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PARALLEL LINEAR WEINGARTEN SURFACES IN E3 AND E3
1

YUSUF YAYLI, DERYA SAĞLAM, AND ÖZGÜR KALKAN

(Communicated by Sadahiro MAEDA)

Abstract. In this paper we show that M is a linear Weingarten surface if

and only if Mr is a linear Weingarten surface in E3 and E3
1 . And also we

determine the types of the pair (M,Mr) according to the distance r.

1. Introduction

Let M and Mr be two surfaces in Euclidean space. The function

f : M → Mr

p → f(p) = p+ rNp

is called the parallelization function between M and Mr and furthermore Mr is
called parallel surface to M where N is the unit normal vector field on M and r is
a given real number.

The Gaussian curvature and mean curvature of Mr denoted by Kr and Hr are
respectively

(1.1) Kr =
K

1 + rH + r2K
and Hr =

H + 2rK

1 + rH + r2K

where K and H are Gaussian curvature and mean curvature of M [1].
A surface M in 3-dimensional Euclidean space E3 is called a Weingarten surface

if there is a relation between its two principal curvatures k1 and k2, that is, if there
is a smooth function W of two variables such that W (k1, k2) = 0 implies a relation
U(K,H) = 0. In this paper we study Weingarten surfaces that satisfy the simplest
case for U , that is, that U is of the linear type

(1.2) aH + bK = c,

where a, b, c ∈ R. We say that M is a linear Weingarten surface and we abbreviate
by LW-surface.
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The behaviour of a LW-surface and its qualitative properties strongly depend
on the sign of the distriminant ∆ := a2 + 4bc. A surface M is called hyperbolic if
∆ < 0, elliptic if ∆ > 0 and parabolic if ∆ = 0 [2,3]

2. Parallel Linear Weingarten Surfaces in E3

Theorem 2.1. M is a linear Weingarten surface if and only if Mr is a linear
Weingarten surface in E3.

Proof. Let M be a linear Weingarten surface. Then mean curvature H and Gauss-
ian curvature K of M satisfy a relation

(2.1) aH + bK = c

where a, b, c ∈ R. From (1.1) we obtain that

K =
Kr

1− rHr + r2Kr
and H =

Hr − 2rKr

1− rHr + r2Kr
.

If we use these equations in (2.1) we get

(2.2) (a+ cr)Hr + (b− 2ar − cr2)Kr = c.

In (2.2) if we take a+ cr = ar, b− 2ar − cr2 = br and c = cr then

arHr + brKr = cr.

So that Mr is a linear Weingarten surface.
Conversely we assume that Mr is a linear Weingarten surface. Then the proof

can be obtained with similar calculations. �

Theorem 2.2. Let M be a LW-surface with c = 0 in E3. Then M and Mr are
elliptic LW-surface.

Proof. Since ∆ = a2 > 0 and from (2.2) ∆r = a2 > 0 then Mr is an elliptic
LW-surface. �

Theorem 2.3. Let M be an elliptic LW-surface with c > 0 in E3.

a) If
1

c

(
−a− 2

3

√
3(a2 + bc)

)
< r <

1

c

(
−a+

2

3

√
3(a2 + bc)

)
then Mr is an

elliptic LW-surface.

b) If r <
1

c

(
−a− 2

3

√
3(a2 + bc)

)
or r >

1

c

(
−a+

2

3

√
3(a2 + bc)

)
then Mr is

a hyperbolic LW-surface.

c) If r =
1

c

(
−a− 2

3

√
3(a2 + bc)

)
or r =

1

c

(
−a+

2

3

√
3(a2 + bc)

)
then Mr is

a parabolic LW-surface.

Proof. Let M be an elliptic LW-surface with c > 0 in E3. From (2.2)

∆r = −3c2r2 − 6acr + ∆.

Then the roots of ∆r = 0 are r1 =
1

c

(
−a− 2

3

√
3(a2 + bc)

)
and r2 =

1

c

(
−a+

2

3

√
3(a2 + bc)

)
.

So the proof is obvious. �
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Theorem 2.4. Let M be an elliptic LW-surface with c < 0 in E3.

a) If
1

c

(
−a+

2

3

√
3(a2 + bc)

)
< r <

1

c

(
−a− 2

3

√
3(a2 + bc)

)
then Mr is an

elliptic LW-surface.

b) If r <
1

c

(
−a+

2

3

√
3(a2 + bc)

)
or r >

1

c

(
−a− 2

3

√
3(a2 + bc)

)
then Mr is

a hyperbolic LW-surface.

c) If r =
1

c

(
−a+

2

3

√
3(a2 + bc)

)
or r =

1

c

(
−a− 2

3

√
3(a2 + bc)

)
then Mr is

a parabolic LW-surface.

Theorem 2.5. Let M be a hyperbolic LW-surface with c 6= 0 in E3.
a) If a2 < −bc then Mr is a hyperbolic LW-surface.
b) Let a2 = −bc.
b.i) If r 6= −a

c
then Mr is a hyperbolic LW-surface.

b.ii) If r = −a
c
then Mr is a parabolic LW-surface.

c) Let −bc < a2 < −4bc and c > 0.

c.i) If
1

c

(
−a− 2

3

√
3(a2 + bc)

)
< r <

1

c

(
−a+

2

3

√
3(a2 + bc)

)
then Mr is an

elliptic LW-surface.

c.ii) If r <
1

c

(
−a− 2

3

√
3(a2 + bc)

)
or r >

1

c

(
−a+

2

3

√
3(a2 + bc)

)
then Mr

is a hyperbolic LW-surface.

c.iii) If r =
1

c

(
−a− 2

3

√
3(a2 + bc)

)
or r =

1

c

(
−a+

2

3

√
3(a2 + bc)

)
then Mr

is a parabolic LW-surface.
d) Let −bc < a2 < −4bc and c < 0

d.i) If
1

c

(
−a+

2

3

√
3(a2 + bc)

)
< r <

1

c

(
−a− 2

3

√
3(a2 + bc)

)
then Mr is an

elliptic LW-surface.

d.ii) If r <
1

c

(
−a+

2

3

√
3(a2 + bc)

)
or r >

1

c

(
−a− 2

3

√
3(a2 + bc)

)
then Mr

is a hyperbolic LW-surface.

d.iii) If r =
1

c

(
−a+

2

3

√
3(a2 + bc)

)
or r =

1

c

(
−a− 2

3

√
3(a2 + bc)

)
then Mr

is a parabolic LW-surface.

Theorem 2.6. Let M be a parabolic LW-surface with c > 0 and a > 0 or c < 0
and a < 0 in E3.

a)If r < −2a

c
or r > 0 then Mr is a hyperbolic LW-surface.

b) If −2a

c
< r < 0 then Mr is an elliptic LW-surface.

c) If r = 0 or r = −2a

c
then Mr is a parabolic LW-surface.

Theorem 2.7. Let M be a parabolic LW-surface with c > 0 and a < 0 or c < 0
and a > 0 in E3.

a) If r < 0 or r > −2a

c
then Mr is a hyperbolic LW-surface.

b) If 0 < r < −2a

c
then Mr is an elliptic LW-surface.
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c) If r = 0 or r = −2a

c
then Mr is a parabolic LW-surface.

Theorem 2.8. Let Mr be a LW-surface with cr = 0 in E3. Then M and Mr are
elliptic LW-surface.

Theorem 2.9. Let Mr be an elliptic LW-surface with cr > 0 in E3.

a) If
1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
< r <

1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
then Mr is

an elliptic LW-surface.

b) If r <
1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
or r >

1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
then

Mr is a hyperbolic LW-surface.

c) If r =
1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
or r =

1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
then

Mr is a parabolic LW-surface.

Theorem 2.10. Let Mr be an elliptic LW-surface with cr < 0 in E3.

a) If
1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
< r <

1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
then Mr is

an elliptic LW-surface.

b) If r <
1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
or r >

1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
then

Mr is a hyperbolic LW-surface.

c) If r =
1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
or r =

1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
then

Mr is a parabolic LW-surface.

Theorem 2.11. Let Mr be a hyperbolic LW-surface with cr 6= 0 in E3.
a) If a2

r < −brcr then M is a hyperbolic LW-surface.
b) Let a2

r = −brcr
b.i) If r 6= ar

cr
then M is a hyperbolic LW-surface.

b.ii) If r =
ar
cr

then M is a parabolic LW-surface.

c) Let −brcr < a2
r < −4brcr and cr > 0.

c.i) If
1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
< r <

1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
then M is

an elliptic LW-surface.

c.ii) If r <
1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
or r >

1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
then

M is a hyperbolic LW-surface.

c.iii) If r =
1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
or r =

1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
then

M is a parabolic LW-surface.
d) Let −brcr < a2

r < −4brcr and cr < 0.

d.i) If
1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
< r <

1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
then M is

an elliptic LW-surface.

d.ii) If r <
1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
or r >

1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
then

M is a hyperbolic LW-surface.
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d.iii) If r =
1

cr

(
ar +

2

3

√
3(a2

r + brcr)

)
or r =

1

cr

(
ar −

2

3

√
3(a2

r + brcr)

)
then

M is a parabolic LW-surface.

Theorem 2.12. Let Mr be a parabolic LW-surface with cr > 0 and ar > 0 or
cr < 0 and ar < 0 in E3

a) If r < 0 or r >
2ar
cr

then M is a hyperbolic LW-surface.

b) If 0 < r <
2ar
cr

then M is an elliptic LW-surface.

c) If r = 0 or r =
2ar
cr

then M is a parabolic LW-surface.

Theorem 2.13. Let Mr be a parabolic LW-surface with cr > 0 and ar < 0 or
cr < 0 and ar > 0 in E3.

a) If r <
2ar
cr

or r > 0 then M is a hyperbolic LW-surface.

b) If
2ar
cr

< r < 0 then M is an elliptic LW-surface.

c) If r =
2ar
cr

or r = 0 then M is a parabolic LW-surface.

Example 2.1. Let M be a sphere surface in E3 given with the equation y2
1 + y2

2 +
y2

3 = 1. The Gaussian curvature and the mean curvature of M are respectively
K = 1 and H = 2. If we take a = 1 and b = 1 then we obtain from the relation
(2.1) c = 3 > 0. So that ∆r = −27r2 − 18r + 13 and the roots of this equation are

r1 =
−6− 8

√
3

18
and r2 =

−6 + 8
√

3

18
. Therefore

a) If
−3− 4

√
3

9
< r <

−3 + 4
√

3

9
then Mr is elliptic.

b) If r <
−3− 4

√
3

9
or r >

−3 + 4
√

3

9
then Mr is hyperbolic.

c) If r =
−3− 2

√
3

9
or r =

−3 + 2
√

3

9
then Mr is parabolic.

3. Parallel Surfaces in E3
1

Definition 3.1. Let M be a pseudo-Euclidean surface in E3
1 and D be the Levi-

Civita connection on E3
1 . Then,

S : χ(M)→ χ(M), X → S(X) = DXN

is called the shape operator (Weingarten map), where N is the unit normal vector
on M [4].

Definition 3.2. Let M be a pseudo-Euclidean surface in E3
1 and S be shape

operator on M, for p ∈M, K denotes Gauss curvature of M and defined as

K : M → R
p → K(p) = εdetSp

where ε = 〈N,N〉 = ±1 and N is the unit normal vector field on M [5].

Definition 3.3. Let M be a pseudo-Euclidean surface in E3
1 and H denotes mean

curvature of M and defined as H = εizSp where ε = 〈N,N〉 = ±1 and N is the
unit normal vector field on M [5].
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Note that the principal curvatures of the Weingarten map on M can be obtained
easily

2k1 = H +
√
H2 − 4εK

and

2k2 = H −
√
H2 − 4εK.

Let M be a pseudo-Euclidean surface with N = (a1, a2, a3) where each ai is
a real valued C∞ function on M and −a2

1 + a2
2 + a2

3 = ±1. For any constant r
in R, let Mr = {P + rNp : P ∈ M}. Thus if P = (p1, p2, p3) is on M, then
f(P ) = P + rNp = (p1 + ra1(p), p2 + ra2(p), p3 + ra3(p)) defines a new surface Mr.
The map f is called the natural map on M into Mr, and if f is univalent, then Mr

is a parallel surface of M with unit normal N, i.e., Nf(p) = Np for all P in M .

Theorem 3.1. Let M and Mr be two parallel pseudo-Euclidean surface in E3
1 and

Sr be the Weingarten map on Mr. Let

f : M →Mr

be a parallellization function. Then for X ∈ X(M),

1. f∗(X) = X + rS(X)

2. Sr(f∗(X) = S(X)
3. f preserves principal directions of curvature, that is

Sr(f∗(X)) =
k

1 + rk
f∗(X)

where k is a principal curvature of M at p in direction X [4].

Theorem 3.2. Let M and Mr be two parallel pseudo-Euclidean surface in E3
1 .

Then we have

(3.1) Kr =
K

1 + εrH + εr2K

and

(3.2) Hr =
H + 2rK

1 + εrH + εr2K

where 〈Nr, Nr〉 = ε and Gaussian curvature and mean curvature of M (and Mr)
be denoted by K (and Kr) and H (and Hr) [6].

Theorem 3.3. Let M is a regular surface with no umbilic points and such that its
Gaussian curvature does not vanish.

If M has constant mean curvature H > 0, then there exist two surfaces parallel
to M such that one has constant positive Gaussian curvature Kr = εH2 and the
other one has constant mean curvature equal to −H.

If εK is positive constant, then there exist two surfaces parallel to M at the
distance r = ±

√
εK whose mean curvatures are constant and equal to H = ±ε

√
εK.

Proof. Suppose M has constant mean curvature H > 0. Substituting r = − ε

H
into

(3.1) and (3.2) we get,
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Kr =
K

1− ε ε
H
H + ε

1

H2
K

= εH2

Hr =
H − 2

ε

H
K

1− ε ε
H
H + ε

1

H2
K

=
εH3 − 2H2K

K

By assumption, we have K 6= 0. So the parallel surface at distance − ε

H
has

constant Gaussian curvature εH2.

Substituting r = −2ε

H
into (3.1) and (3.2) we get,

Kr =
K

1− ε2ε

H
H +

4ε

H2
K

=
H2K

−H2 + 4εK

Hr =
H − 4

ε

H
K

1− ε2ε

H
H + ε

4

H2
K

= −H

We have

−H2 + 4εK = 0⇐⇒ −(k1 + k2)2 + 4ε(εk1k2) = (k1 − k2)2 = 0⇐⇒ k1 = k2

By assumption M has no umbilic points, so −H2 + 4εK 6= 0. So the parallel

surface at distance −2ε

H
has constant mean curvature −H. The rest of the theorem

can be proven with similar arguments. �

Theorem 3.4. Let M ⊂ E3
1 be a regular surface.

i) If M has non-zero Gaussian curvature and constant mean curvature H = −ε
r
,

then the parallel surface Mr has constant Gaussian curvature Kr =
ε

r2
.

ii) IfM has Gaussian curvature K 6= ε

4r2
and constant mean curvature H = −ε

r
,

then the parallel surface M2r has constant mean curvature H2r =
ε

r
.

iii) If M has Gaussian curvature K =
ε

r2
and constant mean curvature H 6=

∓2ε

r
, then the parallel surface M±r has constant mean curvature H±r = ±ε

r
.

Proof. If H = −ε
r
, then it follows from (3.1), that

Kr =
K

1− r

r
+ εr2K

=
ε

r2

(ii) and (iii) follow from (3.1) and (3.2) in similar fashion. �

Theorem 3.5. Let M ⊂ E3 be a regular surface with constant positive curvature
εa−2 where a > 0. Let Mr denote the surface parallel to M at a distance r. Suppose
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that the umbilic points of M are isolated. If Mr has constant mean curvature, then
r = ±a.

Proof. Fix r, and suppose that Hr is constant on Mr. Then (3.2) implies that

εk1(1 + rk2) + εk2(1 + rk1) = Hr(1 + rk1)(1 + rk2)

ε(k1 + k2) + 2ra−2 = Hr(1 + r(k1 + k2) + r2a−2).

Hence

(3.3) (k1 + k2)(ε− rHr) = Hr +Hrr
2a−2 − 2rεa−2.

By hypothesis, the right hand of (3.3) is constant. But if the left hand of (3.3)
constant, it must vanish at the nonumbilic points of Mr. Hence

(3.4) ε− rHr = 0

at the nonumbilic points of Mr. Then (3.3) and (3.4) imply that

0 = Hr +Hrr
2a−2 − 2εra−2

= Hr(1 + r2a−2)− 2εra−2

=
ε

r

(
1 +

r2

a2

)
− 2εr

a2

=
ε

r
− εr

a2
.

Therefore, r = ±a. �

4. Parallel Linear Weingarten Surfaces in E3
1

Theorem 4.1. M is a linear Weingarten surface if and only if Mr is a linear
Weingarten surface in E3

1 .

Proof. It can be proved easily following the same procedure as in the Teorem 2.1.
�

Let M (or Mr) be a timelike surface. Since ε = 1 the Gaussian and the mean
curvature of M (or Mr) are

K =
Kr

1− rHr + r2Kr
and H =

Hr − 2rKr

1− rHr + r2Kr
or

Kr =
K

1 + rH + r2K
and Hr =

H + 2rK

1 + rH + r2K
.

These formulas are the same for any surface in E3. Therefore Theorem 2.2, 2.3,
2.4, 2.5, 2.6, 2.7 are valid for M and Theorem 2.8, 2.9, 2.10, 2.11, 2.12, 2.13 are
valid for Mr in E3

1 .
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Because of that in this section we give the teorems for only spacelike surfaces.

Theorem 4.2. Let M be a spacelike LW-surface with c = 0 in E3
1 . Then M and

Mr are elliptic LW-surface.

Theorem 4.3. Let M be a spacelike elliptic LW-surface with c > 0 in E3
1

a) If a2 < bc then M is an elliptic LW-surface.
b) Let a2 = bc.

b.i) If r 6= a

c
or then Mr is an elliptic LW-surface.

b.ii) If r =
a

c
then Mr is a spacelike parabolic LW-surface.

c) Let a2 > bc and c > 0.

c.i) If
1

c

(
a− 2

5

√
5(a2 − bc)

)
< r <

1

c

(
a+

2

5

√
5(a2 − bc)

)
then Mr is an

hyperbolic LW-surface.

c.ii) If r <
1

c

(
a− 2

5

√
5(a2 − bc)

)
or r >

1

c

(
a+

2

5

√
5(a2 − bc)

)
then Mr is

an elliptic LW-surface.

c.iii) If r =
1

c

(
a− 2

5

√
5(a2 − bc)

)
or r =

1

c

(
a+

2

5

√
5(a2 − bc)

)
then Mr is

a parabolic LW-surface.
d) Let a2 > bc and c < 0.

d.i) If
1

c

(
a+

2

5

√
5(a2 − bc)

)
< r <

1

c

(
a− 2

5

√
5(a2 − bc)

)
then Mr is an

hyperbolic LW-surface.

d.ii) If r <
1

c

(
a+

2

5

√
5(a2 − bc)

)
or r >

1

c

(
a− 2

5

√
5(a2 − bc)

)
then Mr is

an elliptic LW-surface.

d.iii) If r =
1

c

(
a+

2

5

√
5(a2 − bc)

)
or r =

1

c

(
a− 2

5

√
5(a2 − bc)

)
then Mr is

a parabolic LW-surface.

Theorem 4.4. Let M be a spacelike hyperbolic LW-surface with c 6= 0 in E3
1 .

a) If a2 < bc then Mr is an elliptic LW-surface.
b) Let a2 = bc.

b.i) If r 6= a

c
or then Mr is a elliptic LW-surface.

b.ii) If r =
a

c
then Mr is a parabolic LW-surface.

c) Let bc < a2 < −4bc and c > 0.

c.i) If
1

c

(
a− 2

5

√
5(a2 − bc)

)
< r <

1

c

(
a+

2

5

√
5(a2 − bc)

)
then Mr is an

hyperbolic LW-surface.

c.ii) If r <
1

c

(
a− 2

5

√
5(a2 − bc)

)
or r >

1

c

(
a+

2

5

√
5(a2 − bc)

)
then Mr is

an elliptic LW-surface.

c.iii) If r =
1

c

(
a− 2

5

√
5(a2 − bc)

)
or r =

1

c

(
a+

2

5

√
5(a2 − bc)

)
then Mr is

a parabolic LW-surface.
d) Let bc < a2 < −4bc and c < 0.
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d.i) If
1

c

(
a+

2

5

√
5(a2 − bc)

)
< r <

1

c

(
a− 2

5

√
5(a2 − bc)

)
then Mr is an

hyperbolic LW-surface.

d.ii) If r <
1

c

(
a+

2

5

√
5(a2 − bc)

)
or r >

1

c

(
a− 2

5

√
5(a2 − bc)

)
then Mr is

an elliptic LW-surface.

d.iii) If r =
1

c

(
a+

2

5

√
5(a2 − bc)

)
or r =

1

c

(
a− 2

5

√
5(a2 − bc)

)
then Mr is

a parabolic LW-surface.

Theorem 4.5. Let M be a spacelike parabolic LW-surface with c > 0 and a > 0 or
c < 0 and a < 0 in E3

1 .

a) If r < 0 or r >
2a

c
then Mr is an elliptic LW-surface.

b) If 0 < r <
2a

c
then Mr is a hyperbolic LW-surface.

c) If r = 0 or r =
2a

c
then Mr is a parabolic LW-surface.

Theorem 4.6. Let M be a spacelike parabolic LW-surface with c > 0 and a < 0 or
c < 0 and a > 0 in E3

1 .

a) If r <
2a

c
or r > 0 then Mr is an elliptic LW-surface.

b) If
2a

c
< r < 0 then Mr is a hyperbolicW-surface.

c) If r = 0 or r =
2a

c
then Mr is a parabolic LW-surface.

Theorem 4.7. Let Mr be a spacelike LW-surface with cr = 0 in E3
1 . Then M is

an elliptic LW-surface.

Theorem 4.8. Let Mr be a spacelike elliptic LW-surface with cr 6= 0 in E3
1 .

a) If a2
r < brcr then M is an elliptic LW-surface.

b) Let a2
r = brcr.

b.i) If r 6= −ar
cr

or r > −ar
cr

then M is an elliptic LW-surface.

b.ii.) If r = −ar
cr

then M is a parabolic LW-surface.

c) Let a2
r > brcr and cr > 0.

c i) If
1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
< r <

1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
then M

is a hyperbolic LW-surface.

c.ii) If r <
1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
or r >

1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
then M is an elliptic LW-surface.

c.iii) If r =
1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
or r =

1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
then M is a parabolic LW-surface.

d) Let a2
r > brcr and cr < 0.

d i) If
1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
< r <

1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
then

M is a hyperbolic LW-surface.
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d.ii) If r <
1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
or r >

1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
then M is an elliptic LW-surface.

d.iii) If r =
1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
or r =

1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
then M is a parabolic LW-surface.

Theorem 4.9. Let Mr be a spacelike hyperbolic LW-surface with cr 6= 0 in E3
1 .

a) If a2
r < brcr then M is an elliptic LW-surface.

b) Let a2
r = brcr.

b.i) If r < −ar
cr

or r > −ar
cr

then M is an elliptic LW-surface.

b.ii) If r = −ar
cr

then M is a parabolic LW-surface.

c) Let brcr < a2
r < −4brcr and cr > 0.

c i) If
1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
< r <

1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
then M

is a hyperbolic LW-surface.

c.ii) If r <
1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
or r >

1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
then M is an elliptic LW-surface.

c.iii) If r =
1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
or r =

1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
then M is a parabolic LW-surface.

d) Let a2
r > brcr and cr < 0.

d i) If
1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
< r <

1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
then

M is a hyperbolic LW-surface.

d.ii) If r <
1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
or r >

1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
then M is an elliptic LW-surface.

d.iii) If r =
1

cr

(
−ar +

2

5

√
5(a2

r − brcr)

)
or r =

1

cr

(
−ar −

2

5

√
5(a2

r − brcr)

)
then Mr is a parabolic LW-surface.

Theorem 4.10. LetMr be a spacelike parabolic LW-surface with cr > 0 and ar > 0
or cr < 0 and ar < 0 in E3

1 .

a)If r < −2ar
cr

or r > 0 then M is an elliptic LW-surface.

b) If −2ar
cr

< r < 0 then M is a hyperbolic LW-surface.

c) r = 0 or r = −2ar
cr

then M is a parabolic LW-surface.

Theorem 4.11. LetMr be a spacelike parabolic LW-surface with cr > 0 and ar < 0
or cr < 0 and ar > 0 in E3

1 .

a) If r < 0 or r > −2ar
cr

then M is an elliptic LW-surface.

b) If 0 < r < −2ar
cr

then M is a hyperbolic LW-surface.

c) If r = 0 or r = −2ar
cr

then M is a parabolic LW-surface.
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