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ABSTRACT. In this paper, we extend some estimates of the right and left hand

side of a Hermite- Hadamard type inequality for nonconvex functions whose

derivatives absolute values are ¢-convex and quasi-p-convex was introduced
by Noor in [3].

1. INTRODUCTION

It is well known that if f is a convex function on the interval I = [a,b] and
a,b € I with a < b, then

(1.1) f(a+b>§ . /bf@)d:cgf(a”m.

2 b—a 2

which is known as the Hermite-Hadamard inequality for the convex functions.

Both inequalities hold in the reversed direction if f is concave. We note that
Hadamard’s inequality may be regarded as a refinement of the concept of convexity
and it follows easily from Jensen’s inequality. Hadamard’s inequality for convex
functions has received renewed attention in recent years and a remarkable variety
of refinements and generalizations have been found (see, for example, [1], [2], [8]-
110], [12], [14)-[20]).

In [8] some inequalities of Hermite-Hadamard type for differentiable convex map-
pings connected with the left part of (1.1) were proved by using the following lemma:

Lemma 1.1. Let f : I° C R — R, be a differentiable mapping on I°, a,b € I° (I°
is the interior of I) with a <b. If f' € L([a,b]), then we have

5 e f@aa - £ (250

—(b—a) [fj L' (ta+ (1= t)b)dt + [} (£ = 1) f'(ta+ (1 - t)b)dt} .

(1.2)
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One more general result related to (1.2) was established in [9]. The main result
in [8] is as follows:

Theorem 1.1. Let f : I C R — R, be a differentiable mapping on I°, a,b € I with
a < b. If the mapping |f’| is convex on [a,b], then

ia/abf(x)dx_f(a;b) Sb;a(lf’(a)l;rf’(b))

In [1], Dragomir and Agarwal established the following results connected with
the right part of (1.1) as well as to apply them for some elementary inequalities for
real numbers and numerical integration:

(1.3)

Theorem 1.2. Let f : I° C R — R be a differentiable mapping on I°, a,b € I° with
a < b, and f" € L(a,b). If the mapping |f'| is convex on [a,b], then the following
inequality holds:

(1.4) f(“)2 /f )dz

< -0 (LU,

In [12], Pearce and Pecarié proved the following theorem:

Theorem 1.3. Let f : I C R — R, be a differentiable mapping on I°, a,b € I°
with a < b. If the mapping |f'|? is convex on [a,b] for some q > 1, then

ISR LGRSO _a/f (U<W+U%W)3

2
and

(1.6) b_la/:f(:c)dx—f (“‘2”’)‘ < b;a (|f’(a)|q—2|—|f’(b)|q>$'

We recall that the notion of quasi-convex functions generalizes the notion of
convex functions. More precisely, a function f : [a,b] C R — R is said quasi-convex
on [a,b] if

[tz + (1 =t)y) <sup{f(z), f(y)}

for all z,y € [a,b] and t € [0,1]. Clearly, any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are not convex
(see [11)).

The classical Hermite-Hadamard inequality provides estimates of the mean value
of a continuous convex function f : [a,b] — R. Ton in [11] presented some estimates
of the right hand side of a Hermite- Hadamard type inequality in which some quasi-
convex functions are involved. The main results of [11] are given by the following
theorems.

Theorem 1.4. Assume a,b € R with a < b and f : [a,b] — R is a differentiable
function on (a,b). If | f'| is quasi-convex on [a, b], then the following inequality holds

fla) + b*a)
’ 2 b—a/f Jdz

< sup {|f'(a)], |f'(B)I} -
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Theorem 1.5. Assume a,b € R with a < b and f : [a,b] — R is a differentiable
function on (a,b). Assume p € R withp > 1. If |f’|p/p_1 is quasi-convex on [a, b,
then the following inequality holds

fl@+f) 1 f° (b—a)
_bfa/a f(z)dx

p=1
<2 fsw {I@P" e

2(p+1)7

Convexity plays a central and fundamental role in mathematical finance, econom-
ics, engineering, management sciences and optimizastion theory. In recent years,
several extensions and generalizations have been considered for classical convexity.
A significant generalization of convex functions is that of ¢-convex functions intro-
duced by Noor in [3]. In [3] and [7], the authors have studied the basic properties
of the p-convex functions. It is well-know that the yp-convex functions and y-sets
may not be convex functions and convex sets. This class of nonconvex functions
include the classical convex functions and its various classes as special cases. For
some recent results related to this nonconvex functions, see the papers [3]-[7]

2

2. PRELIMINARIES

Let f,o : K — R”, where K is a nonempty closed set in R™, be continuous
functions. First of all, we recall the following well know results and concepts, which
are mainly due to Noor and Noor [3] and Noor [7] as follows:

Definition 2.1. Let u,v € K. Then the set K is said to be ¢ — convex at u with
respect to ¢, if ‘
u+te' (v—u) e K, Yu,v e K, t€[0,1].

Remark 2.1. We would like to mention that the Definition 2.1 of a ¢ — convex set
has a clear geometric interpretation. This definition essentially says that there is
a path starting from a point u which is contained in K. We do not require that
the point v should be one of the end points of the path. This observation plays
an important role in our analysis. Note that, if we demand that v should be an
end point of the path for every pair of points, u,v € K, then €' (v —u) = v —u
if and only if, ¢ = 0, and consequently ¢ — convexity reduces to convexity. Thus,
it is true that every convex set is also an ¢ — convex set, but the converse is not
necessarily true, see [3],[7] and the references therein.

Definition 2.2. The function f on the ¢ — convex set K is said to be ¢ — convex
with respect to ¢, if

flutte” (v—u)) < (1—t)f(u)+tf(v), Vu,v €K, te[0,1].
The function f is said to be ¢ — concave if and only if —f is ¢ — convex. Note
that every convex function is a ¢ — convex function, but the converse is not true.

For eample, the function f : R =R, f(z) = —|z| is not a convex function, but
f(x) = —|z| is a ¢ — convex with respect to ¢ where
(v,0) = 2k, uv >0, keZ
PY = ke, wv <0, k€Z.

Definition 2.3. The function f on the ¢ — convex set K is said to be logarithmic
@ — convex with respect to ¢, such that

£ lutte® (0 =) < (F (@)™ (F@))', woe K, te0,1]
where f(.) > 0.
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Now we define a new definition for quasi-p — convez functions as follows:

Definition 2.4. The function f on the quasi ¢ — convex set K is said to be quasi
@ — convex with respect to ¢, if

f(u+te' (v —u)) <max{f(u),f(v)}.
From the above definitions, we have
(f (W) ™" (f (@)’

(1—=1) f(u) +tf (v)
max {f (u), f(v)} .

In [5], Noor proved the Hermite-Hadamard inequality for the p—convex functions
as follows:

f(u+te'? (v—u))

IAN A IA

Theorem 2.1. Let f : K = [a,a+ €% (b— a)] — (0,00) be a ¢ — convex function
on the interval of real numbers K° (the interior of K) and a,b € K° with a <
a+e¥(b—a)and0<p< 5. Then the following inequality holds:

) a+e'? (b—a)
(2.1) f(W) < wng | S@w

a

f(a)+ f(a+ €% (b—a)) < f(a)+ f(b)
- 2 - 2 '

This inequality can easily show that using the ¢ — conver function’s definition
and f (a+ e (b—a)) < f(b).

In this article, using functions whose derivatives absolute values are ¢-convex
and quasi-p-convex, we obtained new inequalities releted to the right and left side
of Hermite-Hadamard inequality. In particular if ¢ = 0 is taken as, our results
obtained reduce to the Hermite-Hadamard type inequality for classical convex func-
tions.

Throughout this study, we always assume that K = [a,a + €™ (b—a)] and 0 <
© < 7 the interval, unless otherwise specified.

We shall start with the following refinements of the Hermite-Hadamard inequal-
ity for p—convex functions. Firstly, we give the following results connected with
the right part of (2.1):

Theorem 2.2. Let f : K — (0,00) be a differentiable mapping on K°. If |f'|
is p—convex function on the interval of real numbers K° (the interior of K) and
a,b € K with a < a+ €' (b— a). Then, the following inequality holds:

1 ate'?(b-a) fla) + fla+ ¥ (b—a)
ool S 2

< S yr@l+ o).
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Proof. Since K is p—convex with respect to ¢, for every t € [0, 1], we have a +
te’ (b — a) € K. Integrating by parts implies that

/1(1 —2t)f'(a + te'? (b — a))dt
0

(2.3)
ie(h—aNlt 1 ‘
= |:(]- _2t)£1(5(2__tea) (b )):|0+ eitp(b2_ a) A f(a_’_tezgo(b_a))dt
_ fla)+ fla+e?(b—a)) 2 ate’® (b—a)
= — e (b— a) 2o (b — a)? /a f(x)dx

By @—convexity of |f’| and (2.3), we have

N fww+ﬂa+é%b—ww
Y a— f(x))dz —
e (b—a) /a 2

e (b —a)

1 .
. /0(17215)]” (a+te' (ba))dt’

“C9 [ h-2ia- o]+ elr o) a

= D @i+ o).

which completes the proof. ([l

Theorem 2.3. Let f : K — (0,00) be a differentiable mapping on K°. Assume

p € R withp > 1. If |f’|p/p_1 s p—conver function on the interval of real numbers
KO (the interior of K) and a,b € K with a < a + €' (b — a). Then, the following
inequality holds:

1 ate'?(b-a) fla) + fla+ €% (b—a))
VA 2

4%@Cﬁm*+f@3vﬁ
20p+1)7 2
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Proof. From Holder’s inequality and by using (2.3) in the proof of Theorem 2.2, we
have

1 aata fla) + flate¥(b—a)) ‘
f(z))dz —
.

e (b—a 2
ie(h — 1 )
< 6(2‘1)/0 11— 2t| | f'(a+te? (b — a))| dt
i 1 % 1 p p%l
< eg0(1)2‘0(/0 |1—2t|pdt> </0 |f’(a+tei"°(b—a))|‘°1dt>
ei‘P(b —a) ! ’ ! / =1 ’ o7 o
< SO ([n-ara) ([ [a-o1r@ + o] )
::d%—®0ﬂ®*+W@V)p.
2p+1)7 2
This implies ineqyality (2.4). O

Now, we give the following results connected with the left part of (2.1):

Theorem 2.4. Under the assumptions of Theorem 2.2. Then the following in-

equality holds:
| et 20+ ¢ (b~ a)
=0 . e

< D g iro.

Proof. Since K is ¢—convex with respect to ¢, for every ¢ € [0,1], we have a +
te? (b — a) € K. Integrating by parts implies that

/5 L (a4t (b — a))di + [(t C D)+t (b — a))dt

0 2

(2.6)

:[UW+w%wwW%+rv4vm+wqmwﬂl

ceb—a) |, ¢i? (b — a)

—m /O fla+te"(b—a))dt

_ 1 20+ ¢ (b —a) 1 ate(b-a)
- eiv(b— a)f < 2 > B e2% (b — a)? /a f(@)dt.
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By p—convexity of |f’|, we have

1 | /a+ew(ba) fas— f (2a +e?(b— a)) |

e (b—a 2
< e¥(b—a) / t|f'(a+te (b \dt+/ 1—t)‘f’(a+te“"(b—a))‘dt]
< é(b—a) / -0 @) Ol [ (1—t>[(1—t)|f’(a)+t|f’(b)l]dt]
< poa) 'f’(a)lglf’(b)l} |
The proof is completed. O

Theorem 2.5. Under the assumptions of Theorem 2.3. Then the following in-
equality holds:

1 a+e'?(b—a) 2 + eitp(b _ a)
=o=a ), sayie = (*55 )’

(2.7)
. ei@(@—a)( 4 )”[(3|f/<a>|f1+|f’<b>|P“)ppl+(lf'<a>|ff’l+3|f’<b>|f1)ﬂ-

p+1

Proof. From Hélder’s inequality and by using (2.6), we have

a+e'?(b—a) i _
;@)/ i f(m)dx—f(ww)‘

e (b— 2
< e¥(b-a) V:t}f/(aﬂe”(ba))\dH/z (L= 8)|f (a+te( |dt]
< eb-a) (/jt”dt); (/ !f'<a+tei@<ba>>|f1dt>p:
+e“0<b—a></é (-t ) (/ 1£( a+teW<b—a>>»th>T
< 2+<(’;‘+1>) V (L= D1/ @)7 + 217 0) 7] dtr;
+2+((;‘H)) [/ (=0 1f @I7 +17(0)7] dt] B
- L) (AN i@ ) T (e s 7]

which completes the proof. [
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Theorem 2.6. Under the assumptions of Theorem 2.2. Then, the following in-
equality holds:

a+e'?(b—a) i _
. )/a f(:c)dx—f(—2a+e¢(b a))‘

e (b—a 2
(2.8)
< SO () @i+ .

Proof. We consider the inequality (2.7) i.e

a+e'? (b—a) i _
— fla)de — p2r 0 ‘”)‘

e (b—a 2
(2.9)

< ew(fﬁ_ a) (pi 1)’1’ [(3 F (@) 7 + |f’(b)lﬁ)% + (If’(a)lﬁ +3|f’(b)lﬁ) } '

Let a1 = 3|f'(a)|77, by = |f'(B)|77, as = |f'(a)|77, by = 3|f'(b)|7-F. Here
0<(p—1)/p<1,for p>1. Using the fact that,

n

D (an+0k) < ap+ > b,
k=1 k=1

k=1

for (0 <s<1),a1,a2,...,an >0, by,ba,....;b, >0, we obtain

= 1); (1@ + FOF)T + (1@ + 31701 }

e?(b—a) [ 4 R , ,
< S () e s+ o
) b— %
< S0 () @i+ e
which completed proof. ([

Theorem 2.7. Let f :— (0,00) be a differentiable mapping on K°. Assume q € R
with ¢ > 1. If | f'|? is ¢—convex function on the interval of real numbers K° (the
interior of K) and a,b € K with a < a + €'?(b— a). Then the following inequality

holds:
1 ate’(b—a) 2a + e (b —a)
momal e ()

o Kw'(a)w et (ror +2lf’<b>lq>3] |

<
- 8 3 3
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Proof. From Hoélder’s inequality and by using (2.6), we have

a+ei“"(b—a) i _
1 )/ f(x)dx—f(ww)‘

e (b—a 2
< €e¥(b—a) l/OQt\f’(a+tew(b—a))\dt+[(1—t)\f’(a+tew(b—a))\dt1
< €¥(b—a) (/Oztdt>p </02t|f'(a+teiw(ba))|th>q
+ei®(b— a) (/ (1—t)dt>p</l (1-7:)|f'(a+tew(b—a))|th>q
e (b—a) 2 . N N ‘
< 82}[/0 t{(1=1)[f(a)] +t|f(b)|]dt]
M ! _ _ ()4 JPRNT ‘
v [/ =1 [(1-D1F (@) +tf(b)]dt]
(b —a) [ (21 @ +1F O\ | (1@ +2]fG)")?
- S0 (ArlIOn)”, (Ll 2oy
The proof is completed. O

Theorem 2.8. Under the assumptions of Theorem 2.7. Then the following in-

equality holds:
1 ate'®(b—a) 2a + ¢ (b — a)
i e

e (b—a) 21 +1
< 5 (

) @+ 101

1
q

Proof. We consider the inequality (2.7) i.e

1 a+e'? (b—a) 2 i (h —
o | flayd — 0=

2

Gl [<2f’(a)|q3+ |f'<b>|Q>3 N (OIE=T

|

Let a1 = 2|f'(a)|? /3, by = |f'()|* /3, aa = |f'(a)|" /3, by = 2]|f'(b)|? /3. Here
0<1/q <1, for ¢ > 1. Using the fact that

n

D (an+0k) < ap + > b,
k=1 k=1

k=1
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for (0 <s<1),a1,a2,....,an >0, by,ba,...,b, > 0, we obtain

¢ (b—a) l(z (@) + |f'<b>|Q>é . (If’(a)lq +2 |f/<b>|Q)3]

3 3

e (b—a), 20 +1
< OO I @i+ o).
34
This concludes the proof. [

3. HERMITE-HADAMARD TYPE INEQUALITIES FOR QUASI ¢—CONVEX FUNCTIONS

In this section, we prove some new inequalities of Hermite-Hadamard for quasi
b)
p—convex function as follows:

Theorem 3.1. Let f : K — (0,00) be a differentiable mapping on K°. If |f’| is
quasi p—convex function on the interval of real numbers K° (the interior of K)
and a,b € K with a < a + €“?(b— a). Then the following inequality holds:

| et £(@)+ fla +te'#(b— a)) |
- - flx)dx —
).

et (b 2

e (b—a)

< T max{[f(a)l, [F 01}

Proof. By quasi p—convexity of |f’| and by using (2.3), we have

1 e fla) + fla+te'(b - a))
womal e z

< (b2_)/ (1= 20)[ [ f'(a+ e’ (b — a))| dt

< Sl @l o0 [ 1020
< oD a7 0

which completes the proof. ([l

Theorem 3.2. Let f : K — (0,00) be a differentiable mapping on K°.Assume

p € R withp > 1. If |f’|p/p_1 s quasi @—conver function on the interval of real
numbers K° (the interior of K) and a,b € K with a < ¢*°(b — a). Then the
following inequality holds:

1 ate™(b-a)  fla) + flatte (b - a))
e (b—a) /a f(w)dz 2

O gl @) T

Q(p—l— l)p
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‘P/p—l

Proof. By quasi p—convexity of |f’ and by using (2.3), we have

1 /a+ew(b_a) Fa)da - fla) + f(a+te (b — a))

e (b—a) 2
< €%2‘04|02wufm+wwwwﬂﬁ

P

@ </01 [§ —2t)|pdt> (/01 (@ + e (b — a))| T dt)pl

< O (o 2t>|”dt); (/OlmaX{If/(a)l‘fl,If/(b)lfl}dt>pf1

o=

IN

e (b—a) P L Bt
< 8 fmax{|f (@) 7L 1)) 7Y
2(p+1)7
which completes the proof. [l

Theorem 3.3. Let f : K — (0,00) be a differentiable mapping on K° . If |f'|
is quasi @—convexr function on the interval of real numbers K (the interior of K)
and a,b € K with a < a + €“?(b—a). Then the following inequality holds:

1 ate'? (b-a) Fla+te(b—a))
flx)dx —
i

e?(b—a 2
< =D a7 0

Proof. By quasi p—convexity of |f’| and by using (2.6), we have

1 a+e'®(b—a) 2 + eitp(b o a)
f@)de — f| ——F5——
i ( )

e?(b—a 2

< ¢°(b—a) l/o t‘f(a+te“"(b—a))|dt+/é(1—t)|f(a+te“"(b—a))|dt]
< 90— a)max{| ()], |F O]} [ [ | <1—t>dt]
S VLGINTZOIY

This concludes the proof. [l

Theorem 3.4. Let f : K — (0,00) be a differentiable mapping on K°.Assume

p € Rwithp > 1. If |f’|p/p_1 s quasi @—conver function on the interval of real
numbers K° (the interior of K) and a,b € K with a < ¢*?(b — a). Then the
following inequality holds:

1 a+e'?(b—a) f(a + tew(b _ a))
soal, ST
e (b —a) !

) Tmas(| /()7 £ 1T 7
2(]) -+ l)p
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Proof. By quasi p—convexity of |f’

P/P=1 and by using (2.3), we have

1 ate'? (b-a) Fla+te(b—a))
flx)dx —
—a) /

e (b 2
, 3 . 1 .
< e¥?(b—a) / tlf'(a+te'?(b—a))|dt+ / (L—=t)|f (a+te?(b—a))|dt
0 L
1 5 1 =
. 2 2 . _pP_
< e%(b—a) / tPdt / |f'(a+te?(b—a))|"~" dt
0 0
) 1 P 1 _ e pT_l
e (b— a) / (1— 0P dt / |/ (a+ te? (b — a))| 7" dt
1 1
3 3
e (b—a _p_ p 12
< O L)@l 7 107
2(p+1)»
which completes the proof. ([l
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