obtain for ε > 0,

nT (r, f)(3.6)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+3 N(r, 0; f)−NL(r, 1;G) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+
9

2n− 5
N∗(r,∞; f, g) + S(r, f) + S(r, g)

≤
(

2−Θf (n) +
1

2
ε

)
T (r, f) +

(
2−Θg(n) +

1

2
ε

)
T (r, g) + S(r, f) + S(r, g)

≤ (4−Θf (n)−Θg(n) + ε)T (r) + S(r).

So by the similar argument as done in Subcase 1.1 of Theorem 1.1 we obtain

(n− 4 + Θf (n) + Θg(n)− ε)T (r) ≤ S(r).(3.7)

Since ε > 0, (3.7) leads to a contradiction.
Subcase 1.2: Suppose V ≡ 0. Then integrating we get f ≡ cg, where c is a
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non-zero constant. Now from Lemma 2.5 with p = 0, Lemma 2.11 and Lemma 2.13
we obtain for ε > 0

nT (r, f)(3.8)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+2 N(r, 0; f)−NL(r, 1;G) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+
2

n− 2
N∗(r,∞; f, g)−N∗(r, 1;F,G) +NL(r, 1;F )

+S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+
2n− 4

6n− 15
N(r,∞; f) + S(r, f) + S(r, g)

≤
(

2−Θf (n) +
1

2
ε

)
T (r, f) +

(
2−Θg(n) +

1

2
ε

)
T (r, g) +

2n− 4

6n− 15
T (r, f)

+S(r, f) + S(r, g)

≤
(

4 +
2n− 4

6n− 15
−Θf (n)−Θg(n) + ε

)
T (r) + S(r).

In a similar way we can obtain

nT (r, g) ≤
(

4 +
2n− 4

6n− 15
−Θf (n)−Θg(n) + ε

)
T (r) + S(r).(3.9)

Combining (3.8) and (3.9) we get

(
n− 4 +

8− 2n

6n− 15
− 4

6n− 15
+ Θf (n) + Θg(n)− ε

)
T (r) ≤ S(r).(3.10)

Since ε > 0, (3.10) leads to a contradiction.
If 0 is an e.v.P of f and g then (3.6) and (3.8) automatically hold.
Case 2. Let H ≡ 0. Then the theorem follows from Lemma 2.16. �

Proof of Theorem 1.3. Let F , G be given by (2.1). Then F and G share (1, 4),
(∞,∞). We consider the following cases.
Case 1. Let H 6≡ 0. Then F 6≡ G. Suppose 0 is not an e.v.P. of f and g then by
Lemma 2.4 we get Φ 6≡ 0.
Subcase 1.1: Suppose that V 6≡ 0. Now from Lemma 2.7 with m = 4 and Lemma
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2.13 we obtain for ε > 0,

nT (r, f)(3.11)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+3 N(r, 0; f)− 2 N∗(r, 1;F,G)−NL(r, 1;G) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+
15

4n− 9
N∗(r,∞; f, g) + S(r, f) + S(r, g)

≤
(

2−Θf (n) +
1

2
ε

)
T (r, f) +

(
2−Θg(n) +

1

2
ε

)
T (r, g) + S(r, f) + S(r, g)

≤ (4−Θf (n)−Θg(n) + ε)T (r) + S(r).

By the same argument as done in the proof of Theorem 1.1 we arrive at a contra-
diction.
Subcase 1.2: Suppose V ≡ 0. Then integrating we get f ≡ cg, where c is a
non-zero constant. Now from Lemma 2.5 with p = 0 and Lemma 2.13 we obtain
for ε > 0

nT (r, f)(3.12)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+2 N(r, 0; f)− 2 N∗(r, 1;F,G)−NL(r, 1;G) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+
2

n− 2
N∗(r, 1;F,G)− 2 N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,−an− 1

n
; f) +N(r,∞; g) +N(r,−an− 1

n
; g)

+S(r, f) + S(r, g)

≤
(

2−Θf (n) +
1

2
ε

)
T (r, f) +

(
2−Θg(n) +

1

2
ε

)
T (r, g) + S(r, f) + S(r, g)

≤ (4−Θf (n)−Θg(n) + ε)T (r) + S(r).

In this case also we arrive at a contradiction.
If 0 is an e.v.P of f and g then (3.11) and (3.12) automatically hold.
Case 2. Let H ≡ 0. Then the theorem follows from Lemma 2.16. �
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