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Abstract. In the Random Phase Approximation (RPA), using the analytic

properties of the nucleus transition matrix elements and by means of contour
integrals and residue theorem, we obtained an analytic formula for the En-
ergy Weighted Sum Rule (EWSR) of the M1 transitions as a function of the

deformation parameters of the excited states of the nucleus. It is shown that
an essential decrease of the experimental M1 transitions rates may be due to
the change of nuclear shape caused by the transitions between different en-
ergy levels. The latter may be also responsible for the observed quenching of

the M1 sum rules. The numerical calculations are carried out, and the de-
formed dependence of the sum rules for the 140Ce, 154Sm, 156Gd and 196Pt is
analyzed.

1. Introduction

In quantum mechanics, the transition probability of the system from one state to
the other is restricted to the sum rules which are independent from the model and
subject to transitions matrix elements. The sum rules in nuclear physics are very
important to finding parameters and understanding the reliability of used models
[1]. Microscopic nuclear models are used to investigate the properties of nuclear col-
lective excitations [2]. Approximate calculation methods are used to investigate the
structure of nucleus within the framework of assumed models. In these models the
RPA has been extensively exploited to calculate intensities of the various nuclear
processes, probabilities of electromagnetic, beta and double beta decay transitions
and corresponding sum rules by taking into account ground state correlations. Nu-
merical calculations of the sum rules within framework of the modern microscopic
models of nucleus are simple with a small number of the phonon states in spherical
nuclei. However, in deformed nuclei the spectrum of such states is characterized by
high density. This gives rise to considerable difficulties in exact calculations of all
the eigenvalues ωn and eigenfunctions ψn of the model Hamiltonian and in the cor-
rect evaluation nuclear matrix elements of the different processes. The analytical
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solutions of this problem for calculation beta decay sum rules are given in [3]. Later,
the developed method developed in [3] successfully applied to calculate the Non-
Energy Weighted Sum Rule (NEWSR) and Energy Weighted Sum Rule (EWSR)
of the electric and magnetic dipole transitions and beta decay matrix elements on
the ground state basis [4]. This approach based on the analytical properties of
nuclear matrix elements makes it possible to describe the integral quantities as
sum rules without a preliminary determination of the wide spectrum of 1+ states
and wave functions. The experimental spin-magnetic strength was found to be
quenched more than 1.5 times in heavy nuclei as compared with prediction of the
Quasi Random Phase Approximation (QRPA) (see, e.g., [5] and references therein).
Up to now the reason for this disagreement between the QRPA calculation and the
experiments is not exactly explained. So, investigation of this disagreement is very
important. The main reason of these disagreements may be due to the change of
nuclear shape caused by the transitions between different energy levels. The phe-
nomena associated with shape coexistence and intruder states in heavy and medium
nuclei are discussed in [6,7]. It is experimentally known that in some nuclei, the
rate transitions between levels having different shape and structure decreases [8,9].
So, one of the reason of these disagreements should be the differences of the shape
of the excitations and ground state participating in transitions. For this reason,
calculating the sum rules for the transition matrix elements of levels, which have
deformation parameters different from the ground state is very important. In this
study, the method developed in [3] has been applied successfully for investigating
magnetic dipole transitions between states having different shape. We obtained an
analytical formula for the energy weight sum rule of the magnetic dipole transition
matrix elements containing the excited and ground state deformation parameters
of nucleus. It is shown that an essential decrease of the rate M1 excitations of the
1+ states may be due to the change of nuclear shape caused by the M1 transitions.
The numerical calculations are carried out, and the shape dependence of the EWSR
for the 140Ce, 154Sm, 156Gd and 196Pt is analyzed.

2. The Analytical Calculations

The key problem in the program for investigating deformation dependence of
the sum rules is the calculation of the EWSR of the M1 transitions to the states
which have shapes different from the ground state ones. The sum rules for the
transition matrix elements from one state to the other one are obtained by using
commutation relations of the transition operators and their hermitic conjugates
with each other, and with the system model Hamiltonian by making explicit use of
the closure relation of exact eigenstates of the system. There are two widely used
types of sum rules: none energy-weighted sum rule (NEWSR) and linear energy-
weighted sum rule (EWSR). For any one-body operator M, the transition matrix
elements from the ground state to the excited states of the system is given by the
NEWSR

(2.1)
∑
k>0

| < k|M |0 > |2 =< 0
∣∣[M,M+]

∣∣ 0 > .

The energy-weighted sum rule is widely used in the nuclear physics can be written
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(2.2)
∑
k>0

(Ek − E0)|< k|M |0 > |2 =
1

2
< 0

∣∣[M+, [H,M ]]
∣∣ 0 > .

Here in (1.1) and (1.2) energy and wave function are eigenvalues and eigenfunc-
tions of Hamiltonian operator of nucleus, respectively. For the transition operator
M in quasi-boson approximation of the RPA the double commutator in (1.2) is a
c-number. E0 and also denote the energy and wave function of the ground state,
respectively. Thouless [10] showed that left-hand side of (1.2) calculated with RPA
is equal to the right-hand side of (1.2) calculated using the Hartree-Fock ground
state wave function. Since the right-hand side of the sum rule (1.2) does not con-
tain any parameters of the effective interactions of the model used for description
nuclear excitations. On the other hand, the left-hand side of the (1.1) contains
wave functions and energy levels of nucleus, its values depend on accuracy of the
methods and models used. Thus, the calculation of the EWSR allows one to make
some conclusions about the accuracy of methods and approximations.

2.1. Model Hamiltonian and description of 1+ states. Let us consider the
system of nucleons in the axially symmetric average field interacting via pairing
and spin-spin residual forces. We neglect for simplicity the restoring rotational
invariance forces which have a minor effect in the deformation dependence of the
EWSR. Then the model Hamiltonian of the intrinsic motion (for a fixed orientation
of the nucleus) can be written in the quasiparticle representation [11]:

(2.3) H = Hsqp + Vστ .

Here, Hsqp represents the Hamiltonian of the single-quasiparticle motion. The term
Vστ takes into account the spin-isospin interaction, which produces the 1+ states
in deformed nuclei and has the form

(2.4) Vστ =
1

2
χστ

∑
i̸=j

σ⃗iσ⃗jτ
z
i τ

z
j

where, χστ is the spin-isospin interaction strength; and σ⃗i and τi are the Pauli
matrices that represent the spin and the isospin, respectively. All relations, that
are used and not explained in this paper are similar to those in Ref. [11]. In the
QRPA method, the collective 1+ states are considered as one-phonon excitations
described by

(2.5) |t⟩ = Q+
t |Ψ0⟩ =

1√
2

∑
ss′,τ

[ψt
ss′(τ)C

t
ss′(τ)− ϕtss′(τ)Css′(τ)] |0⟩

where Q+
t is the phonon creation operator, |0⟩ is the phonon vacuum which cor-

responds to the ground state of the even-even nucleus and C+
ss′(Css′) is a two-

quasiparticle creation (annihilation) operator. Further s(s’) denotes the single-
quasiparticle states of the nucleons and the isospin index τ takes the values n(p)
for neutrons(protons). Our system has a discrete spectrum and the wave functions
|t⟩ form complete set satisfying

∑
t
|t⟩ ⟨t| = 1. The two quasiparticle amplitudes

ψt
ss′(τ) and ϕ

t
ss′(τ), corresponding to the operator Css′ and C

+
ss′ are normalized as
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follows:

(2.6)
∑
ss′τ

[ψi
ss′(τ)ψ

k
ss′(τ)− ϕiss′(τ)ϕ

k
ss′(τ)] = δi,k.

Following the well-known procedure of the RPA method, one can find the eigen-
functions and the eigenvalues of the Hamiltonian. Employing the conventional
procedure of the QRPA with the equation of motion:

(2.7) [Hsqp + Vστ , Q
+
t

]
= ωtQ

+
t

and omitting the details of the solution of (7), we obtain [11] the secular equation
for the excitation energy ωt = Et − E0 of the 1+-states

(2.8) D(ωt) = 1 + χστ

(
Fn(ωt) + Fp(ωt)

)
= 0

where

(2.9) Fτ (ωt) = 2
∑
µ

(τ)
εµσ

2
µL

2
µ

ε2µ − ω2
t

, τ = n, p.

Here, εss′ = εs + εs′ and s are the energies of the deformed single-quasiparticle
states |s >. The single-particle matrix elements for spin operator σ+1 are denoted
by σss′ . The expression Lss′ = usvs′ − us′vs is defined in the usual Bogolyubov
notation. Hereafter in order to simplify the notation we use a single index µ instead
of the pair index (ss’). The sum

∑
(τ) denotes the summation over the neutron or

the proton states. Finally, the neutron-neutron and proton-proton two-quasiparticle
amplitudes are given by:

(2.10) ψt
µ =

1√
Y (ωt)

.
σµLµ

εµ − ωt
,

(2.11) ϕtµ =
1√
Y (ωt)

.
σµLµ

εµ + ωt

where

(2.12) Y (ωt) = 4ωk

∑
t

εµσ
2
µL

2
µ

(ε2µ − ω2
t )

2 .

The sum
∑

runs over all neutron and proton states. On the other hand, since
energies of the magnetic dipole 1+ states are the solutions of the function D(ωt),
after simple manipulation for Y (ωt) the following formula is obtained

(2.13) Y (ωt) =
1

χ
D′ (ωt)

where

D′ =
dD(z)

dz
.

Due to the symmetry between the used spin-spin forces and magnetic dipole
operator, the most characteristic quantity of the 1+ states is transition matrix
elements M1 from ground state to all excited states in nucleus:

(2.14) M⃗t = ⟨t| M⃗ |0⟩
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where the magnetic-dipole operator is

(2.15)
→
M =

√
3

4π

∑
m,τ

[(gτs − gτl )
1

2
σ⃗τ
m − gτe j⃗

τ
m].

Here gτs and gτl are the spin and the orbital gyromagnetic ratios of nucleons, respec-
tively. By using the wave function (5) and by means of (10) and (11), transition
matrix elements of 1+ states from ground state to excited states |t⟩ can be expressed
as

(2.16) Mt =

√
3

4π

∑
τ
[ 12 (g

τ
s − gτl )Fτ (ωt)− gτℓ Jτ (ωt)]√

Y (ωt)

where

(2.17) Jτ (ωt) = 2
∑
µ

(τ)
εµj

2
µL

2
µ

ε2µ − ω2
t

.

Here, jµ denotes the single-particle matrix elements of the angular momentum
operator.

The energy-weighted sum rule (2) for the M1 transitions (15) calculated using
Hartree-Fock-Bogolyubov (HFB) ground state is given as follows [13]

(2.18) S(δ0) =
∑
t>0

ωtBt(M1) =
3

4π

∑
µ,τ

ετµ[(g
τ
s − gτl ) s

τ
µ − gτe j

τ
µ]

2.

Here, Bt(M1) =< t|M |0 > 2
is the M1 transition probability of the excitation from

the ground state. As seen the right-hand side of eq. (18) does not depend on the
spin-spin interaction strength parameter and represents the quasiparticle estimate
of the sum rule. Let us now generalize the sum rule in eq. (2) for transitions
between the ground and excited states which have different form. Let us suppose
that shape of the excited states |k⟩ have different deformation parameter from the
ground state one. After this, the quantities corresponding to excited states |k⟩ which
have different form from the ground state are denoted by (tilda) over themselves.
Also, by taking the fact that the excited state wave functions |i⟩ = Q+

i |0⟩ in the
ground state bases form a complete set into consideration, in QRPA we obtain the
generalized expression for the left-hand side of the sum rule (1) for the transition
matrix elements between different shapes as follows:

(2.19) S (δ0, δex.) =
∑
k>0

ω̃k

∣∣∣∣∣∑
i>0

Mi ⟨k | i⟩

∣∣∣∣∣
2

=
1

4

∑
k

ω̃k

∣∣∣∣∣∑
i

Mi ⟨k | i⟩

∣∣∣∣∣
2

.

The overlap of the wave functions |k⟩ and |i⟩ has the following form:

(2.20) ⟨k | i⟩ = 1

2

∑
µτ

[giµ(τ)w
k
µ(τ) + wi

µ(τ)g
k
µ(τ)]

where

(2.21) gtq(τ) = ψt
q(τ) + ϕtq(τ).

Here M⃗i = ⟨i| M⃗ |0⟩, δ0. and δex. are quadrupole deformation parameters of the
ground (core) and excited states, respectively. Further, k and i runs over all the



EFFECT OF SHAPE TRANSFORMATION ACCOMPANIED BY M1 TRANSITIONS 95

negative and positive solutions of the D(ωt) = 0. If we use (20), we find that
general expression for S (δ0, δex.) given by (19), assumes the form

(2.22) S (δ0., δex.) =
1

4

∑
µν

.Ω̃µνdµdν .

where

(2.23) Ω̃µν =
∑
k

ω̃kg
k
µg

k
ν , dq =

∑
i

Miw
i
q, q = µ, ν.

As a matter of convenience, let as calculate sum rule for spin part of the S (δ0, δex.).
In this case by putting M = σ in (22), and by exploiting the equations (8)-(13), we
obtain:

(2.24) Sσ (δ0, δex.) =
1

4

∑
µν

.Ω̃µνdµdν .

where

(2.25) dq = 2χστ

∑
i

ωiF (ωi)

D′ (ωi)

σqLq(
ε2q − ω2

i

) .

(2.26) Ω̃µν = 4χστ

∑
k

ω̃k

D′ (ω̃k)

ε̃µσ̃µL̃µε̃ν σ̃νL̃ν

(ε̃2µ − ω̃2
k)(ε̃

2
ν − ω̃2

k)
.

Let us calculate right-hand side of (24) using analytical properties expressions

(25) and (26) for dq and Ω̃µν , respectively. The mathematical formalism of the
model and method of calculation sum rules are discussed in details in [3,4]. Since
ωi and ωk are the zeros of the function D (ωt) of (8), the basic theorem of the theory

of residues [14] now allow us to write the expression for dq and Ω̃q in the form of
the contour integral:

(2.27) dq = χστ
1

πi

∑
i

σqLq

∮
Li

ziF (zi)(
ε2q − z2

i

)
D (zi)

dzi,

(2.28) Ω̃µν =
2χστ

πi

∮
Li

∑
k

zk
D (zk)

ε̃µσ̃µL̃µε̃ν σ̃νL̃ν

(ε̃2µ − ω̃2
k)(ε̃

2
ν − ω̃2

k)
dzk.

The contour of the integration is given in Fig.1. Analysis shows that integral (27)
contains first-order singularities of the integrand at zi = ±εq (see Fig.1). The same

integral extended over the contour L∞ is proportional to 1
/
z3 vanishes for large z,

and therefore

(2.29) dq = −
∮
Lq

−
∮
L−q

= 2σqLq.
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Figure 1. The contour of integration in the complex plane for (24).

The integral Ω̃µν over the contour L∞ is equal to zero because as z → ∞, the

integrand tends to zero also as 1
/
z3. We note that in the case µ ̸= ν, zk = ±εµ

and zk = ±εν are removable singularities of the integrand (28), after certain ma-
nipulations we obtain Ωµ̸=ν = 0. On other hand diagonal part of Ωµνδµν contains
first-order singularities of the integrand at zi = ±εµ (see Fig.1). Omitting the in-
termediate computations after laborious calculations, one can obtain the expression
for the Ωµν in the form

(2.30) Ωµν = 2ε̃µδµν .

Substituting (29) and (30) into the (24) we obtain

(2.31) Sσ (δ0, δex.) =
∑
µ

ε̃µσ
2
µL

2
µ.

Applying analogous procedure of calculations for M = j we obtain:

(2.32) Sj (δ0, δex.) =
∑
µ

ε̃µj
2
µL

2
µ.

Finally, in general case for left-hand side of EWSR (2) in QRPA by exploiting (31)
and (32) for M1 transitions accompanied by change of nuclear form we derived very
simple formula

(2.33) S(δ0, δex.) =
3

4π

∑
µ,τ

ε̃τµL
2
µ[(g

τ
s − gτl ) s

τ
µ − gτe j

τ
µ]

2.

This is quite interesting result in our approach. As can bee seen from (33) the
deformation dependence of the EWSR is caused by the interplay of the ground
and excited states structure. Thus, for M1 transitions followed by shape changing
the two-quasiparticle energies calculate for the shape changed base of the excited
states, meanwhile two-quasiparticle matrix elements calculate on the ground state
base. As a natural consequence, when δex. = δ0 the formula (33) is transformed
into the known sum rule expression (18) for magnetic dipole transitions:

(2.34) S(δ0) =
3

4π

∑
µ,τ

ετµL
2
µ[(g

τ
s − gτl ) s

τ
µ − gτe j

τ
µ]

2.
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As seen in the QRPA the EWSR (2) for M1 transitions is satisfied exactly,
i.e, the value (34) of left hand side of the EWSR (2) calculated with the QRPA
is equal the value of the (18) of right hand side of (2) calculated using the HFB
ground state wave function (18). Thus, by using analytical properties of the nuclear
matrix elements with help the theory of residue and contour integrals, the known
energy weighted sum rule for the magnetic dipole transitions is generalized for
transitions to levels which have different forms from the ground state. As can
bee seen for transitions followed by shape changing the single-quasiparticle matrix
elements calculated for ground states with δ0 deformation where two-quasiparticle
matrix elements calculated for the shape changed excited states.

3. Numerical Calculations and Discussion

It is well-known that many transitional and deformed nuclei demonstrate softness
against δ deformations. As stressed in [2] the large variety of the equilibrium shapes
of nuclei in deformation region 50 < Z.N < 126 is related to the considerable
differences between the δ2 values of excited states (δex.) and ground state values
(δ0). Experimental data confirming the existing different deformation form of nuclei
is discussed in [6,7].

Aim of the present calculations is study the states with different shapes and
to demonstrate importance the shape transformation in describing the quenching
phenomenon of the transition matrix elements in deformed nuclei. This can be
obtained by investigating the deformation dependence of the S(δ0, δex.) value and
comparison of its results with the results of the QRPA calculated on the ground
state base with δ0. Numerical calculations are performed in a wide interval of the
deformation parameter δex. for 140Ce, 150Ce, 154Sm, 156Gd and 196Pt in the de-
formed Woods-Saxon potential [15]. The calculations are performed by using the
sum rule (33) for the M1 excitations. The ground state mean field deformation
parameters δ0 are calculated according to [16] using deformation parameters β2
defined from the experimental quadrupole moments [17]. The pairing-interaction
constants chosen according to [2] are based on the single-particle states correspond-
ing to the nucleus in question. The calculated values of the pairing quantities ∆
and λ corresponding to the GN and GZ and the mean-field deformation parameters
δ0 are shown in Table 1. The isovector spin-spin interaction strength was chosen
as χστ = 40/A MeV [11]. This value allows a satisfactory description of the scis-
sors mode fragmentation in well-deformed rare earth nuclei [12]. In calculating the
B(M1) value, we have used bear spin and orbital gyromagnetic factors for nucleons.

Here we want to study the effect of shape transformation of excited states to the
EWSR of the M1 excitation matrix elements for Kπ = 1+ states. The importance
of deformation dependence of sum rule can be demonstrated by the comparison
of the QRPA results with the experimental data. Dependence of the calculated
S in transitional 140Ce and 196Pt and well deformed the 154Sm, 156Gd isotopes
with respect to deformation parameter δex. are represented in Fig.2 and Fig.3,
respectively.

The results were compared with the experimentally observed M1 dipole excita-
tions data from refs. [5,18,19] in the experimentally investigated energy region of
6.0-9.0 MeV. The Ce and Pt isotopes are an important link in the transition region
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Table 1. Pairing correlation parameters (in MeV) and δ2 values.

Nuclei ∆n λn GN.A ∆p λp GZ.A δ0

140Ce 1.190 -7.581 23.0 1.542 -7.118 24.1 0.090

154Sm 1.183 -6.822 19.2 0.783 -8.589 22.3 0.271

156Gd 1.07 -7.486 19.3 1.175 -7.408 25.3 0.271

196Pt 0.815 -6.961 19.2 1.073 -7.087 25.4 0.115

from spherical to deformed shape and from deformed to spherical nuclei, respec-
tively. In Fig. 2, we compare the δex.-dependence of the calculated in the QRPA
(solid line) S (δ0, δex.) value for the 1+ states with the single-quasiparticle model
values (dashed line) and the experimental data for 140Ce[19] and 196Pt.

Figure 2. Deformation dependence of the S(δ0, δex.) values (in units of MeV µ2
N ) for the M1

transitions with Kπ = 1+ in transitional 140Ce[19] and 196Pt isotopes. The right-hand side of the sum
rule (34) is shown by dashed line. The solid line corresponds to the function S calculated by (33).

Symbol ⊤ denotes the experimental data for EWSR [19]. The value of the ground state deformation
parameter δ0 is marked with the arrows.

As seen from figures the single quasiparticle model exceeds the experimental
values almost two times in 140Ce. One can observe strong deformation dependence
of the calculated sum rule S (δ0, δex.). The calculation results of the S (δ0, δex.)
show that deviations from the QRPA results below the δ0 are small. In contrast
in the case δex. > δ0 the sum rules S (δ0, δex.) for both nuclei change steeply with
increasing δex. which leads to the conclusion that in heavy deformed and transition
nuclei a quenching M1 strength does occur mainly for δex. > δ0. This is also
the case for the 154Sm, 156Gd isotopes (see Fig.3). Therefore, it is not surprise
that, in fitting the data by adjusting the parameter δex. we have found δex. > δ0
for nuclei investigated. Analysis shows that the strong deformation dependence
is caused by the interplay of the two-quasiparticle energy ε̃ss′ and δex.. Thus,
the results confirm the importance of the shape transformation in the quenching.
The quenching phenomenon as described above for transitional nuclei can be more
clearly seen for nuclei with a larger deformation. As an example, the comparison of
the present results obtained in the deformation range of 0.2-0.3 for well deformed
154Sm, 156Gd isotopes to the sum rule resulting from the single-quasiparticle model
values (dashed line) and the experimental [5,18] data is given in Fig. 3.
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Fig. 3. Deformation dependence of the S (δ0, δex.) values (in units of MeV µ2
N ) for the M1 transitions

with Kπ = 1+ in deformed 154Sm, 156Gd isotopes. The right-hand side of the sum rule (34) is shown
by dashed line. The solid line corresponds to the function S (δ0, δex.) calculated by (33). Symbol ⊤
denotes the experimental data for 154Sm and 156Gd [18]. The value of the ground state deformation

parameter δ0 is marked with the arrows.

Fig. 3. Deformation dependence of the S (δ0, δex.) values (in units of MeV µ2
N ) for

the M1 transitions with Kπ = 1+ in deformed 154Sm, 156Gd isotopes. The right-
hand side of the sum rule (34) is shown by dashed line. The solid line corresponds
to the function S (δ0, δex.) calculated by (33). Symbol ⊤ denotes the experimental
data for 154Sm and 156Gd [18]. The value of the ground state deformation parameter
δ0 is marked with the arrows.

As seen in Fig. 3, in the case of using δex. = δ0, the sum rules are well above the
experimental data for both nuclei. Namely, the sum rule values have an S(δ0, δex.) =
122.3 MeV µ2

N for 154Sm and S(δ0, δex.) = 129 MeV µ2
N for 156Gd. Analysis shows

that for a considerable consequence of the use of the different deformation shape
for the ground and excited states is the strong decreasing of the S(δ0, δex.) with
increasing δex. between δ0 = 0.27 and δ0 = 0.3. For example, for 154Sm in case of
using δex. = δ0 (dashed lines in the figures), the sum S(δ0, δex.) = 122.3 MeV µ2

N ,
while for the δex. = 1.1.δi the sum S(δ0, δex.) = 50 MeV µ2

N . This is also the case
for the all nuclei under investigation.

The theory predicts a giant spin-flip Ml resonance at an energy of 8.0- 9.0 MeV
while M1 strength exhibit strong fragmentation in a wide region energy between
2.0 MeV and 12 MeV. Naturally the calculation predicts substantially more dipole
strength than is indicated by experiment [5,18,19] in the energy range of 6.0-9.0
MeV. This discrepancy indicates some additional strength out of the experimental
energy interval of 6.0-9.0 MeV. One of possible reason for this discrepancy could be
scissors mode excitations observed in 154Sm and 156Gd. For example, experimental
data [20] indicate scissors mode 1+-excitations with an energy centroid ω = 3.26
MeV for 154Sm and ω = 3.06 MeV for 156Gd with summed

∑
ω.B(M1) = 7.95 MeV

µ2
N and 8.35 MeV µ2

N , respectively. Another possible reason for this discrepancy
could be that the M1 strength in these nuclei is so fragmented that a part of it
might have just escaped detection [5,18,19]. It seems, therefore, that the above-
mentioned experimental data of the sum rule S(δ0, δex.) of the M1 mode (see Fig.3)
in 154Sm and 156Gd in the energy region of 6.0-8.5 MeV should be regarded rather
as a lower limit.
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To summarize, we have reported on results of the investigation of the deformation
dependence of the energy-weight sum rule for M1 dipole excitation strength in the γ-
soft 140Ce and 196Pt and well deformed 154Sm and 156Gd isotopes. The calculated
sum rules for M1 transitions demonstrate strong deformation dependence. It is
shown, that an essential decrease of the M1transitions rates may be due to the
change of nuclear shape by the excitations of the nuclear excited states.

It would be desirable to investigate the features of the M1-resonance in the well
deformed nuclei more deeply. Furthermore, the scarcity of the data on EWSR does
not allow a systematic analysis of the properties of the mode. The available exper-
imental data of some deformed nuclei (see Richter [5,18]) are as yet not sufficient
to reach a decisive conclusion regarding the shape transformation in the M1 transi-
tions. Consequently, it would be important to extend the experimental studies with
improved sensitivity in order to investigate the M1 mode in a wide energy range
of the excitations, though several experimental results on the spin-mode strength
in rare-earth and actinide nuclei have been published. Therefore additional exper-
imental evidence is needed to resolve the issue.
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