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ANTI-INVARIANT RIEMANNIAN SUBMERSIONS FROM

ALMOST PRODUCT RIEMANNIAN MANIFOLDS

YILMAZ GÜNDÜZALP

(Communicated by Bayram SAHIN)

Abstract. In this paper, we introduce anti-invariant Riemannian submer-

sions from almost product Riemannian manifolds onto Riemannian manifolds.
We give an example, investigate the geometry of foliations which are arisen

from the definition of a Riemannian submersion and check the harmonicity of

such submersions.

1. Introduction

Given a C∞−submersion π from a Riemannian manifold (M, g) onto a Rie-
mannian manifold (N, g′), there are several kinds of submersions according to
the conditions on it: e.g. Riemannian submersion([6], [12]), slant submersion
([7],[13],[14]), anti-invariant Riemannian submersion[15], almost Hermitian sub-
mersion [16], quaternionic submersion [8], etc. As we know, Riemannian sub-
mersions are related with physics and have their applications in the Yang-Mills
theory([3],[17]), Kaluza-Klein theory ([2],[9]), supergravity and superstring theories
([10],[11]), etc. The paper is organized as follows. In Section 2 we recall some no-
tions needed for this paper. In section 3 we introduce the notion of almost product
Riemannian submersions. In section 4, we give definition of anti-invariant Rie-
mannian submersions, provide an example and investigate the geometry of leaves
of the distributions. Finally we give necessary and sufficient conditions for such
submersions to be totally geodesic or harmonic.

2. Preliminaries

In this section, we define almost product Riemannian manifolds, recall the no-
tion of Riemannian submersions between Riemannian manifolds and give a brief
review of basic facts of Riemannian submersions.
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Let M be a m- dimensional manifold with a tensor F of type (1, 1) such that

F 2 = I, (F 6= I).

Then, we say that M is an almost product manifold with almost product struc-
ture F. We put

P =
1

2
(I + F ), Q =

1

2
(I − F ).

Then we get

P +Q = I, P 2 = P, Q2 = Q, PQ = QP = 0, F = P −Q.

Thus P and Q define two complementary distributions P and Q. We easily see that
the eigenvalues of F are +1 or −1.
If an almost product manifold M admits a Riemannian metric g such that

(2.1) g(FX,FY ) = g(X,Y )

for any vector fields X and Y on M, then M is called an almost product Riemannian
manifold, denoted by (M, g, F ).
Denote the Levi-Civita connection on M with respect to g by ∇. Then, M is called
a locally product Riemannian manifold[18] if F is parallel with respect to ∇, i.e.,

(2.2) ∇XF = 0, X ∈ Γ(TM).

Let (M, g) and (N, g′) be two Riemannian manifolds. A surjective C∞−map
π : M → N is a C∞−submersion if it has maximal rank at any point of M. Putting
Vx = kerπ∗x, for any x ∈M, we obtain an integrable distribution V, which is called
vertical distribution and corresponds to the foliation of M determined by the fibres
of π. The complementary distribution H of V, determined by the Riemannian met-
ric g, is called horizontal distribution. A C∞−submersion π : M → N between two
Riemannian manifolds (M, g) and (N, g′) is called a Riemannian submersion if, at
each point x of M, π∗x preserves the length of the horizontal vectors. A horizontal
vector field X on M is said to be basic if X is π−related to a vector field X ′ on N.
It is clear that every vector field X ′ on N has a unique horizontal lift X to M and
X is basic.

We recall that the sections of V, respectively H, are called the vertical vector
fields, respectively horizontal vector fields. A Riemannian submersion π : M → N
determines two (1, 2) tensor fields T and A on M, by the formulas:

(2.3) T (E,F ) = TEF = h∇vEvF + v∇vEhF

and

(2.4) A(E,F ) = AEF = v∇hEhF + h∇hEvF

for any E,F ∈ Γ(TM), where v and h are the vertical and horizontal projections
(see [5]). From (2.3) and (2.4), one can obtain

(2.5) ∇UW = TUW + ∇̂UW ;

(2.6) ∇UX = TUX + h(∇UX);

(2.7) ∇XU = v(∇XU) +AXU ;



60 YILMAZ GÜNDÜZALP

(2.8) ∇XY = AXY + h(∇XY ),

for any X,Y ∈ Γ((kerπ∗)
⊥), U,W ∈ Γ(kerπ∗). Moreover, if X is basic then

(2.9) h(∇UX) = h(∇XU) = AXU.

We note that for U, V ∈ Γ(kerπ∗), TUV coincides with the second fundamen-
tal form of the immersion of the fibre submanifolds and for X,Y ∈ Γ((kerπ∗)

⊥),
AXY = 1

2v[X,Y ] reflecting the complete integrability of the horizontal distribution
H. It is known that A is alternating on the horizontal distribution: AXY = −AYX,
for X,Y ∈ Γ((kerπ∗)

⊥) and T is symmetric on the vertical distribution: TUV =
TV U, for U, V ∈ Γ(kerπ∗).

We now recall the following result which will be useful for later.

Lemma 2.1. (see [5],[12]). If π : M → N is a Riemannian submersion and X,Y
basic vector fields on M, π−related to X ′ and Y ′ on N, then we have the following
properties

(1) h[X,Y ] is a basic vector field and π∗h[X,Y ] = [X ′, Y ′] ◦ π;
(2) h(∇XY ) is a basic vector field π−related to (∇′X′Y ′), where ∇ and ∇′ are

the Levi-Civita connection on M and N ;
(3) [E,U ] ∈ Γ(kerπ∗), for any U ∈ Γ(kerπ∗) and for any basic vector field E.

Let (M, g) and (N, g
′
) be Riemannian manifolds and π : M → N is a smooth

map. Then the second fundamental form of π is given by

(2.10) (∇π∗)(X,Y ) = ∇π∗Xπ∗Y − π∗(∇XY )

for X,Y ∈ Γ(TM), where we denote conveniently by ∇ the Levi-Civita connections

of the metrics g and g
′
. Recall that π is said to be harmonic if trace(∇π∗) = 0 and

π is called a totally geodesic map if (∇π∗)(X,Y ) = 0 for X,Y ∈ Γ(TM)[1]. It is
known that the second fundamental form is symmetric.

3. Almost product Riemannian submersions

In this section, we define the notion of almost product Riemannian submersions.
The results given in this section can be find in [7].

Definition 3.1. Let M and N be almost product Riemannian manifolds with
almost product structures F and F ′, respectively. A mapping π : M → N is said
to be almost product map if π∗ ◦ F = F ′ ◦ π∗.

By using the above definition, we are ready to give the following notion.

Definition 3.2. Let (M,F, g) and (N,F ′, g′) be almost product Riemannian man-
ifolds. A Riemannian submersion π : M → N is called an almost product Rie-
mannian submersion if π is an almost product map, i.e. π∗ ◦ F = F ′ ◦ π∗.

By using the almost product map, we have the following result.

Proposition 3.1. Let π : (M,F, g)→ (N,F ′, g′) be an almost product Riemannian
submersion from an almost product manifold M onto an almost product manifold
N , and let X be a basic vector field on M, π−related to X ′ on N . Then, FX is
also a basic vector field π−related to F ′X ′.
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Next proposition shows that an almost product submersion puts some restric-
tions on the distributions kerπ∗ and ((kerπ∗)

⊥).

Proposition 3.2. Let π : (M,F, g)→ (N,F ′, g′) be an almost product Riemannian
submersion from an almost product manifold M onto an almost product manifold
N . Then, the horizontal and vertical distributions are F− invariant.

In the sequel, we show that base manifold is a locally product manifold if the
total manifold is a locally product manifold.

Theorem 3.1. Let (M,F, g) be a locally product manifold and (N,F ′, g′) be an
almost product manifold. Suppose that π : (M,F, g) → (N,F ′, g′) be an almost
product Riemannian submersion. Then (N,F ′, g′) is a locally product Riemannian
manifold.

As the fibers of an almost product submersion is an invariant submanifold of M
with respect to F, we have the following.

Corollary 3.1. Let π : (M,F, g) → (N,F ′, g′) be an almost product submersion
from a locally product Riemannian manifold M onto an almost product manifold
N . Then, the fibers are locally product manifolds.

4. Anti-invariant Riemannian Submersions

In this section, we define anti-invariant Riemannian submersions from an almost
product Riemannian manifold onto a Riemannian manifold, investigate the inte-
grability of distributions and obtain a necessary and sufficient condition for such
submersions to be totally geodesic map.

Definition 4.1. Let (M, g, F ) be an almost product Riemannian manifold and
(N, g′) a Riemannian manifold. Suppose that there exists a Riemannian submer-
sion π : M → N such that X ∈ (kerπ∗) is anti-invariant with respect to F, i.e.,
F (kerπ∗) ⊆ (kerπ∗)

⊥. Then we say π is an anti-invariant Riemannian submersion.

Let π : (M, g, F )→ (N, g′) be an anti-invariant Riemannian submersion from an
almost product Riemannian manifold (M, g, F ) to a Riemannian manifold (N, g′).
First of all, from Definition 4.1, we have F (kerπ∗)

⊥ ∩ (kerπ∗) 6= 0. We denote the
complementary orthogonal distribution to F (kerπ∗) in (kerπ∗)

⊥ by µ. Then we
have

(4.1) (kerπ∗)
⊥ = F (kerπ∗)⊕ µ.

Corollary 4.1. Let π be an anti-invariant Riemannian submersion from an almost
product Riemannian manifold (M, g, F ) to a Riemannian manifold (N, g

′
). Then

µ is an invariant distribution of (kerπ∗)
⊥, under the endomorphism F.

Proof. First by using (2.1), we have g(FX,FU) = 0 for U ∈ Γ(kerπ∗), X ∈ Γ(µ),
which shows that FX is orthogonal to F (kerπ∗). On the other hand, since FU
and X are orthogonal we get g(FU,X) = g(U,FX) = 0 which shows that FX is
orthogonal to kerπ∗. This completes proof. �

For X ∈ Γ((kerπ∗)
⊥), we have

(4.2) FX = BX + CX,
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where BX ∈ Γ((kerπ∗) and CX ∈ Γ(µ). On the other hand, since π∗((kerπ∗)
⊥) =

TN and π is a Riemannian submersion, using (4.2) we derive g′(π∗FV, π∗CX) = 0,
for every X ∈ Γ((kerπ∗)

⊥) and V ∈ Γ(kerπ∗), which implies that

(4.3) TN = π∗(F (kerπ∗))⊕ π∗(µ).

Note that given an Euclidean space R4 with coordinates (x1, ..., x4), we can
canonically choose an almost product structure F on R4 as follows:

F (a1
∂

∂x1
+ a2

∂

∂x2
+ a3

∂

∂x3
+ a4

∂

∂x4
) = −a2

∂

∂x1
− a1

∂

∂x2
+ a4

∂

∂x3
+ a3

∂

∂x4
,

where a1, ..., a4 ∈ R.

Example 4.1. Let π : R4 → R2 be a map defined π(x1, x2, x3, x4) = (x1+x3√
2
, x2+x4√

2
).

Then, by direct calculations

kerπ∗ = Span{Z1 = − ∂

∂ x1
+

∂

∂ x3
, Z2 = − ∂

∂ x2
+

∂

∂ x4
}

and

(kerπ∗)
⊥ = Span{X1 =

∂

∂ x1
+

∂

∂ x3
, X2 =

∂

∂ x2
+

∂

∂ x4
}.

Then it is easy to see that π is a Riemannian submersion. Moreover FZ1 = X2

and FZ2 = X1 imply that F (kerπ∗) = (kerπ∗)
⊥. As a result, π is an anti-invariant

Riemannian submersion.

Lemma 4.1. Let π be an anti-invariant Riemannian submersion from a locally
product manifold (M, g, F ) to a Riemannian manifold (N, g

′
). Then we have

(4.4) g(CY, FV ) = 0

and

(4.5) g(∇XCY, FV ) = −g(CY, FAXV )

for X,Y ∈ Γ((kerπ∗)
⊥) and V ∈ Γ(kerπ∗).

Proof. For Y ∈ Γ((kerπ∗)
⊥) and V ∈ Γ(kerπ∗), using (2.1) we have

g(CY, FV ) = g(FY −BY,FV ) = g(FY, FV )

due to BY ∈ Γ(kerπ∗) and FV ∈ Γ((kerπ∗)
⊥). Hence g(FY, FV ) = g(Y, V ) = 0

which is (4.4). Since M is a locally product manifold, using (4.4) we get

g(∇XCY, FV ) = −g(CY, F∇XV )

for X,Y ∈ Γ((kerπ∗)
⊥) and V ∈ Γ(kerπ∗). Then using (2.7) we have

g(∇XCY, FV ) = −g(CY, FAXV )− g(CY, Fv∇XV ).

Since Fv∇XV ∈ Γ(Fkerπ∗), we obtain (4.5). �

We now study the integrability of the distribution (ker π∗)
⊥ and then we inves-

tigate the geometry of leaves of ker π∗ and (kerπ∗)
⊥. We note that it is known that

the distribution ker π∗ is integrable.

Theorem 4.1. Let π be an anti-invariant Riemannian submersion from a locally
product manifold (M, g, F ) to a Riemannian manifold (N, g

′
). Then the following

assertions are equivalent to each other;

(i) (kerπ∗)
⊥ is integrable.
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(ii) g
′
((∇π∗)(Y,BX), π∗FV ) = g

′
((∇π∗)(X,BY ), π∗FV ) + g(CY, FAXV ) −

g(CX,FAY V ).
(iii) g(FV,AXBY −AYBX) = g(CY, FAXV )− g(CX,FAY V ),

for X,Y ∈ Γ((kerπ∗)
⊥) and V ∈ Γ(kerπ∗).

Proof. For Y ∈ Γ((kerπ∗)
⊥) and V ∈ Γ(kerπ∗), we see from Definition 4.1, FV ∈

Γ((kerπ∗)
⊥) and FY ∈ Γ(kerπ∗ ⊕ µ). Thus using (2.1) and (2.2) we obtain

g([X,Y ], V ) = g(∇XFY, FV )− g(∇Y FX,FV ).

Then from (4.2) we get

g([X,Y ], V ) = g(∇XBY,FV ) + g(∇XCY, FV )

−g(∇YBX,FV )− g(∇Y CX,FV ).

Since π is a Riemannian submersion, we have

g([X,Y ], V ) = g
′
(π∗∇XBY, π∗FV ) + g(∇XCY, FV )

−g
′
(π∗∇YBX, π∗FV )− g(∇Y CX,FV ).

Thus, from (2.10) and (4.5) we obtain

g([X,Y ], V ) = g
′
(−(∇π∗)(X,BY ) + (∇π∗)(Y,BX), π∗FV )

−g(CY, FAXV ) + g(CX,FAY V )

which proves (i)⇔(ii). On the other hand, using (2.10) we have

(∇π∗)(Y,BX)− (∇π∗)(X,BY ) = −π∗(∇YBX −∇XBY ).

Then (2.7) implies that

(∇π∗)(Y,BX)− (∇π∗)(X,BY ) = −π∗(AYBX −AXBY ).

Since AXBY −AYBX ∈ Γ((kerπ∗)
⊥), this shows that (ii)⇔(iii). �

Theorem 4.2. Let π be an anti-invariant Riemannian submersion from a locally
product manifold (M, g, F ) to a Riemannian manifold (N, g

′
). Then the following

assertions are equivalent to each other;

(i) (kerπ∗)
⊥ defines a totally geodesic foliation on M.

(ii) g(AXBY,FV ) = g(CY, FAXV ).

(iii) g
′
((∇π∗)(X,BY ), π∗FV ) = −g(CY, FAXV ),

for X,Y ∈ Γ((kerπ∗)
⊥) and V ∈ Γ(kerπ∗).

Proof. From (2.1), (2.2) and (2.7) we obtain

g(∇XY, V ) = g(AXBY,FV ) + g(∇XCY, FV )

for X,Y ∈ Γ((kerπ∗)
⊥) and V ∈ Γ(kerπ∗). Then using (4.5) we have

g(∇XY, V ) = g(AXBY,FV )− g(FAXV,CY )

which shows (i)⇔(ii). On the other hand from (2.7) and (2.10) we get

g(AXBY,FV ) = g
′
(−(∇π∗)(X,BY ), π∗FV ).

This shows (ii)⇔(iii). �

Theorem 4.3. Let π be an anti-invariant Riemannian submersion from a locally
product manifold (M, g, F ) to a Riemannian manifold (N, g

′
). Then the following

assertions are equivalent to each other;
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(i) (kerπ∗) defines a totally geodesic foliation on M.

(ii) g
′
((∇π∗)(V, FX), π∗FW ) = 0.

(iii) TVBX +ACXV ∈ Γ(µ),

for X ∈ Γ((kerπ∗)
⊥) and V,W ∈ Γ(kerπ∗).

Proof. Using (2.1) and (2.2) we have g(∇VW,X) = g(∇V FW,FX). Hence we
get g(∇VW,X) = −g(h∇V FX,FW ). Then Riemannian submersion π and (2.10)
imply that

g(∇VW,X) = g
′
((∇π∗)(V, FX), π∗FW )

which is (i)⇔(ii). By direct calculation, we derive

−g(∇V FX,FW ) = g
′
((∇π∗)(V, FX), π∗FW ).

Using (4.2) we obtain

−g(∇VBX +∇V CX,FW ) = g
′
((∇π∗)(V, FX), π∗FW ).

Hence we have

−g(∇VBX + [V,CX] +∇CXV, FW ) = g
′
((∇π∗)(V, FX), π∗FW ).

Since [V,CX] ∈ Γ(kerπ∗), using (2.5) and (2.7), we get

−g(TVBX +ACXV, FW ) = g
′
((∇π∗)(V, FX), π∗FW ).

This shows (ii)⇔(iii). �

We say that an anti-invariant Riemannian submersion is a Lagrangian Riemann-
ian submersion if F (kerπ∗) = (kerπ∗)

⊥. If µ 6= {0}, then π is called a proper
anti-invariant Riemannian submersion.
We note that the anti-invariant Riemannian submersion given in Example 4.1 is a
Lagrangian Riemannian submersion.

If π is a Lagrangian submersion, then (4.3) implies that TN = π∗(F (kerπ∗)).
Hence we have the following.

Theorem 4.4. Let π be a Lagrangian Riemannian submersion from a locally prod-
uct manifold (M, g, F ) to a Riemannian manifold (N, g

′
). Then the following as-

sertions are equivalent to each other;

(i) (kerπ∗)defines a totally geodesic foliation on M.
(ii) (∇π∗)(V, FX) = 0.
(iii) TV FW = 0,

for X ∈ Γ((kerπ∗)
⊥) and V,W ∈ Γ(kerπ∗).

Proof. (i)⇔(ii) is clear from Theorem 4.3. We only prove (ii)⇔(iii). From (2.10),
we get

g
′
((∇π∗)(V, FX), π∗FW ) = −g(∇V FX,FW ) = g(∇V FW,FX)

for X ∈ Γ((kerπ∗)
⊥) and V,W ∈ Γ(kerπ∗). Then using (2.6) we have

g
′
((∇π∗)(V, FX), π∗FW ) = g(TV FW,FX).

Since TV FW ∈ Γ(kerπ∗), we get (ii)⇔(iii). �

We note that a differentiable map π between two Riemannian manifolds is called
totally geodesic if ∇π∗ = 0.
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Theorem 4.5. Let π be a Lagrangian Riemannian submersion from a locally prod-
uct manifold (M, g, F ) to a Riemannian manifold (N, g

′
). Then π is a totally

geodesic map if and only if

TWFV = 0, ∀W,V ∈ Γ(kerπ∗)

and

AXFW = 0, ∀X ∈ Γ((kerπ∗)
⊥).

Proof. First of all, we recall that the second fundamental form of a Riemannian
submersion satisfies

(4.6) (∇π∗)(X,Y ) = 0, X, Y ∈ Γ((kerπ∗)
⊥).

For W,V ∈ Γ(kerπ∗), by using (2.2), (2.6) and (2.10), we get

(4.7) (∇π∗)(W,V ) = −π∗(FTWFV ).

On the other hand, from (2.1), (2.2) and (2.10), we have

(∇π∗)(X,W ) = −π∗(F∇XFW )

for X ∈ Γ((kerπ∗)
⊥). Then using (2.8), we get

(4.8) (∇π∗)(X,W ) = −π∗(FAXFW ).

Since F is non-singular, proof comes from (4.6)-(4.8) �

Finally, we give a necessary and sufficient condition for a Lagrangian Riemannian
submersion to be harmonic.

Theorem 4.6. Let π be a Lagrangian Riemannian submersion from a locally prod-
uct manifold (M, g, F ) to a Riemannian manifold (N, g

′
). Then π is harmonic if

and only if TraceFTV = 0 for V ∈ Γ(kerπ∗).

Proof. From [4] we know that π is harmonic if and only if π has minimal fibres.
Thus π is harmonic if and only if

∑r
i=1 Teiei = 0. On the other hand, from (2.2),

(2.5) and (2.6), we obtain

(4.9) TV FW = FTVW

for any V,W ∈ Γ(kerπ∗). Using (4.9), we get

r∑
i=1

g(TeiFei, V ) =

r∑
i=1

g(Teiei, FV )

for any V ∈ Γ(kerπ∗). Thus skew-symmetric T with respect to g implies that

−
r∑
i=1

g(TeiV, Fei) =

r∑
i=1

g(Teiei, FV )

Since T is symmetric, we obtain

−
r∑
i=1

g(TV ei, Fei) =

r∑
i=1

g(Teiei, FV ).

�
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