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 The amount of chlorophyll in a plant useful to indicate its physiological activity and then 
changes in chlorophyll content have been used as a good indicator of disease as well as 
nutritional and environmental stresses on plants. Chlorophyll content estimation is one of the 
most applications of hyperspectral remote sensing data. The aim of this study is to evaluate 
dimensionality reduction for estimating chlorophyll contents from hyperspectral reflectance. 
Random Forest (RF) has been applied to assess biochemical properties such as chlorophyll 
content from remote sensing data; however, an approach integrating with  dimensionality 
reduction techniques has not been fully evaluated. A total of 200 Zizania latifolia  leaves  with 
5 treatments from Shizuoka University field were measured for reflectance and chlorophyll 
content. then, the regression models were generated based on RF with three dimensionality 
reduction methods including principal component analysis, kernel principal component 
analysis and independent component analysis. This research clarified that PCA is the best 
method for dimensionality reduction for estimating chlorophyll content in Zizania Latifolia 
with a RMSE value of 5.65 ± 0.58 μg cm-2.   

 
 
 
 

1. INTRODUCTION 
 

Chlorophyll (chl) is a vital pigment which allows 
plants, to get energy from sunlight and convert it into 
organic compounds via photosynthesis (Ormeci, et. al. 
2009). This content is critical for monitoring plant of 
health, particularly for the silicicolous plants. In this 
study, measurements of chlorophyll (chl a + chl b) 
content from Manchurian wild rice (Zizania latifolia) 
were used. Zizania latifolia is a tall emergent plant with 
well-developed underground parts and used as a food 
plant with both the stem and grain being edible and has 
been cultivated for more than 2000 years due to its rapid 
growth rate and high competitive ability (Wang et al. 
2020). As a result, it is distributed widely in the eastern 
and southern areas of China with the rapid increase of 
the Southern Chinese population (Yan et al. 2018).  
Furthermore, this species is one of the silicicolous plants 
and then waste slag, which contain substantial 
proportions of heavy metals and pose a serious threat to 
the environment, could be used as siliceous fertilizer for 
cultivation (Zolotova et al. 2017, Krawiec, et. al. 2017). 

Then, the relationship between slag fertilization and 
growth rate can be expected to vary depending on the 
volume of slag fertilizer applied: lower rates of slag 
fertilization were found to increase antioxidant enzyme 
activity and chlorophyll content, while higher rates 
resulted in a reduction in these physiological and 
morphological properties (Chen, et al. 2019). Thus, 
monitoring chlorophyll content using field 
measurements would enable the determination of 
optimal slag fertilization rates and then some techniques 
have been required for monitoring chlorophyll content 
using field measurements and managing fertilizing 
schedules (Sonobe et al. 2021). 

Generally, ultraviolet and visible (UV-VIS) 

spectroscopy or high-performance liquid 

chromatography (HPLC) measurements have been 

applied for quantifying leaf chlorophyll content (Prado-

Cabrero et al. 2016), however, these techniques are not 

always applicable due to expensive, labor-intensive and 

require bulky equipment (Kalaji et al. 2017). Recently, 

the SPAD-502 Leaf Chlorophyll Meter (Konica Minolta 
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Inc.) was proposed for quick and in-situ quantifying 

chlorophyll. Nevertheless, some previous studies 

pointed out that variation in leaf thickness causes a 

variable relationship between SPAD readings and leaf 

structure, which is correlated with silica fertilizer levels 

(Kindomihou, et. al. 2006) and then an alternative 

method of quantifying chlorophyll is thus required. 
Hyperspectral remote sensing, which provides 

spectral information on continuous wavelengths, is one 
of the most attractive alternative options for detection of 
leaf chlorophyll content and has played an important role 
in evaluating vegetation characteristic and  management 
of agricultural fields (Huang et al. 2016). Especially, 
chlorophyll content estimation is one of the major topics 
on hyperspectral remote sensing (Lausch et al. 2013, 
Sonobe and Wang 2017b, Zhang et al. 2011). The 
numerical inversion of radiative transfer models (RTM) 
is one of the ways to estimate chlorophyll content using 
the hyperspectral remote sensing approaches and the 
PROSPECT model (Jacquemoud and Baret 1990) is the 
most famous RTM which simulates reflectance from 
given vegetation properties (Sonobe and Wang 2017b, 
Hernandez-Clemente, et al. 2014, Gu et al. 2016, Hunt, et 
al. 2016) and retrieving chlorophyll, carotenoid 
(Hernandez-Clemente et al. 2014, Féret et al. 2008), or 
dry matter content (Romero, et. al. 2012).  However, 
most of RTMs were based on the datasets taken under 
relatively low-stress conditions, such as ANGERS, LOPEX  
and HAWAII (Féret et al. 2008). Besides, the inversion 
approach possesses some risks of “ill-posed” problem. 
Vegetation indices (VIs) have also been widely used to 
estimate various vegetation properties such as leaf area 
index (LAI), coverage, chlorophyll content, biomass, and 
photosynthetically active radiation (Zou et al. 2015, 
Huang et al. 2017). Although VIs are effective for 
removing variability caused by other features, such as 
soil background and atmospheric conditions (Blackburn 
and Steele 1999) and  for reducing the data saturation 
problem (Mutanga and Skidmore 2004), the 
performances of the most indices changed to plant 
species (Sonobe and Wang 2017a).  

Recently, machine learning has been applied to 
evaluate vegetation properties. Especially, random 
Forest (RF) machine learning methods performed well 
for assessing biochemical/physiological features 
vegetation (Sonobe et al. 2018, Cui et al. 2019, 
Fernandez-Delgado et al. 2019, Breunig et al. 2020, 
Sonobe, et. al. 2020). Which is the a regression technique 
that combine numerous decision trees to classify or 
predict the value of variable, has been used and reported 
its high performances for regression (Biau and Scornet 
2016).  

For applying hyperspectral remote sensing, a 
dimension reduction is one of the important tasks for 
improving the usability of hyperspectral data and 
generating robust regression models and it might be 
performed after data cleaning and data scaling and 
before training a predictive model (Duda, et al. 2001).  
Some statistical methodologies based either on Principal 
Component Analysis (PCA) or Independent Component 
Analysis (ICA), which reveals higher-order statistical 
information of the process data, have been widely 

applied to use multivariable techniques for data 
reduction (Fan et al. 2016, Rutledge 2018, Swiniarski and 
Skowron 2004). For detailing nonlinear dimension 
reduction, kernel principal component analysis has also 
been applied as the modified principal component 
analysis method (Li et al. 2020).  

The potential main study is (1) to evaluate the 
potential hyperspectral data for estimation the 
chlorophyll content of Zizania latifolia and (2) to 
investigate the best dimensionality reduction method 
among PCA, KPCA and ICA for hyperspectral data. 
 

2. METHOD 
 

2.1. Study Area and Measurement 
 

Manchurian wild rice (Zizania latifolia) plants were 
cultivated at within-row distances and inter-row spacing 
of 100 cm on a paddy field at Shizuoka University 
(Shizuoka, Japan, Figure 1) and grown in flooded 
conditions. As a basal fertilization, 18 kg of NH4Cl, 12 kg 
of P2O5 and 12 kg of K2O were supplied per 1000 m2. Two 
further supplementary fertilizations were administered, 
consisting of 12 kg of NH4Cl, 12 kg of P2O5 and 12 kg of 
K2O, and 6 kg of NH4Cl, respectively (per 1000 m2). The 
soluble silicic acid content of the provided molten slag 
was 32% and the standard amount of slag fertilizer was 
120 kg per 1000 m2. The experiment included a control 
without slag and four slag fertilizer treatments: a 
standard amount of slag (1×Slag), and double (2×Slag), 4 
times (4×Slag) and 8 times (8×Slag) the standard 
concentration. A total of 200 leaves (40 leaves from each 
treatment) were measured for reflectance with 3 times 
reputation on each leaf samples and chlorophyll content 
on 2 and 5 October, 2020. 

Hyperspectral reflectance was obtained using the 
FieldSpec4 (Malvern Panalytical, Almelo, Netherlands) 
and then a splice correction function was applied to 
minimize the inconsistency caused by the three detectors 
using ViewSpec Pro (Analytical Spectral Devices Inc., 
USA). 

Dimethyl-formamide was used the prepare extracts 

and their chlorophyll contents were quantified using a 

dual beam scanning ultraviolet-visible spectrometer 

(UV-1900, Shimadzu, Japan) and Porra’s method (Porra, 

et. al. 1989) and the below equations (1 to 3) were used 

to calculate chlorophyll–a (Chl–a) and b (Chl–b) content 

(in μg ml–1). Finally, units were converted to μg cm–2 

using the area of leaf discs, since leaf optical properties 

are sensitive to chemistry in terms of quantity per 

surface area. 
 

Chl–a (μg ml–1) = 12.00 × (A663.8 – A750) – 3.11 × (A646.8 – A750) (1) 
  
Chl–b (μg ml–1) = 20.78 × (A646.8 – A750) – 4.88 × (A663.8 – A750) (2) 
  
Chla+b = Chl–a + Chl–b (3) 

 

 

where A is the absorbance, and the subscripts are the 

wavelengths (in nm). 
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Figure 1. Zizania latifolia and location of each treatment 
 
2.2. Data Analysis 
 

Performance evaluation was conducted for RF 
regression and all processes were implemented using R 
version 3.5.3 (R Core Team 2020). RF regression creates 
multiple decisions tees called classification and 
regression trees (CART) based on randomly 
bootstrapped samples of training data (Breiman 2001) 
via generalization of the binomial variance (using a Gini 
index) and by nodes that are using by split variable from 
a group of randomly selected variable (Liaw and Wiener 
2002). Since former research has described the 
effectiveness of RF (Hobley et al. 2018, Johansson et al. 
2014), it was also used in this research. RF differs from 
CART in growing non-deterministically to decorrelate 
the trees and lessen variance using two-stage 
randomization scheme related to a bootstrap sample and 
random variable selection. The number of trees (ntree) 
and the number of variables used to split the nodes 
(mtry) are normally established by the user. For tuning 
these hyperparameters, Bayesian optimization was 
applied using the Gaussian process (Bergstra and Bengio 
2012). 
 
2.3 Dimension Reduction Techniques 
 

RF-Based Regression models were generated after 
dimension reduction techniques including Principal 
Component Analysis (PCA), Kernel Principal Component 
Analysis (KPCA) and Independent Component Analysis 
(ICA). In this study, 10 components were applied for each 
technique. 
 
2.3.1 Principal Component Analysis (PCA) 
  
 PCA is the oldest and best-known technique of 
multivariate data analysis (Mishra et al. 2017). It was 
first coined by (Pearson 1901), and produced 
independently by (Hotelling 1933). PCA is the usual 
name for a technique which uses sophisticated 
underlying mathematical principles to transforms 
several probably correlated variables into smaller 
number of variables named principal components. The 
origin PCA lies in multivariate data analysis; however, it 
has a wide range of other applications. In general terms, 
PCA uses a vector space transform to reduce the 
dimensionality of large data sets. Using mathematical 
forecast, the original dataset, which may involve many 
variables (i.e., the principal component). The central idea 
of PCA is to reduce the dimensionality of the data set in 
which there are many interrelated variables. Recently, 

hyperspectral data set contain highly correlated spectral 
bands and often having redundant information. Some of 
study (Bioucas-Dias et al. 2013, Varshney and Arora 
2004) have been using PCA to extract the band 
dependency or correlation through statistical properties 
(Gonzales and Woods 2008). Practical implementation 
this algorithm was according on (Rodarmel and Shan 
2002). 
 

𝑋𝑖 = [𝑥1, 𝑥2, 𝑥3, … . … , 𝑥𝑁] ,𝑖
𝑇  (4) 

  

𝑚 =
1

𝑀
∑[𝑥1, 𝑥2, 𝑥3, … . … , 𝑥𝑁] ,𝑖

𝑇

𝑀

𝑖=1

 (5) 

 
 

In Eq. 4, 𝑋𝑖  represents a vector pixel for all the 
dimensions at a specific pixel location 𝑖 . Similarly,  𝑋𝑖  
represents each pixel in the respective 𝑖𝑡ℎ dimension and 
the total number of dimensions are N. Total number of 
pixel vectors depend on the size of each band M = m * n 
where m is the number of rows and n is the number of 
columns. The PCA depends on the eigen value 
decomposition of the covariance matrix and the equation 
7. 
 

𝐶𝑥 = 𝐴𝐷𝐴𝑇 (6) 
  

𝑊ℎ𝑒𝑟𝑒 𝐷 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, 𝜆3, … . … , 𝜆𝑁) (7) 
 
 

Is the diagonal matrix of eigenvalues 𝜆1, i = 1, 2, 3,….N  
of the covariance matrix 𝐶𝑥. A is the orthonormal matrix 
with eigenvectors 𝑎𝑘  (k = 1, 2,….,N) of 𝐶𝑥. Each PCA pixel 
vector after the transformation is defined by: 
 

𝑦𝐼 = 𝐴𝑇𝑥𝐼(𝐼 = 1, 2,3, … . , 𝑀) (8) 
 
 

Each of this transformed pixel vectors contain 
compressed information of the entire data set and only a 
first few bands contribute to useful information. And 
then, the number of vectors to be chosen for each data set 
varies with size and dimensions of the data set 
(Mallapragada, et al. 2018).   
 
2.3.2 Kernel Principal Component Analysis (KPCA) 
  
 PCA only allows linear dimensionality reduction and 
then cannot be well represented in a linear subspace if 
the data has more complicated structures. Kernel PCA is 
the nonlinear form of PCA, which better exploits the 
complicated spatial structure of high-dimensional 
features (Benhart 1997). The Radial Basis kernel 
function kernel, which is the typical general-purpose 
kernel, was applied and the kernel bandwidth was set to 
0.1. As tell before, PCA just preform linear 
transformations, and therefore cannot handle the 
complex nonlinear features that are widely present in 
hyperspectral data (Zhang et al. 2019). Therefore, KPCA 
is hypothesized to improve the performance of 
dimensionality reduction in this study.   
 

4×Slag

8×Slag
Control

1×Slag

2×Slag
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2.3.3 Independent Component Analysis (ICA) 
  
 Independent component analysis (ICA) is closely 
related to PCA, whereas ICA finds a set of source variable 
that are mutually independent, PCA finds a set variable 
that are mutually uncorrelated (Naik and Dinesh 2011, 
Shlens 2014). The independent component analysis 
technique is one of the most well-known algorithms 
which are used for solving this research. ICA is separating 
multivariate signal into additive subcomponent. This is 
done by assuming that the subcomponent is non-
Gaussian signal and that they are statistically 
independent from each order. The goal of ICA is to create 
maximally independent components for an given data 
(Hyvrinen and Oja 2000, Richards 2013) and this 
methods is according in the blind source separation. ICA 
represent of the images based on (Bell and Sejnowski 
1997). 
 

𝑥 = 𝐴𝑠 (9) 
 

 

where 𝑥𝑖 = ∑ 𝑎𝑖𝑗  𝑠𝑗
𝑁

𝑗=1
 is a pixel in an image, A is a 

basic function matrix and s image source? 𝑥𝑖  is 
represented as a linear combination of each image source 
𝑠𝑗   and weight coefficient 𝑎𝑖𝑗 . N is the number of image 

sources in the data set. All pixels each image source as 
linearly transformed with a matrix of filters W, so that the 
resulting vector: 
 

𝑢 = 𝑊𝑥, (10) 
 

recovers the underlying causes, s, in a different order 
and re-scaled. It shows partial hindrance to process data 
with noise and becomes computationally expensive with 
hyperspectral data. 
 
2.4 Statistical Criteria 
 

To evaluate the performance of the regression model, 
the root-mean-square error (RMSE, equation (8)) was 
applied. RMSE is the square root of the mean of the 
square of all of the error. The use of RMSE is very 
common, and it is considered an excellent general-
purpose error metric for numerical predictions (Neil and 
Hashemi 2018). 
 

RMSE = √
1

𝑛
∑(𝑦�̂� − 𝑦𝑖)2

𝑛

𝑖=0

 (11) 

 
 
Where n is number of samples, 𝑦𝑖  is measured 

chlorophyll content and 𝑦�̂�  is estimated chlorophyll 
content. RMSE is a good measure of accuracy, but only to 
compare prediction errors of different models or model 
configurations for a particular variable and not between 
variable, as it is scale-dependent.   

 
 

3. RESULTS  
 

3.1 Chlorophyll Content 
 

The measured chlorophyll content per leaf area (cm2) 
ranged from 17.53 to 58.02 μg and the maximum value 
were obtained from the 2 × Slag treatment while the 
minimum values were from the control. Although there 
were significant differences in chlorophyll content 
between 2×Slag and other treatments such as control, 1× 
slag, 4 × slag and 8 × slag (p < 0.05, Tukey-Kramer test), 
the other combinations did not differ significantly. 
 

3.2 Spectral Reflectance and Correlation 
 

 The mean reflectance spectra and pre-processed 
spectra for each slag fertilizer concentration are shown 
in Figure 2. Contrary to the relationships between 
treatments and Chla+b, the control samples showed the 
highest reflectance values while the lowest values were 
from the 2×Slag samples. The reflectance values near the 
green peak increased when plants were fertilized with 
more than the 2×Slag treatment, but decreased at lower 
treatments. 
 

 
Figure 2. Spectral patterns for each slag fertilizer 
treatment  
 

 Significant negative correlations were confirmed 
between Chlorohyll content and reflectance values near 
525 nm and 700 nm (Figure 3), the line of spectral 
reflectance at this number wavelength shown get around 
-0.6. Although the correlation coefficients were generally 
weakest for the control, the relationships between 
wavelength and the correlation coefficient were similar 
among the four treatments. Stepwise discriminant 
analysis (p < 0.05) showed that reflectance values at 20 
wavelengths (547, 553, 557, 564, 566, 567, 570, 575, 583, 
620, 631, 671, 681, 683, 696, 711, 714, 720, 766 and 771 
nm) were useful for identifying samples at the five 
different slag fertilizer treatments. An overall accuracy of 
95.5 % was achieved. 
 

3.3 Accuracy Validation 
 

 Table 1 shows statistics for the RMSE values 
calculated using random forest machine learning 
regression models. Generally, PCA generally performed 
the best and PCA was selected as the best solution for 
estimating chlorophyll content 50 times, while KPCA was 
selected 12 times. Thus, it is not necessary to use kernel 
for expressing the relationships between chlorophyll 
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content of Zizania latifolia and reflectance data from 
FielSpec4. 
 

 
Figure 3. Correlation between spectral reflectance and 
chlorophyll content  
 

Table 1. Root-mean-square error (RMSE, μg cm-2) for 
each regression model after 100 repetitions.  

 PCA KPCA ICA 

Minimum 4.49 4.90 4.36 

Median 5.65 5.86 5.77 

Mean 5.65 5.94 5.76 

Maximum 7.33 7.54 7.37 

Standard   deviation 0.58 0.56 0.59 

 

 Figure 4 and 5 show the relationships between 
measured and estimated chlorophyll contents when the 
results of 100 repetitions were combined. The coefficient 
of determinations (R2) were 0.480 0.422 and 0.477 for 
PCA, KPCA and ICA, respectively and then the advantage 
of PCA was confirmed. However, the differences were too 
small to claim that any techniques should be applied. 
 

4. Discussion 
 

After 100 repetitions, the best and worst algorithms 
of each round were determined based on the RMSE value 
(Table 1). Although KPCA was selected 12 times as the 
best dimension reduction techniques, it possessed the 
worst results 54 times per 100 repetitions and then the 
advantages of using kernel was not confirmed in this 
study. (Lin et al. 2020) reported that the machine 
learning models combined with KPCA were effective for 
estimating soil composition contents, however, the 
advantages of KPCA were not confirmed for chlorophyll 
content estimation from Zizania Latifolia. The clear 
relationships between chlorophyll content and 
reflectance over green peak and rededge have been used 
for estimating chlorophyll content from reflectance 
(Sims and Gamon 2002) and then it was not effective to 
express their relationships using non-liner models.  

PCA gave the best estimation results based on the 
RMSE value after 100 repetitions (Table 1) and it 
provides the highest accuracies 50 times while it was 
selected as worst 13 times. The high performances of ICA 
have been confirmed some studies using hyperspectral 
images and it was effective for separating two different 
combinations of illumination and reflectance 
components (Ahmad et al. 2017). In this study, the 
reflectance measurements were conducted the portable 

spectrometer (i.e., FieldSpec4) with leaf clip and then the 
necessity of separating illumination and reflectance 
components was quite small and then the advantage of 
ICA might be vague. Indeed, the high chlorophyll content 
estimation accuracies have been reported in some 
studies based on PCA and the reflectance from similar 
spectrometers (Liu et al. 2018, Saputro et al. 2018) and 
the results from our study also supported their results. 
 

 
Figure 4. Relationship between estimation and 
measured chlorophyll contents 
 
Table 2. Best- and worst-performing techniques after 
100 repetitions. Results presented are number of times 
per 100 repetitions.  

Dimension 
Reduction 

Techniques 

Selected times 
Net score (Best-

Worst) 
Best Worst 

PCA 50 13 37 

KPCA 12 54 -42 

ICA 38 33 5 
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Figure 5. Taylor diagram showing the performance of 
each dimensionality reduction methods 
 
 
5. CONCLUSION  
 

This study has evaluated hyperspectral data and 
three-dimension reduction techniques for estimating 
chlorophyll contents from reflectance. According of 
result, hyperspectral data has useful to estimation 
chlorophyll contents and spectral reflectance had shown 
control sample are highest reflectance values more than 
another slag fertilizer treatment. However, based on the 
machine learning algorithm applied for regression, 
resulted a combination of Random Forest (RF) and 
Principal Component Analysis (PCA) is the best method 
for dimensionality reduction for the estimation 
chlorophyll compared another advanced method such as 
Kernel Principal Component Analysis (KPCA) and 
Independent Component Analysis (ICA). For future study, 
it will be better to add the other machine learning 
methods to estimate chlorophyll contents to increase the 
quantitively of model. 
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