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ON NADLER’S FIXED POINT THEOREM FOR PARTIAL

METRIC SPACES

SALVADOR ROMAGUERA

(Communicated by Ishak ALTUN)

Abstract. Recently, H. Aydi, M. Abbas and C. Vetro [Partial Hausdorff met-

ric and Nadler’s fixed point theorem on partial metric spaces, Topology Appl.
159 (2012), 3234-3242] have obtained a version of the well-known Nadler fixed

point theorem for multi-valued maps on complete partial metric spaces. In

this note we prove a new partial metric version of Nadler’s theorem and derive
some consequences of it.

1. Introduction and preliminaries

The notion of a partial metric space was introduced by Matthews ([11]) in the
study of denotational semantics o programming languages. In this way, he modeled
as partial metric spaces some distinguished examples of the theory of computation
as the domain of words and the domain of the interval, and also proved a partial
metric version of the celebrated Banach fixed point theorem ([11, Theorem 5.3]).
Since then, many authors have obtained fixed point theorems for partial metric
spaces that extend and generalize in several directions the one given by Matthews
(see e.g. [1, 2, 3, 5, 8, 9, 13]). In particular, Aydi, Abbas and Vetro ([6]) started
the fixed point theory for multi-valued maps on partial metric spaces, obtaining,
among other results, a generalization of the well-known Nadler fixed point theorem
([12]). In this note we prove a new partial metric version of Nadler’s result which
is different to the one presented in [6]. Our contraction condition is based upon
contraction conditions for single-valued self maps as used in [10], and conditions of
Berinde’s type ([7]) for partial metric spaces, recently explored by Altun and Acar
in [4].

Next we recall some pertinent concepts and results of the basic theory of partial
metric spaces, given in [11], which will be useful later on.
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The letters R+ and ω will denote the set of all non-negative real numbers and
of all non-negative integer numbers, respectively.

Definition 1.1. A partial metric on a (non-empty) set X is a function p : X×X →
R+ satisfying the following conditions for all x, y, z ∈ X:

(P1) x = y ⇔ p(x, x) = p(y, y) = p(x, y);
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then, the pair (X, p) is called a partial metric space.

Example 1.1. Let X = R+ and p defined by p(x, y) = max{x, y} for all x, y ∈ X.
Then (X, p) is a partial metric space.

Each partial metric p on a set X induces a T0 topology τp on X, which has
as a base the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0} where Bp(x, ε) =
{y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Observe that a sequence (xn)n∈ω in a partial metric space (X, p) converges to
x ∈ X for τp if and only if limn→∞ p(x, xn) = p(x, x).

Given a partial metric space (X, p), the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

for all x, y ∈ X, is a metric on X.
We also have the following useful equivalence:

lim
n→∞

ps(x, xn) = 0⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm).

Definition 1.2. Let (X, p) be a partial metric space.
(1) A sequence (xn)n∈ω inX is called a Cauchy sequence in (X, p) if limn,m→∞ p(xn, xm)

exists and is finite.
(2) (X, p) is called complete if every Cauchy sequence (xn)n∈N converges for τp

to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Lemma 1.1. Let (X, p) be a partial metric space. Then:
(a) A sequence (xn)n∈ω in X is a Cauchy sequence in (X, p) if and only if it is

a Cauchy sequence in the metric space (X, ps).
(b) (X, p) is complete if and only if the metric space (X, ps) is complete.

Let (X, p) be a partial metric space. Following [6], a subset A of X is called
bounded if there is x0 ∈ X and M > 0 such that a ∈ Bp(x0,M) for all a ∈ A, i.e.,
p(x0, a) < p(x0, x0) +M for all a ∈ A.

The set of all non-empty τp-closed and bounded subsets of (X, p) is denoted by
CBp(X).

Aydi, Abbas and Vetro ([6]) defined the so-called partial Hausdorff metric of
(X, p) on CBp(X) as follows.

Given x ∈ X and A ∈ CBp(X), let p(x,A) = infa∈A p(x, a).

Now let δp : CBp(X)× CBp(X)→ R+ given by

δp(A,B) = sup
a∈A

p(a,B),

for all A,B ∈ CBp(X).
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The function Hp : CBp(X)× CBp(X)→ R+ given by

Hp(A,B) = max{δp(A,B), δp(B,A)}.
for all A,B ∈ CBp(X), is said to be the partial Hausdorff metric of (X, p) ([6]).

If (X, d) is a metric space, then the partial Hausdorff metric constructed above
is exactly the Hausdorff metric Hd of (X, d) on the set CB(X) of all nonempty
closed and bounded subsets of X.

Next we collect some interesting properties of Hp obtained in [6].

Proposition 1.1. [6, Proposition 2.3] Let (X, p) be a partial metric space. For
each A,B,C ∈ CBp(X) the following hold:

(a) Hp(A,A) ≤ Hp(A,B);
(b) Hp(A,B) = Hp(B,A);
(c) Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− infc∈C p(c, c).

2. The results

Nadler proved in [12] the following multi-valued extension of the classical Banach
fixed point theorem.

Theorem 2.1. [12, Theorem 5] Let (X, d) be a complete metric space. If T : X →
CB(X) is a multi-valued map such that for all x, y ∈ X, we have

Hd(Tx, Ty) ≤ kd(x, y),

where k ∈ (0, 1), then T has a fixed point, i.e., there exists z ∈ X such that z ∈ Tz.

The main result of [6] is the following generalization of Nadler’s fixed point
theorem to the realm of partial metric spaces.

Theorem 2.2. [6, Theorem 3.2] Let (X, p) be a complete partial metric space. If
T : X → CBp(X) is a multi-valued map such that for all x, y ∈ X, we have

Hp(Tx, Ty) ≤ kp(x, y),

where k ∈ (0, 1), then T has a fixed point.

In our main result (Theorem 2.3 below) we consider multi-valued maps from X
into X∪CBp(X). This approach is motivated, in part, by the fact that CBp(X) = ∅
when (X, p) is the (complete) partial metric space of Example 1. Indeed, nonempty
τp-closed sets are of the form [r,+∞[, r ∈ R+. Hence, given A = [r,+∞[, r ∈ R+,
then for each x0 ∈ X and each M > 0, we have that p(x0, a) ≥ p(x0, x0) + M ,
where a = max{r, x0 +M}. Consequently CBp(X) = ∅.

Moreover, our approach has also the advantage that fixed point results for self
(single-valued) maps can be derived from the corresponding fixed point results for
multi-valued maps (recall that if (X, p) is a partial metric space and x ∈ X, then
{x} does not necessarily belongs to CBp(X), as Example 1.1 shows).

Given a partial metric space (X, p), we shall write T : X → X ∪ CBp(X),
whenever that T is a multi-valued map on X such that for each x ∈ X, |Tx| = 1
(i.e., Tx = {y} for some y ∈ X), or Tx ∈ CBp(X). Then T will be called a mixed
multi-valued map.

Note that, in particular, both a self map T : X → X and a multi-valued map
T : X → CBp(X), are mixed multi-valued maps. Of course, if τp is a T1 topology
on X and Tx = {y}, we also have Tx ∈ CBp(X).
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If Tx = {y} for some y ∈ X, we simply write Tx = y, if no confusion arises.

A mixed multi-valued map T : X → X ∪ CBp(X) will be called T |X -orbitally
continuous if whenever (xn)n∈ω is as sequence in X such that xn+1 ∈ Txn for
all n ∈ ω, and limn→∞ p(x, xn) = p(x, x) for some x ∈ X with |Tx| = 1, then
limn→∞ p(Tx, xn) = p(Tx, Tx). When T : X → X we simply say that T is orbitally
continuous.

Lemma 2.1. [10] Let (X, p) be a partial metric space. A sequence (xn)n∈ω in X
is a Cauchy sequence in (X, p) if and only if it satisfies the following condition:

For each ε > 0 there is n0 ∈ ω such that p(xn, xm) − p(xn, xn) < ε whenever
n0 ≤ n ≤ m.

Theorem 2.3. Let (X, p) be a complete partial metric space. If T : X → X ∪
CBp(X) is a T |X-orbitally continuous mixed multi-valued map such that for each
x, y ∈ X we have

(2.1) Hp(Tx, Ty) ≤ k[p(x, y)− p(x, x)] + p(y, y) + Lmin{ps(x, Ty), ps(y, Tx)},

where k ∈ (0, 1) and L ∈ R+, then T has a fixed point.

Proof. Fix r ∈ (k, 1). We first show that there exists a sequence (xn)n∈ω in X such
that for each n ∈ ω, xn+1 ∈ Txn and

p(xn+1, xn+2) ≤ r[p(xn, xn+1)− p(xn, xn)] + p(xn+1, xn+1).

To this end, choose an x0 ∈ X, and take x1 ∈ Tx0. Since

ps(x1, Tx0) = inf
y∈Tx0

ps(x1, y) = 0,

we deduce from (2.1) that

(2.2) Hp(Tx0, Tx1) ≤ k[p(x0, x1)− p(x0, x0)] + p(x1, x1).

Now we consider two cases.

• Case 1: |Tx1| = 1. Then, there exists x2 ∈ X such that Tx1 = x2, and
hence p(x1, x2) ≤ Hp(Tx0, Tx1). It follows from (2.2) that

p(x1, x2) ≤ k[p(x0, x1)− p(x0, x0)] + p(x1, x1).

• Case 2: |Tx1| > 1. Then Tx1 ∈ CBp(X).

If p(x0, x1) = p(x0, x0), we deduce from (2.2) that Hp(Tx0, Tx1) ≤
p(x1, x1), so, in particular,

inf
z∈Tx1

p(x1, z) ≤ p(x1, x1),

i.e.,

(2.3) inf
z∈Tx1

p(x1, z) = p(x1, x1).

By (2.3), there is a sequence (zn)n∈ω in Tx1 such that

lim
n→∞

p(x1, zn) = p(x1, x1),

i.e., (zn)n∈ω converges to x1 for τp, and thus x1 ∈ Tx1. Therefore, putting
x2 = x1, we trivially deduce that

p(x1, x2) = r[p(x0, x1)− p(x0, x0)] + p(x1, x1).
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If p(x0, x1) > p(x0, x0), we have

Hp(Tx0, Tx1) ≤ k[p(x0, x1)− p(x0, x0)] + p(x1, x1)

< r[p(x0, x1)− p(x0, x0)] + p(x1, x1).

So, in particular,

inf
z∈Tx1

p(x1, z) < r[p(x0, x1)− p(x0, x0)] + p(x1, x1).

Therefore, there exists x2 ∈ Tx1 such that

p(x1, x2) < r[p(x0, x1)− p(x0, x0)] + p(x1, x1).

Now, repeating the above arguments, there exists x3 ∈ Tx2 such that

p(x2, x3) ≤ r[p(x1, x2 − p(x1, x1)] + p(x2, x2],

and following this process we find a sequence a sequence (xn)n∈ω in X such that
for each n ∈ ω, xn+1 ∈ Txn and

p(xn+1, xn+2) ≤ r[p(xn, xn+1)− p(xn, xn)] + p(xn+1, xn+1).

Consequently

p(xn+1, xn+2)− p(xn+1, xn+1) ≤ rn+1[p(x0, x1)− p(x0, x0)],

for all n ∈ ω. It immediately follows from the triangle inequality (P4) and standard
techniques that for each ε > 0 there exists n0 ∈ N such that

p(xn, xm)− p(xn, xn) < ε,

whenever n0 ≤ n ≤ m. Thus (xn)n∈ω is a Cauchy sequence in (X, p) by Lemma
2.1. Let z ∈ X be such that

(2.4) lim
n→∞

p(z, xn) = lim
n→∞

p(xn, xn) = p(z, z),

or, equivalently, limn→∞ ps(z, xn) = 0.

We shall show that z is a fixed point of T. Indeed, since, by (2.1),

Hp(xn+1, T z) ≤ k[p(xn, z)− p(xn, xn)] + p(z, z) + Lmin{ps(xn, T z), ps(z, xn+1)},

for all n ∈ ω, we immediately deduce the existence of a subsequence (xnj )j∈N of
(xn)n∈ω and of a sequence (zj)j∈N in Tz such that

(2.5) p(xnj+1, zj) <
1

j
+ p(z, z),

for all j ∈ N. Since

p(z, z) ≤ p(z, zj) ≤ p(z, xnj+1) + p(xnj+1, zj)− p(xnj+1, xnj+1),

for all j ∈ N, it follows from (2.4) and (2.5) that

(2.6) lim
j→∞

p(z, zj) = p(z, z).

If |Tz| > 1, then Tz ∈ CBp(X). From (2.6) and the fact that zj ∈ Tz for all
j ∈ N, it follows that z ∈ Tz, i.e., z is a fixed point of T.

If |Tz| = 1, then zj = Tz for all j ∈ N, and by (2.6), p(z, Tz) = p(z, z). By (2.4)
and our hypothesis that T is T |X -orbitally continuous we deduce that

lim
n→∞

p(xn, T z) = p(Tz, Tz).
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Since

p(Tz, Tz) ≤ p(z, Tz) ≤ p(z, xn) + p(xn, T z)− p(xn, xn),

for all n ∈ ω, we have taking limits when n→∞, p(Tz, Tz) = p(z, Tz). Therefore
p(z, z) = p(Tz, Tz) = p(z, Tz), so z = Tz. This completes the proof. �

As a first consequence of Theorem 2.3 we have the following improvement of
Nadler’s fixed point theorem.

Corollary 2.1. Let (X, d) be a complete metric space. If T : X → CB(X) is a
multi-valued map such that for each x, y ∈ X we have

Hd(Tx, Ty) ≤ kd(x, y) + Lmin{d(x, Ty), d(y, Tx)},

where k ∈ (0, 1) and L ∈ R+, then T has a fixed point.

Proof. We show that T is T |X -orbitally continuous. Indeed, let (xn)n∈ω be a
sequence in X such that xn+1 ∈ Txn for all n ∈ ω, and limn→∞ d(x, xn) = 0 for
some x ∈ X with |Tx| = 1. Then

d(Tx, xn+1) ≤ sup
y∈Txn

d(Tx, y) ≤ Hd(Tx, Txn)

≤ kd(x, xn) + Ld(x, Txn) ≤ kd(x, xn) + Ld(x, xn+1),

for all n ∈ ω. Consequently limn→∞ d(Tx, xn+1) = 0. Theorem 2.3 concludes the
proof. �

We also deduce the following fixed point result for single-valued self maps.

Corollary 2.2. Let (X, p) be a complete partial metric space. If T : X → X is an
orbitally continuous map such that for each x, y ∈ X we have

p(Tx, Ty) ≤ k[p(x, y)− p(x, x)] + p(y, y) + Lmin{ps(x, Ty), ps(y, Tx)},

where k ∈ (0, 1) and L ∈ R+, then T has a fixed point.

We finish the paper with two examples illustrating the obtained results.

Example 2.1. LetX = {a, b, c} and let p : X×X → R+ given as p(a, a) = p(c, c) =
0, p(b, b) = 1, p(a, b) = p(b, a) = 2, p(a, c) = p(c, a) = 4, and p(b, c) = p(c, b) = 5. It
is almost obvious that (X, p) is a complete partial metric space. Observe also that
τp is the discrete topology on X. Now define T : X → CB(X) by Ta = a, T b = b
and Tc = {a, b}. It is immediate to check that T is T |X -orbitally continuous. We
also obtain

Hp(Ta, Tb) = 2 =
1

2
[p(a, b)− p(a, a)] + p(b, b)

< 4 =
1

2
[p(a, b)− p(b, b)] + min{ps(a, T b), ps(Ta, b)},

Hp(Ta, Tc) = 2 =
1

2
[p(a, c)− p(a, a)] =

1

2
[p(a, c)− p(c, c)],

Hp(Tb, T c) = 2 =
1

2
[p(b, c)− p(b, b)]

<
7

2
=

1

2
[p(b, c)− p(c, c)] + p(b, b),
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and hence condition (2.1) is satisfied for k = 1/2, L = 0. We have shown that all
conditions of Theorem 2.3 hold. However, for every k ∈ (0, 1), we have

Hp(Ta, Tb) = 2 > kp(a, b),

and thus Theorem 2.2 cannot be applied to this example.

Example 2.2. Let X = [0, 1] and let p be the complete partial metric on X given
by p(x, y) = max{x, y} for all x, y ∈ X (compare Example 1.1). Now let T : X → X
defined by Tx = x2 for all x ∈ X. It is clear that T is orbitally continuous. Next we
show that the contraction condition of Corollary 2.2 is satisfied for any k ∈ (0, 1)
and L = 1. Indeed, if x = y we have

p(Tx, Tx) = x2 ≤ x = p(x, x).

If x 6= y, we suppose, without loss of generality that x < y, and consider two cases.
Case 1. x ≤ Ty. Then we obtain

p(Tx, Ty) = y2 ≤ y = p(y, y),

and

p(Tx, Ty) = y2 = x+ y2 − x = p(x, x) + min{y2 − x, y − x2}
= k[p(x, y)− p(y, y)] + p(x, x) + min{ps(x, Ty), ps(y, Tx)}.

Case 2. x > Ty. Then we obtain

p(Tx, Ty) = y2 ≤ y = p(y, y),

and

p(Tx, Ty) = y2 < x = p(x, x).

Therefore, we can apply Corollary 2.2. In fact T has two fixed points. However,
we cannot apply this corollary when we consider the complete metric d on X given
by d(x, x) = 0 for all x ∈ X, and d(x, y) = p(x, y) whenever x 6= y. Indeed , given
k ∈ (0, 1) take x ∈ (k, 1) and let y = x2. Then min{d(x, Ty), d(y, Tx)} = 0, and

d(Tx, Ty) = x2 > kx = kd(x, y).
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