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ON ABSOLUTE ALMOST MATRIX SUMMABILITY OF

ORTHOGONAL SERIES

XHEVAT Z. KRASNIQI

(Communicated by Nihal YILMAZ ÖZGÜR)

Abstract. In this paper we present some results on absolute almost matrix
summability of an orthogonal series. Precisely, some sufficient conditions un-

der which an orthogonal series will be absolute almost matrix summable are

obtained. The most important corollaries of the main results also are deduced.

1. Introduction

As is known the absolute summability is a generalization of the concept of the
absolute convergence just as the summability is an extension of the concept of the
convergence. Lorentz [5], for the first time in 1948, defined almost convergence of
a bounded sequence and it is shown in [6] that every convergent sequence is almost
convergent. The idea of almost convergence led up to the definition of almost
generalized Nörlund summability introduced by Qureshi [22] which includes almost
Nörlund, Riesz, harmonic and Cesàro summability as particular cases.

The absolute summability of an orthogonal series has been studied by many
authors, and for such examples, one can see the papers of Tandori [11], Leindler
[7]–[10], Okuyama and Tsuchikura [12], Okuyama [13]–[16], Szalay [17], Billard
[18], Grepaqevskaya [19], Spevakov and Kudrajatsev [20], and also recently by the
present author [24]–[28]. Here in this paper, we shall not consider simply the
absolute almost matrix summability of an orthogonal series but its absolute almost
matrix summability of order k, 1 ≤ k ≤ 2, which is our main aim. Note that
this notion has been introduced by present author [26] motivated from a definition
introduced by T. M. Flett [4].

2. Notations and notions

Let
∑∞
n=0 an be a given infinite series with its partial sums {sn}. A sequence

s := {sn} is said to be almost convergent to a limit ` if

lim
n→∞

1

n+ 1

n+m∑
v=m

sv = `,
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uniformly with respect to m.
Let A := (anv) be a lower triangular matrix of non-zero diagonal entries.
The matrix A defines the sequence-to-sequence transformation, mapping the

sequence s := {sn} to As := {An(s)}, where

An(s) :=

n∑
v=0

anvsv, n = 0, 1, 2, . . .

A series
∑∞
n=0 an is said to be almost matrix summable to ` (see [21]) provided

that

An,m(s) =

n∑
v=0

anvsv,m → `

uniformly with respect to m, where

sv,m =
1

v + 1

v+m∑
i=m

si.

The following definition has been introduced in [26]:
A series

∑∞
n=0 an is said to be absolute almost matrix summable, briefly |A|m;k,

k ≥ 1, if
∞∑
n=1

nk−1|4̄An,m(s)|k

converges uniformly with respect to m, where

4̄An,m(s) = An,m(s)−An−1,m(s),

and we write in brief
∞∑
n=0

an ∈ |A|m;k.

In the special case when k = 1, anv = 0 for v = 0, 1, 2, . . . , n − 1, and ann = 1,
then the above definition reduces to the following one introduced in [1]:

A series
∑∞
n=0 an is said to be absolute almost convergent if

∞∑
n=1

|sn,m − sn−1,m|

converges uniformly in m. Note that it was proved in [2] that the convergence of∑∞
n=1 |sn,m − sn−1,m| for only one m implies convergence for any other value of

m. We denote the set of all absolutely convergent sequences and absolutely almost

convergent sequences respectively by ` and ˆ̀. It is shown in [1] (pages 38 and 46)
that the following hold true

` ⊂ ˆ̀⊂ |C, 1| and ˆ̀ 6⊆ `,

where (C, 1) is the set of sequences which are Cesàro summable. It is important
to emphasize here that in [3] also was concluded as follows: if an infinite series is
absolutely almost convergent then it is almost convergent, but the converse of this
is false.
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Let {ϕn(x)} be an orthonormal system defined in the interval (a, b). We assume
that f(x) belongs to L2(a, b) and

(2.1) f(x) ∼
∞∑
n=0

cnϕn(x),

where cn =
∫ b
a
f(x)ϕn(x)dx, (n = 0, 1, 2, . . . ).

Before starting the main results first we introduce some other notations.
For the matrix A := (anv), we associate four lower matrices with entries as

follows:

ānv :=

n∑
i=v

ani, n, i = 0, 1, 2, . . .

ãnv :=

n∑
j=v

anj
j + 1

, n, j = 0, 1, 2, . . .

ânv = ānv − ān−1,v, ˜̃anv = ãnv − ãn−1,v, n = 1, 2, . . .

where we note that â00 = ā00 = a00.
The following lemma due to B. Levi (see, for example [31]) is often used in the

theory of functions. It will help us to prove main results.

Lemma 2.1. If hn(t) ∈ L(U) are non-negative functions and

(2.2)

∞∑
n=1

∫
U

hn(t)dt <∞,

then the series
∞∑
n=1

hn(t)

converges (absolutely) almost everywhere on U to a function h(t) ∈ L(U).

Throughout this paper K denotes a positive constant depending only on k, and
it may be different in different relations.

3. Main Results

Theorem 3.1. If the series

∞∑
n=1

n2(1− 1
k )

n∑
j=0

(
ânj − j˜̃anj

)2 |cm+j |2


k
2

converges uniformly with respect to m for 1 ≤ k ≤ 2, then the orthogonal series

∞∑
n=0

cnϕn(x)

is |A|m;k−summable almost everywhere.
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Proof. Let sv(x) =
∑v
j=0 cjϕj(x) be vth partial sums of the series (2.1), and 1 <

k < 2. A straightforward calculation shows that

sv,m(x) =
1

v + 1

v+m∑
k=m

sk(x)

=
1

v + 1

v∑
k=0

sk+m(x)

=
1

v + 1

v∑
k=0

k+m∑
j=0

cjϕj(x)

= sm−1(x) +

v∑
j=0

(
1− j

v + 1

)
cm+jϕm+j(x)

and thus

An,m(s)(x) =

n∑
v=0

anvsv,m(x)

=

n∑
v=0

anv

sm−1(x) +

v∑
j=0

(
1− j

v + 1

)
cm+jϕm+j(x)


= sm−1(x) +

n∑
v=0

anv

v∑
j=0

cm+jϕm+j(x)−
n∑
v=0

anv
v + 1

v∑
j=0

jcm+jϕm+j(x)

= sm−1(x) +

n∑
j=0

cm+jϕm+j(x)

n∑
v=j

anv −
n∑
j=0

jcm+jϕm+j(x)

n∑
v=j

anv
v + 1

= sm−1(x) +

n∑
j=0

ānjcm+jϕm+j(x)−
n∑
j=0

jãnjcm+jϕm+j(x)

= sm−1(x) +

n∑
j=0

(ānj − jãnj) cm+jϕm+j(x).

Hence, we obtain

4̄An,m(s)(x) = An,m(s)(x)−An−1,m(s)(x)

=

n∑
j=0

(ānj − jãnj) cm+jϕm+j(x)−
n−1∑
j=0

(ān−1,j − jãn−1,j) cm+jϕm+j(x)

=

n∑
j=0

[
(ānj − ān−1,j)− j (ãnj − ãn−1,j)

]
cm+jϕm+j(x)

=

n∑
j=0

(
ânj − j˜̃anj

)
cm+jϕm+j(x).

Using the Hölder’s inequality, orthogonality, and the above equality we have that
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∫ b

a

|4̄An,m(s)(x)|kdx ≤ (b− a)
1− k

2

(∫ b

a

|An,m(s)(x)−An−1,m(s)(x)|2dx

) k
2

= K

∫ b

a

∣∣∣∣ n∑
j=0

(
ânj − j˜̃anj

)
cm+jϕm+j(x)

∣∣∣∣2dx
 k

2

= K


n∑
j=0

(
ânj − j˜̃anj

)2 |cm+j |2


k
2

.

Furthermore, the series
(3.1)

∞∑
n=1

nk−1

∫ b

a

|4̄An,m(s)(x)|kdx ≤ K
∞∑
n=1

nk−1


n∑
j=0

(
ânj − j˜̃anj

)2 |cm+j |2


k
2

converges, since the last one converges (by assumption) uniformly with respect to
m. Since the functions |4̄An,m(s)(x)| are non-negative, then by the Lemma 2.1
the series

∞∑
n=1

nk−1|4̄An,m(s)(x)|k

converges almost everywhere. For k = 1 we use the Schwartz’s inequality, until for
k = 2 we use just the orthogonality. This completes the proof of the theorem. �

We note that:

1. The absolute almost matrix summability of order k reduces to the absolute
almost generalized Nörlund summability of order k (|N, p, q|m;k−summability),
if

anv =
pn−vqv
Rn

for 0 ≤ v ≤ n,

anv = 0 for v > n,

where for two given sequences of positive real constants p = {pn} and
q = {qn}, the convolution Rn := (p ∗ q)n is defined by

(p ∗ q)n =

n∑
v=0

pvqn−v =

n∑
v=0

pn−vqv.

2. The absolute almost generalized Nörlund summability of order k reduces to
the absolute almost Nörlund summability of order k (|N, p|m;k−summability,
Rn ≡ Pn), if qn = 1 for all n.

3. The absolute almost generalized Nörlund summability of order k reduces to
the absolute almost Riesz summability of order k (|N, q|m;k−summability,
Rn ≡ Qn), if pn = 1 for all n.

4. In the special case when pn =
(
n+α−1
α−1

)
, α > 0, the absolute almost Nörlund

summability of order k reduces to the absolute almost generalized Cesàro
summability of order k.
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5. If pn = 1/(n + 1) the absolute almost Nörlund summability of order k
reduces to the absolute almost harmonic summability of order k.

In the following we shall use the notations

Rjn :=

n∑
v=j

pn−vqv, Rnn−1 = 0, R0
n = Rn

R̂jn :=

n∑
v=j

pn−vqv
v + 1

, R̂nn−1 = 0.

Since

ânj − j˜̃anj = ānj − ān−1,j − j (ãnj − ãn−1,j)

=

n∑
i=j

ani −
n−1∑
i=j

an−1,i − j

 n∑
i=j

ani
i+ 1

−
n−1∑
i=j

an−1,i

i+ 1


=

1

Rn

n∑
i=j

pn−iqi −
1

Rn−1

n−1∑
i=j

pn−iqi

−j

 1

Rn

n∑
i=j

pn−iqi
i+ 1

− 1

Rn−1

n−1∑
i=j

pn−iqi
i+ 1


=

Rjn
Rn
−
Rjn−1

Rn−1
− j

(
R̂jn
Rn
−
R̂jn−1

Rn−1

)
,

then we obtain

Corollary 3.1 ([28]). If the series

∞∑
n=1

n2(1− 1
k )

n∑
j=0

[
Rjn
Rn
−
Rjn−1

Rn−1
− j

(
R̂jn
Rn
−
R̂jn−1

Rn−1

)]2

|cm+j |2


k
2

converges uniformly with respect to m for 1 ≤ k ≤ 2, then the orthogonal series
∞∑
n=0

cnϕn(x)

is |N, p, q|m;k−summable almost everywhere.

Also the following corollaries can be obtain from the above theorem:

Corollary 3.2 ([28]). If for 1 ≤ k ≤ 2 the series

∑∞
n=1

(
n(1− 1

k )pn
PnPn−1

)k {∑n
j=1 p

2
n−j

[
1− Pn−1−j

pn−j
+ j

∑n−j
v=0

Pn−(n+1−v)pn
(n−v)(n+1−v)pnpn−j

pv

]2
|cm+j |2

} k
2

converges uniformly with respect to m, then the orthogonal series
∞∑
n=0

cnϕn(x)

is |N, p|m;k−summable almost everywhere.
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Corollary 3.3 ([28]). If for 1 ≤ k ≤ 2 the series

∞∑
n=1

(
n(1− 1

k )qn
QnQn−1

)k
n∑
j=1

[
Qj−1 + j

 Qn
n+ 1

−
n∑
v=j

qv
v + 1

]2

|am+j |2


k
2

converges uniformly with respect to m, then the orthogonal series

∞∑
n=0

cnϕn(x)

is |N, q|m;k−summable almost everywhere.

Now we shall prove a very general theorem on |A|m;k−summability almost every-
where of an orthogonal series. It involves a positive sequence that satisfies certain
conditions. We prove this theorem by Okuyama ([13]) and Ul’yanov’s ([23]) scheme
modifying it accordingly.

Indeed, if we put

(3.2) B(k)(j) :=
1

j
2
k−1

∞∑
n=j

n
2
k

(
ânj − j˜̃anj

)2
then the following theorem holds true.

Theorem 3.2. Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that {Ω(n)/n}
is a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n) converges. If the following

series
∑∞
n=1 |cm+n|2Ω

2
k−1(n)B(k)(n) converges uniformly with respect to m, then

the orthogonal series
∑∞
n=0 cnϕn(x) ∈ |A|m;k almost everywhere, where B(k)(n) is

defined by (3.2).

Proof. Applying Hölder’s inequality to the inequality (3.1) we get that

∞∑
n=1

nk−1

∫ b

a

|4̄An,m(s)(x)|kdx ≤ K
∞∑
n=1

nk−1


n∑
j=0

(
ânj − j˜̃anj

)2 |cm+j |2


k
2

= K

∞∑
n=1

1

(nΩ(n))
2−k
2

{
nΩ

2
k−1(n)

n∑
j=0

(
ânj − j˜̃anj

)2 |cm+j |2
} k

2

≤ K

( ∞∑
n=1

1

(nΩ(n))

) 2−k
2
{ ∞∑
n=1

nΩ
2
k−1(n)

n∑
j=0

(
ânj − j˜̃anj

)2 |cm+j |2
} k

2

≤ K

{ ∞∑
j=1

|cm+j |2
∞∑
n=j

nΩ
2
k−1(n)

(
ânj − j˜̃anj

)2} k
2

≤ K

{ ∞∑
j=1

|cm+j |2
(

Ω(j)

j

) 2
k−1 ∞∑

n=j

n
2
k

(
ânj − j˜̃anj

)2} k
2

= K

{ ∞∑
j=1

|cm+j |2Ω
2
k−1(j)B(k)(j)

} k
2
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which by assumption is finite uniformly with respect to m. For the proof now
one can do the same reasoning as in the proof of Theorem 3.1. The proof is
completed. �

The following corollaries follow from Theorem 3.2.

Corollary 3.4 ([28]). Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n) converges. If the

series
∞∑
n=1

|cm+n|2Ω
2
k−1(n)N (k)(n)

converges uniformly with respect to m, then the orthogonal series
∞∑
n=0

cnϕn(x) ∈ |N, p, q|m;k

almost everywhere, where N (k)(n) is defined by

N (k)(j) :=
1

j
2
k−1

∞∑
n=j

n
2
k

[
Rjn
Rn
−
Rjn−1

Rn−1
− j

(
R̂jn
Rn
−
R̂jn−1

Rn−1

)]2

.

In the special case, when pv = 1 for all v, we obtain the equality (see for details
[28], page 285 and 287)

Djn :=
Rjn
Rn
−
Rjn−1

Rn−1
− j

(
R̂jn
Rn
−
R̂jn−1

Rn−1

)

= − qn
QnQn−1

[
Qj−1 + j

 Qn
n+ 1

−
n∑
v=j

qv
v + 1

],
and also for qv = 1 and all v

Djn =
pnpn−j
PnPn−1

[
1− Pn−1−j

pn−j
+ j

n−j∑
v=0

Pn − (n+ 1− v)pn
(n− v)(n+ 1− v)pnpn−j

pv

]
.

Therefore we deduce the following.

Corollary 3.5. Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n) converges. If

the series
∞∑
n=1

|cm+n|2Ω
2
k−1(n)R(k)(n)

converges uniformly with respect to m, then the orthogonal series
∞∑
n=0

cnϕn(x) ∈ |N, q|m;k

almost everywhere, where R(k)(n) is defined by

R(k)(j) :=
1

j
2
k−1

∞∑
n=j

n
2
k

 qn
QnQn−1

[
Qj−1 + j

 Qn
n+ 1

−
n∑
v=j

qv
v + 1

]
2

.



ON ABSOLUTE ALMOST MATRIX SUMMABILITY OF ORTHOGONAL SERIES 215

Corollary 3.6. Let 1 ≤ k ≤ 2 and {Ω(n)} be a positive sequence such that
{Ω(n)/n} is a non-increasing sequence and the series

∑∞
n=1

1
nΩ(n) converges. If

the series
∞∑
n=1

|cm+n|2Ω
2
k−1(n)P(k)(n)

converges uniformly with respect to m, then the orthogonal series

∞∑
n=0

cnϕn(x) ∈ |N, p|m;k

almost everywhere, where P(k)(n) is defined by

P(k)(j) :=
1

j
2
k−1

∞∑
n=j

n
2
k

{
pnpn−j
PnPn−1

[
1− Pn−1−j

pn−j
+ j

n−j∑
v=0

Pn − (n+ 1− v)pn
(n− v)(n+ 1− v)pnpn−j

pv

]}2

.
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