PARALLEL LINEAR WEINGARTEN SURFACES IN E^{3} AND E_{1}^{3}

YUSUF YAYLI, DERYA SAĞLAM, AND ÖZGÜR KALKAN

(Communicated by Sadahiro MAEDA)

Abstract

In this paper we show that M is a linear Weingarten surface if and only if M_{r} is a linear Weingarten surface in E^{3} and E_{1}^{3}. And also we determine the types of the pair $\left(M, M_{r}\right)$ according to the distance r.

1. Introduction

Let M and M_{r} be two surfaces in Euclidean space. The function

$$
\begin{array}{lll}
f: & M & \rightarrow M_{r} \\
& p & \rightarrow f(p)=p+r N_{p}
\end{array}
$$

is called the parallelization function between M and M_{r} and furthermore M_{r} is called parallel surface to M where N is the unit normal vector field on M and r is a given real number.

The Gaussian curvature and mean curvature of M_{r} denoted by K_{r} and H_{r} are respectively

$$
\begin{equation*}
K_{r}=\frac{K}{1+r H+r^{2} K} \quad \text { and } \quad H_{r}=\frac{H+2 r K}{1+r H+r^{2} K} \tag{1.1}
\end{equation*}
$$

where K and H are Gaussian curvature and mean curvature of M [1].
A surface M in 3-dimensional Euclidean space E^{3} is called a Weingarten surface if there is a relation between its two principal curvatures k_{1} and k_{2}, that is, if there is a smooth function W of two variables such that $W\left(k_{1}, k_{2}\right)=0$ implies a relation $U(K, H)=0$. In this paper we study Weingarten surfaces that satisfy the simplest case for U, that is, that U is of the linear type

$$
\begin{equation*}
a H+b K=c \tag{1.2}
\end{equation*}
$$

where $a, b, c \in R$. We say that M is a linear Weingarten surface and we abbreviate by LW-surface.

[^0]The behaviour of a LW-surface and its qualitative properties strongly depend on the sign of the distriminant $\Delta:=a^{2}+4 b c$. A surface M is called hyperbolic if $\Delta<0$, elliptic if $\Delta>0$ and parabolic if $\Delta=0[2,3]$

2. Parallel Linear Weingarten Surfaces in E^{3}

Theorem 2.1. M is a linear Weingarten surface if and only if M_{r} is a linear Weingarten surface in E^{3}.

Proof. Let M be a linear Weingarten surface. Then mean curvature H and Gaussian curvature K of M satisfy a relation

$$
\begin{equation*}
a H+b K=c \tag{2.1}
\end{equation*}
$$

where $a, b, c \in R$. From (1.1) we obtain that

$$
K=\frac{K_{r}}{1-r H_{r}+r^{2} K_{r}} \quad \text { and } H=\frac{H_{r}-2 r K_{r}}{1-r H_{r}+r^{2} K_{r}} .
$$

If we use these equations in (2.1) we get

$$
\begin{equation*}
(a+c r) H_{r}+\left(b-2 a r-c r^{2}\right) K_{r}=c \tag{2.2}
\end{equation*}
$$

In (2.2) if we take $a+c r=a_{r}, b-2 a r-c r^{2}=b_{r}$ and $c=c_{r}$ then

$$
a_{r} H_{r}+b_{r} K_{r}=c_{r}
$$

So that M_{r} is a linear Weingarten surface.
Conversely we assume that M_{r} is a linear Weingarten surface. Then the proof can be obtained with similar calculations.

Theorem 2.2. Let M be a $L W$-surface with $c=0$ in E^{3}. Then M and M_{r} are elliptic LW-surface.

Proof. Since $\Delta=a^{2}>0$ and from (2.2) $\Delta_{r}=a^{2}>0$ then M_{r} is an elliptic LW-surface.

Theorem 2.3. Let M be an elliptic $L W$-surface with $c>0$ in E^{3}.
a) If $\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)<r<\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is an elliptic LW-surface.
b) If $r<\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ or $r>\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is a hyperbolic LW-surface.
c) If $r=\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ or $r=\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is a parabolic $L W$-surface.

Proof. Let M be an elliptic LW-surface with $c>0$ in E^{3}. From (2.2)

$$
\Delta_{r}=-3 c^{2} r^{2}-6 a c r+\Delta
$$

Then the roots of $\Delta_{r}=0$ are $r_{1}=\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ and $r_{2}=\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$.
So the proof is obvious.

Theorem 2.4. Let M be an elliptic LW-surface with $c<0$ in E^{3}.
a) If $\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)<r<\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is an elliptic LW-surface.
b) If $r<\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ or $r>\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is a hyperbolic $L W$-surface.
c) If $r=\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ or $r=\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is a parabolic $L W$-surface.
Theorem 2.5. Let M be a hyperbolic $L W$-surface with $c \neq 0$ in E^{3}.
a) If $a^{2}<-b c$ then M_{r} is a hyperbolic LW-surface.
b) Let $a^{2}=-b c$.
b.i) If $r \neq-\frac{a}{c}$ then M_{r} is a hyperbolic LW-surface.
b.ii) If $r=-\frac{a}{c}$ then M_{r} is a parabolic $L W$-surface.
c) Let $-b c<a^{2}<-4 b c$ and $c>0$.
c.i) If $\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)<r<\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is an elliptic LW-surface.
c.ii) If $r<\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ or $r>\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is a hyperbolic LW-surface.
c.iii) If $r=\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ or $r=\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is a parabolic $L W$-surface.
d) Let $-b c<a^{2}<-4 b c$ and $c<0$
d.i) If $\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)<r<\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is an elliptic $L W$-surface.
d.ii) If $r<\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ or $r>\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is a hyperbolic LW-surface.
d.iii) If $r=\frac{1}{c}\left(-a+\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ or $r=\frac{1}{c}\left(-a-\frac{2}{3} \sqrt{3\left(a^{2}+b c\right)}\right)$ then M_{r} is a parabolic $L W$-surface.

Theorem 2.6. Let M be a parabolic LW-surface with $c>0$ and $a>0$ or $c<0$ and $a<0$ in E^{3}.
a)If $r<-\frac{2 a}{c}$ or $r>0$ then M_{r} is a hyperbolic LW-surface.
b) If $-\frac{2 a}{c}<r<0$ then M_{r} is an elliptic LW-surface.
c) If $r=0$ or $r=-\frac{2 a}{c}$ then M_{r} is a parabolic $L W$-surface.

Theorem 2.7. Let M be a parabolic LW-surface with $c>0$ and $a<0$ or $c<0$ and $a>0$ in E^{3}.
a) If $r<0$ or $r>-\frac{2 a}{c}$ then M_{r} is a hyperbolic $L W$-surface.
b) If $0<r<-\frac{2 a}{c}$ then M_{r} is an elliptic LW-surface.
c) If $r=0$ or $r=-\frac{2 a}{c}$ then M_{r} is a parabolic LW-surface.

Theorem 2.8. Let M_{r} be a $L W$-surface with $c_{r}=0$ in E^{3}. Then M and M_{r} are elliptic LW-surface.

Theorem 2.9. Let M_{r} be an elliptic LW-surface with $c_{r}>0$ in E^{3}.
a) If $\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)<r<\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M_{r} is an elliptic $L W$-surface.
b) If $r<\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ or $r>\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M_{r} is a hyperbolic LW-surface.
c) If $r=\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ or $r=\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M_{r} is a parabolic LW-surface.

Theorem 2.10. Let M_{r} be an elliptic LW-surface with $c_{r}<0$ in E^{3}.
a) If $\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)<r<\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M_{r} is an elliptic $L W$-surface.
b) If $r<\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ or $r>\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M_{r} is a hyperbolic LW-surface.
c) If $r=\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ or $r=\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M_{r} is a parabolic LW-surface.
Theorem 2.11. Let M_{r} be a hyperbolic LW-surface with $c_{r} \neq 0$ in E^{3}.
a) If $a_{r}^{2}<-b_{r} c_{r}$ then M is a hyperbolic LW-surface.
b) Let $a_{r}^{2}=-b_{r} c r$
b.i) If $r \neq \frac{a_{r}}{c_{r}}$ then M is a hyperbolic LW-surface.
b.ii) If $r=\frac{c_{r}}{c_{r}}$ then M is a parabolic $L W$-surface.
c) Let $-b_{r} c_{r}<a_{r}^{2}<-4 b_{r} c_{r}$ and $c_{r}>0$.
c.i) If $\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)<r<\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M is an elliptic $L W$-surface.
c.ii) If $r<\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ or $r>\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M is a hyperbolic LW-surface.
c.iii) If $r=\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ or $r=\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then
M is a parabolic $L W$-surface.
d) Let $-b_{r} c_{r}<a_{r}^{2}<-4 b_{r} c_{r}$ and $c_{r}<0$.
d.i) If $\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)<r<\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M is an elliptic $L W$-surface.
d.ii) If $r<\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ or $r>\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then
M is a hyperbolic $L W$-surface.
d.iii) If $r=\frac{1}{c_{r}}\left(a_{r}+\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ or $r=\frac{1}{c_{r}}\left(a_{r}-\frac{2}{3} \sqrt{3\left(a_{r}^{2}+b_{r} c_{r}\right)}\right)$ then M is a parabolic $L W$-surface.

Theorem 2.12. Let M_{r} be a parabolic $L W$-surface with $c_{r}>0$ and $a_{r}>0$ or $c_{r}<0$ and $a_{r}<0$ in E^{3}
a) If $r<0$ or $r>\frac{2 a_{r}}{c_{r}}$ then M is a hyperbolic $L W$-surface.
b) If $0<r<\frac{2 a_{r}}{c_{r}}$ then M is an elliptic $L W$-surface.
c) If $r=0$ or $r=\frac{2 a_{r}}{c_{r}}$ then M is a parabolic $L W$-surface.

Theorem 2.13. Let M_{r} be a parabolic $L W$-surface with $c_{r}>0$ and $a_{r}<0$ or $c_{r}<0$ and $a_{r}>0$ in E^{3}.
a) If $r<\frac{2 a_{r}}{c_{r}}$ or $r>0$ then M is a hyperbolic $L W$-surface.
b) If $\frac{2 a_{r}}{c_{r}}<r<0$ then M is an elliptic $L W$-surface.
c) If $r=\frac{2 a_{r}}{c_{r}}$ or $r=0$ then M is a parabolic $L W$-surface.

Example 2.1. Let M be a sphere surface in E^{3} given with the equation $y_{1}^{2}+y_{2}^{2}+$ $y_{3}^{2}=1$. The Gaussian curvature and the mean curvature of M are respectively $K=1$ and $H=2$. If we take $a=1$ and $b=1$ then we obtain from the relation (2.1) $c=3>0$. So that $\Delta_{r}=-27 r^{2}-18 r+13$ and the roots of this equation are $r_{1}=\frac{-6-8 \sqrt{3}}{18}$ and $r_{2}=\frac{-6+8 \sqrt{3}}{18}$. Therefore
a) If $\frac{-3-4 \sqrt{3}}{9}<r<\frac{-3+4 \sqrt{3}}{9}$ then M_{r} is elliptic.
b) If $r<\frac{-3-4 \sqrt{3}}{9}$ or $r>\frac{-3+4 \sqrt{3}}{9}$ then M_{r} is hyperbolic.
c) If $r=\frac{-3-2 \sqrt{3}}{9}$ or $r=\frac{-3+2 \sqrt{3}}{9}$ then M_{r} is parabolic.

3. Parallel Surfaces in E_{1}^{3}

Definition 3.1. Let M be a pseudo-Euclidean surface in E_{1}^{3} and D be the LeviCivita connection on E_{1}^{3}. Then,

$$
S: \chi(M) \rightarrow \chi(M), \quad X \rightarrow S(X)=D_{X} N
$$

is called the shape operator (Weingarten map), where N is the unit normal vector on M [4].

Definition 3.2. Let M be a pseudo-Euclidean surface in E_{1}^{3} and S be shape operator on M, for $p \in M, K$ denotes Gauss curvature of M and defined as

$$
\begin{aligned}
K: & M
\end{aligned} \rightarrow R=K(p)=\varepsilon \operatorname{det} S_{p}
$$

where $\varepsilon=\langle N, N\rangle= \pm 1$ and N is the unit normal vector field on M [5].
Definition 3.3. Let M be a pseudo-Euclidean surface in E_{1}^{3} and H denotes mean curvature of M and defined as $H=\varepsilon i z S_{p}$ where $\varepsilon=\langle N, N\rangle= \pm 1$ and N is the unit normal vector field on M [5].

Note that the principal curvatures of the Weingarten map on M can be obtained easily

$$
2 k_{1}=H+\sqrt{H^{2}-4 \varepsilon K}
$$

and

$$
2 k_{2}=H-\sqrt{H^{2}-4 \varepsilon K}
$$

Let M be a pseudo-Euclidean surface with $N=\left(a_{1}, a_{2}, a_{3}\right)$ where each a_{i} is a real valued C^{∞} function on M and $-a_{1}^{2}+a_{2}^{2}+a_{3}^{2}= \pm 1$. For any constant r in R, let $M_{r}=\left\{P+r N_{p}: P \in M\right\}$. Thus if $P=\left(p_{1}, p_{2}, p_{3}\right)$ is on M, then $f(P)=P+r N_{p}=\left(p_{1}+r a_{1}(p), p_{2}+r a_{2}(p), p_{3}+r a_{3}(p)\right)$ defines a new surface M_{r}. The map f is called the natural map on M into M_{r}, and if f is univalent, then M_{r} is a parallel surface of M with unit normal N, i.e., $N_{f(p)}=N_{p}$ for all P in M.
Theorem 3.1. Let M and M_{r} be two parallel pseudo-Euclidean surface in E_{1}^{3} and S_{r} be the Weingarten map on M_{r}. Let

$$
f: M \rightarrow M_{r}
$$

be a parallellization function. Then for $X \in X(M)$,

1. $f_{*}(X)=X+r \overline{S(X)}$
2. $S_{r}\left(f_{*}(X)=\overline{S(X)}\right.$
3. f preserves principal directions of curvature, that is

$$
S_{r}\left(f_{*}(X)\right)=\frac{k}{1+r k} f_{*}(X)
$$

where k is a principal curvature of M at p in direction X [4].
Theorem 3.2. Let M and M_{r} be two parallel pseudo-Euclidean surface in E_{1}^{3}. Then we have

$$
\begin{equation*}
K_{r}=\frac{K}{1+\varepsilon r H+\varepsilon r^{2} K} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{r}=\frac{H+2 r K}{1+\varepsilon r H+\varepsilon r^{2} K} \tag{3.2}
\end{equation*}
$$

where $\left\langle N_{r}, N_{r}\right\rangle=\varepsilon$ and Gaussian curvature and mean curvature of M (and M_{r}) be denoted by K (and K_{r}) and H (and H_{r}) [6].

Theorem 3.3. Let M is a regular surface with no umbilic points and such that its Gaussian curvature does not vanish.

If M has constant mean curvature $H>0$, then there exist two surfaces parallel to M such that one has constant positive Gaussian curvature $K_{r}=\varepsilon H^{2}$ and the other one has constant mean curvature equal to $-H$.

If εK is positive constant, then there exist two surfaces parallel to M at the distance $r= \pm \sqrt{\varepsilon K}$ whose mean curvatures are constant and equal to $H= \pm \varepsilon \sqrt{\varepsilon K}$.

Proof. Suppose M has constant mean curvature $H>0$. Substituting $r=-\frac{\varepsilon}{H}$ into (3.1) and (3.2) we get,

$$
\begin{aligned}
K_{r} & =\frac{K}{1-\varepsilon \frac{\varepsilon}{H} H+\varepsilon \frac{1}{H^{2}} K}=\varepsilon H^{2} \\
H_{r} & =\frac{H-2 \frac{\varepsilon}{H} K}{1-\varepsilon \frac{\varepsilon}{H} H+\varepsilon \frac{1}{H^{2}} K}=\frac{\varepsilon H^{3}-2 H^{2} K}{K}
\end{aligned}
$$

By assumption, we have $K \neq 0$. So the parallel surface at distance $-\frac{\varepsilon}{H}$ has constant Gaussian curvature εH^{2}.

Substituting $r=-\frac{2 \varepsilon}{H}$ into (3.1) and (3.2) we get,

$$
\begin{aligned}
K_{r} & =\frac{K}{1-\varepsilon \frac{2 \varepsilon}{H} H+\frac{4 \varepsilon}{H^{2}} K}=\frac{H^{2} K}{-H^{2}+4 \varepsilon K} \\
H_{r} & =\frac{H-4 \frac{\varepsilon}{H} K}{1-\varepsilon \frac{2 \varepsilon}{H} H+\varepsilon \frac{4}{H^{2}} K}=-H
\end{aligned}
$$

We have

$$
-H^{2}+4 \varepsilon K=0 \Longleftrightarrow-\left(k_{1}+k_{2}\right)^{2}+4 \varepsilon\left(\varepsilon k_{1} k_{2}\right)=\left(k_{1}-k_{2}\right)^{2}=0 \Longleftrightarrow k_{1}=k_{2}
$$

By assumption M has no umbilic points, so $-H^{2}+4 \varepsilon K \neq 0$. So the parallel surface at distance $-\frac{2 \varepsilon}{H}$ has constant mean curvature $-H$. The rest of the theorem can be proven with similar arguments.
Theorem 3.4. Let $M \subset E_{1}^{3}$ be a regular surface.
i) If M has non-zero Gaussian curvature and constant mean curvature $H=-\frac{\varepsilon}{r}$, then the parallel surface M_{r} has constant Gaussian curvature $K_{r}=\frac{\varepsilon}{r^{2}}$.
ii) If M has Gaussian curvature $K \neq \frac{\varepsilon}{4 r^{2}}$ and constant mean curvature $H=-\frac{\varepsilon}{r}$, then the parallel surface $M_{2 r}$ has constant mean curvature $H_{2 r}=\frac{\varepsilon}{r}$.
iii) If M has Gaussian curvature $K=\frac{\varepsilon}{r^{2}}$ and constant mean curvature $H \neq$ $\mp \frac{2 \varepsilon}{r}$, then the parallel surface $M_{ \pm r}$ has constant mean curvature $H_{ \pm r}= \pm \frac{\varepsilon}{r}$.
Proof. If $H=-\frac{\varepsilon}{r}$, then it follows from (3.1), that

$$
K_{r}=\frac{K}{1-\frac{r}{r}+\varepsilon r^{2} K}=\frac{\varepsilon}{r^{2}}
$$

(ii) and (iii) follow from (3.1) and (3.2) in similar fashion.

Theorem 3.5. Let $M \subset E^{3}$ be a regular surface with constant positive curvature εa^{-2} where $a>0$. Let M_{r} denote the surface parallel to M at a distance r. Suppose
that the umbilic points of M are isolated. If M_{r} has constant mean curvature, then $r= \pm a$.
Proof. Fix r, and suppose that H_{r} is constant on M_{r}. Then (3.2) implies that

$$
\begin{aligned}
\varepsilon k_{1}\left(1+r k_{2}\right)+\varepsilon k_{2}\left(1+r k_{1}\right) & =H_{r}\left(1+r k_{1}\right)\left(1+r k_{2}\right) \\
\varepsilon\left(k_{1}+k_{2}\right)+2 r a^{-2} & =H_{r}\left(1+r\left(k_{1}+k_{2}\right)+r^{2} a^{-2}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(k_{1}+k_{2}\right)\left(\varepsilon-r H_{r}\right)=H_{r}+H_{r} r^{2} a^{-2}-2 r \varepsilon a^{-2} . \tag{3.3}
\end{equation*}
$$

By hypothesis, the right hand of (3.3) is constant. But if the left hand of (3.3) constant, it must vanish at the nonumbilic points of M_{r}. Hence

$$
\begin{equation*}
\varepsilon-r H_{r}=0 \tag{3.4}
\end{equation*}
$$

at the nonumbilic points of M_{r}. Then (3.3) and (3.4) imply that

$$
\begin{aligned}
0 & =H_{r}+H_{r} r^{2} a^{-2}-2 \varepsilon r a^{-2} \\
& =H_{r}\left(1+r^{2} a^{-2}\right)-2 \varepsilon r a^{-2} \\
& =\frac{\varepsilon}{r}\left(1+\frac{r^{2}}{a^{2}}\right)-\frac{2 \varepsilon r}{a^{2}} \\
& =\frac{\varepsilon}{r}-\frac{\varepsilon r}{a^{2}}
\end{aligned}
$$

Therefore, $r= \pm a$.

4. Parallel Linear Weingarten Surfaces in E_{1}^{3}

Theorem 4.1. M is a linear Weingarten surface if and only if M_{r} is a linear Weingarten surface in E_{1}^{3}.

Proof. It can be proved easily following the same procedure as in the Teorem 2.1.

Let M (or M_{r}) be a timelike surface. Since $\varepsilon=1$ the Gaussian and the mean curvature of M (or M_{r}) are

$$
K=\frac{K_{r}}{1-r H_{r}+r^{2} K_{r}} \quad \text { and } H=\frac{H_{r}-2 r K_{r}}{1-r H_{r}+r^{2} K_{r}}
$$

or

$$
K_{r}=\frac{K}{1+r H+r^{2} K} \quad \text { and } \quad H_{r}=\frac{H+2 r K}{1+r H+r^{2} K}
$$

These formulas are the same for any surface in E^{3}. Therefore Theorem 2.2, 2.3, $2.4,2.5,2.6,2.7$ are valid for M and Theorem 2.8, 2.9, 2.10, 2.11, 2.12, 2.13 are valid for M_{r} in E_{1}^{3}.

Because of that in this section we give the teorems for only spacelike surfaces.
Theorem 4.2. Let M be a spacelike LW-surface with $c=0$ in E_{1}^{3}. Then M and M_{r} are elliptic LW-surface.

Theorem 4.3. Let M be a spacelike elliptic $L W$-surface with $c>0$ in E_{1}^{3}
a) If $a^{2}<b c$ then M is an elliptic $L W$-surface.
b) Let $a^{2}=b c$.
b.i) If $r \neq \frac{a}{c}$ or then M_{r} is an elliptic LW-surface.
b.ii) If $r=\frac{a}{c}$ then M_{r} is a spacelike parabolic $L W$-surface.
c) Let $a^{2}>b c$ and $c>0$.
c.i) If $\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)<r<\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is an hyperbolic LW-surface.
c.ii) If $r<\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ or $r>\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is an elliptic $L W$-surface.
c.iii) If $r=\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ or $r=\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is a parabolic $L W$-surface.
d) Let $a^{2}>b c$ and $c<0$.
d.i) If $\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)<r<\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is an hyperbolic $L W$-surface.
d.ii) If $r<\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ or $r>\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is an elliptic $L W$-surface.
d.iii) If $r=\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ or $r=\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is a parabolic $L W$-surface.

Theorem 4.4. Let M be a spacelike hyperbolic $L W$-surface with $c \neq 0$ in E_{1}^{3}.
a) If $a^{2}<b c$ then M_{r} is an elliptic $L W$-surface.
b) Let $a^{2}=b c$.
b.i) If $r \neq \frac{a}{c}$ or then M_{r} is a elliptic LW-surface.
b.ii) If $r=\frac{a}{c}$ then M_{r} is a parabolic $L W$-surface.
c) Let $b c<a^{2}<-4 b c$ and $c>0$.
c.i) If $\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)<r<\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is an hyperbolic LW-surface.
c.ii) If $r<\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ or $r>\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is an elliptic $L W$-surface.
c.iii) If $r=\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ or $r=\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is a parabolic $L W$-surface.
d) Let $b c<a^{2}<-4 b c$ and $c<0$.
d.i) If $\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)<r<\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is an hyperbolic $L W$-surface.
d.ii) If $r<\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ or $r>\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is an elliptic $L W$-surface.
d.iii) If $r=\frac{1}{c}\left(a+\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ or $r=\frac{1}{c}\left(a-\frac{2}{5} \sqrt{5\left(a^{2}-b c\right)}\right)$ then M_{r} is a parabolic $L W$-surface.

Theorem 4.5. Let M be a spacelike parabolic LW-surface with $c>0$ and $a>0$ or $c<0$ and $a<0$ in E_{1}^{3}.
a) If $r<0$ or $r>\frac{2 a}{c}$ then M_{r} is an elliptic $L W$-surface.
b) If $0<r<\frac{2 a}{c}$ then M_{r} is a hyperbolic LW-surface.
c) If $r=0$ or $r=\frac{2 a}{c}$ then M_{r} is a parabolic $L W$-surface.

Theorem 4.6. Let M be a spacelike parabolic LW-surface with $c>0$ and $a<0$ or $c<0$ and $a>0$ in E_{1}^{3}.
a) If $r<\frac{2 a}{c}$ or $r>0$ then M_{r} is an elliptic LW-surface.
b) If $\frac{2 a}{c}<r<0$ then M_{r} is a hyperbolic W-surface.
c) If $r=0$ or $r=\frac{2 a}{c}$ then M_{r} is a parabolic $L W$-surface.

Theorem 4.7. Let M_{r} be a spacelike $L W$-surface with $c_{r}=0$ in E_{1}^{3}. Then M is an elliptic $L W$-surface.

Theorem 4.8. Let M_{r} be a spacelike elliptic LW-surface with $c_{r} \neq 0$ in E_{1}^{3}.
a) If $a_{r}^{2}<b_{r} c_{r}$ then M is an elliptic LW-surface.
b) Let $a_{r}^{2}=b_{r} c_{r}$.
b.i) If $r \neq-\frac{a_{r}}{c_{r}}$ or $r>-\frac{a_{r}}{c_{r}}$ then M is an elliptic $L W$-surface.
b.ii.) If $r=-\frac{a_{r}}{c_{r}}$ then M is a parabolic $L W$-surface.
c) Let $a_{r}^{2}>b_{r} c_{r}$ and $c_{r}>0$.
ci) If $\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)<r<\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ then M is a hyperbolic LW-surface.
c.ii) If $r<\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ or $r>\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$
then M is an elliptic $L W$-surface.
c.iii) If $r=\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ or $r=\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$
then M is a parabolic $L W$-surface.
d) Let $a_{r}^{2}>b_{r} c_{r}$ and $c_{r}<0$.
d i) If $\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)<r<\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ then
M is a hyperbolic LW-surface.
d.ii) If $r<\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ or $r>\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ then M is an elliptic LW-surface.
d.iii) If $r=\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ or $r=\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$
then M is a parabolic $L W$-surface.
Theorem 4.9. Let M_{r} be a spacelike hyperbolic LW-surface with $c_{r} \neq 0$ in E_{1}^{3}.
a) If $a_{r}^{2}<b_{r} c_{r}$ then M is an elliptic $L W$-surface.
b) Let $a_{r}^{2}=b_{r} c_{r}$.
b.i) If $r<-\frac{a_{r}}{c_{r}}$ or $r>-\frac{a_{r}}{c_{r}}$ then M is an elliptic LW-surface.
b.ii) If $r=-\frac{a_{r}}{c_{r}}$ then M is a parabolic LW-surface.
c) Let $b_{r} c_{r}<a_{r}^{2}<-4 b_{r} c_{r}$ and $c_{r}>0$.
ci) If $\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)<r<\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ then M is a hyperbolic LW-surface.
c.ii) If $r<\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ or $r>\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$
then M is an elliptic $L W$-surface.
c.iii) If $r=\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ or $r=\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$
then M is a parabolic $L W$-surface.
d) Let $a_{r}^{2}>b_{r} c_{r}$ and $c_{r}<0$.
di) If $\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)<r<\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ then M is a hyperbolic LW-surface.
d.ii) If $r<\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ or $r>\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$
then M is an elliptic $L W$-surface.
d.iii) If $r=\frac{1}{c_{r}}\left(-a_{r}+\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$ or $r=\frac{1}{c_{r}}\left(-a_{r}-\frac{2}{5} \sqrt{5\left(a_{r}^{2}-b_{r} c_{r}\right)}\right)$
then M_{r} is a parabolic LW-surface.
Theorem 4.10. Let M_{r} be a spacelike parabolic $L W$-surface with $c_{r}>0$ and $a_{r}>0$ or $c_{r}<0$ and $a_{r}<0$ in E_{1}^{3}.
a)If $r<-\frac{2 a_{r}}{c_{r}}$ or $r>0$ then M is an elliptic $L W$-surface.
b) If $-\frac{2 a_{r}}{c_{r}}<r<0$ then M is a hyperbolic $L W$-surface.
c) $r=0$ or $r=-\frac{2 a_{r}}{c_{r}}$ then M is a parabolic $L W$-surface.

Theorem 4.11. Let M_{r} be a spacelike parabolic $L W$-surface with $c_{r}>0$ and $a_{r}<0$ or $c_{r}<0$ and $a_{r}>0$ in E_{1}^{3}.
a) If $r<0$ or $r>-\frac{2 a_{r}}{c_{r}}$ then M is an elliptic $L W$-surface.
b) If $0<r<-\frac{2 a_{r}}{c_{r}}$ then M is a hyperbolic $L W$-surface.
c) If $r=0$ or $r=-\frac{2 a_{r}}{c_{r}}$ then M is a parabolic $L W$-surface.

REFERENCES

[1] Hacısalihoğlu, H. H., Diferensiyel Geometri, Inönü Üniversitesi Fen-Edeb. Fak. Yayınları, 1983.
[2] Lopez, R., Rotational Linear Weingarten Surfaces of Hyperbolic Type, Israel Journal of Mathematics (2008), 167, 283-301.
[3] Lopez, R., Kalkan,Ö.B.and Sağlam, D., Non-degenerate Surfaces of Revolution in Minkowski Space That Satisfy the Relation $a H+b K=c$, Acta Math. Univ. Comenianae (2011), Vol. 80, 2, 201-212.
[4] Görgülü, A.and Çöken, A. C., The Dupin indicatrix for Parallel Pseudo-Euclidean Hypersurfaces in Pseudo-Euclidean Space in Semi-Euclidean Space R_{1}^{n+1}, Journ. Inst. Math. and Comp. Sci. (Math Series) 7 (1994), no.3, 221-225.
[5] O'Neill, B. Semi-Riemannian Geometry With Applications To Relativity, Academic Press, New York, London, 1983.
[6] Sağlam, D. and Kalkan, Ö.B., Surfaces at a Constant Distance From the Edge of Regression on a Surface in E_{1}^{3}, Differential Geometry-Dynamical Systems (2010), Vol. 12, 187-200.
[7] Gray, A.,Modern Differential Geometry of Curves and Surfaces with Mathematica, 2000.
Ankara University, Faculty of Science, Department of Mathematics, Ankara/TURKEy
E-mail address: yayli@science. ankara.edu.tr
Afyonkarahisar Kocatepe University, Faculty of Art and Sciences, Department of Mathematics, Afyonkarahisar/TURKEY

E-mail address: dryilmaz@aku.edu.tr
E-mail address: bozgur@aku.edu.tr

[^0]: Date: Received: September 24, 2012 and Accepted: October 21, 2012. 2000 Mathematics Subject Classification. 53B30,14Q10,14J25.
 Key words and phrases. parallel surfaces, linear Weingarten surfaces.

