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0000-0001-5638-5294 and 0000-0001-5954-2005

Abstract. Many investigations have been made about of non-Newtonian
calculus and superposition operators until today. Non-Newtonian superpo-

sition operator was defined by Sağır and Erdoğan in [9]. In this study, we

have defined *- boundedness and *-locally boundedness of operator. We have
proved that the non-Newtonian superposition operator NPf : c0,α → `1,β is

*-locally bounded if and only if f satisfies the condition (NA′
2). Then we have

shown that the necessary and sufficient conditions for the *-boundedness of

NPf : c0,α → `1,β . Finally, the similar results have been also obtained for

NPf : cα → `1,β .

1. Introduction and Preliminaries

Non-Newtonian calculus was firstly introduced and worked by Michael Grossman
and Robert Katz between years 1967 and 1970. They published the book about
fundamentals of non-Newtonian calculus and which includes some special calculus
such as geometric, harmonic, quadratic. Çakmak and Başar [5] obtained some
results on sequence spaces with respect to non-Newtonian calculus. Duyar and
Erdogan [7] worked on non-Newtonian real number series. Also, Güngör [11] studied
on some geometric properties of `p(N).

Many studies are done until today on superposition operator which is one of
the non-linear operators. Dedagich and Zabreiko [2] studied on the superposition
operators in the space `p. After, some properties of superposition operator, such
as boundedness, continuity, were studied by Tainchai [3], Sama-ae [4], Sağır and
Güngör [6] and many others. Non-Newtonian superposition operator was defined
and characterized in some non-Newtonian sequence spaces by Sağır and Erdoğan in
[9]. In this article, we define *- boundedness and *-locally boundedness of operator.
We prove that the non-Newtonian superposition operator NPf : c

0,α
→ `1,β is *-

locally bounded if and only if f satisfies the condition (NA′2). Then we show that
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the necessary and sufficient conditions for the *-boundedness of NPf : c
0,α
→ `1,β .

Also the similar results are obtained for NPf : cα → `1,β .
A generator is defined as an injective function with domain R and the range of

generator is a subset of R. Let take any α generator with range A = Rα. Let define
α−addition, α−subtraction, α−multiplication, α−division and α−order as follows;

α−addition x+̇y = α
(
α−1 (x) + α−1 (y)

)
α−subtraction x−̇y = α

(
α−1 (x)− α−1 (y)

)
α−multiplication x×̇y = α

(
α−1 (x)× α−1 (y)

)
α−division x/̇y = α

(
α−1 (x) /α−1 (y)

)
(y 6= 0̇)

α−order x<̇y
(
x≤̇y

)
⇔ α−1 (x) < α−1 (y)

(
α−1 (x) ≤ α−1 (y)

)
for x, y ∈ Rα [1].

(Rα, +̇, ×̇, ≤̇) is totally ordered field [5].
The numbers x>̇0̇ are α−positive numbers and the numbers x<̇0̇ are α−negative

numbers in Rα. α−integers are obtained by successive α−addition of 1̇ to 0̇ and
successive α−subtraction of 1̇ from 0̇. For each integer n, we set ṅ = α (n).
α−absolute value of a number x ∈ Rα is defined by

|x|α = α
(∣∣α−1 (x)

∣∣) =


x if x>̇0̇
0̇ if x = 0̇

0̇−̇x if x<̇0̇

.

For x ∈ Rα, p
√
x
α

= α
(
p
√
α−1 (x)

)
and xpα = α

{[
α−1 (x)

]p}
.

Grossman and Katz described the *-calculus with the help of two arbitrary se-
lected generators. In this paper, we study according to *-calculus. Let take any
generators α and β and let * (”star”) is shown the ordered pair of arithmetics
(α−arithmetic, β−arithmetic). The following notations will be used.

α−arithmetic β − arithmetic
Realm A (= Rα) B (= Rβ)
Summation +̇ +̈
Subtraction −̇ −̈
Multiplication ×̇ ×̈
Division /̇ /̈
Ordering <̇ <̈

In the ∗−calculus, α−arithmetic is used on arguments and β−arithmetic is used
on values.

The isomorphism from α−arithmetic to β−arithmetic is the unique function
ı(iota) that possesses the following three properties.

1. ı is one-to-one.
2. ı is on A and onto B.
3. For any numbers u and v in A,

ι
(
u+̇v

)
= ι (u) +̈ι (v) , ι

(
u−̇v

)
= ι (u) −̈ι (v) ,

ι
(
u×̇v

)
= ι (u) ×̈ι (v) , ι

(
u/̇v

)
= ι (u) /̈ι (v) , v 6= 0̇

u <̇ v ⇐⇒ ι (u) <̈ι (v) .

It turns out that ι (x) = β
{
α−1 (x)

}
for every number x in A and that ι (ṅ) = n̈

for every integer n [1].
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In non-Newtonian metric space, the definitions of α−accumulation point of a
set, α−convergence of a sequence and α−bounded sequence have been given in the
studies which are numbered[5, 10]. The definitions of *-limit and *-continuity of
the function f : X ⊂ Rα → Rβ have been introduced by Sağır and Erdogan[10].
Duyar and Erdogan introduced α−series and its α−convergence[7].

Let X be a vector space over the field Rα and ‖.‖X,α be a function from X to

R+
α ∪

{
0̇
}

satisfying the following non-Newtonian norm axioms. For x, y ∈ X and
λ ∈ Rα,

(NN1) ‖x‖X,α = 0̇⇔ x = 0̇,

(NN2)
∥∥λ×̇x∥∥

X,α
= |λ|α ×̇ ‖x‖X,α ,

(NN3)
∥∥x+̇y

∥∥
X,α
≤̇ ‖x‖X,α +̇ ‖y‖X,α .

Then
(
X, ‖.‖X,α

)
is said to be a non-Newtonian normed space.

The non-Newtonian sequence spaces Sα, `∞,α, cα, c0,α and `p,α over the non-
Newtonian real field Rα are defined as following:
Sα = {x = (xk) : ∀k ∈ N, xk ∈ Rα}

`∞,α =

{
x = (xk) ∈ Sα : α sup

k∈N
|xk|α <̇+̇∞

}
,

cα =

{
x = (xk) ∈ Sα : ∃l ∈ Rα 3 α lim

k→∞

∣∣xk−̇l∣∣α = 0̇

}
,

c0,α =

{
x = (xk) ∈ Sα : α lim

k→∞
|xk|α = 0̇

}
,

`p,α =

{
x = (xk) ∈ Sα : α

∞∑
k=1

|xk|pαα <̇+̇∞
}

(1 ≤ p <∞) .

The sequence spaces `∞,α, cα, c0,α are non-Newtonian normed spaces with the
non-Newtonian norm ‖.‖`∞,α

which is defined as ‖x‖`∞,α
= α sup

k∈N
|xk|α and the

sequence space `p,α is a non-Newtonian normed space with the non-Newtonian norm

‖.‖`p,α which is defined as ‖x‖`p,α =

(
α

∞∑
k=1

|xk|pαα

)(1

p

)
α [5]. The α−sequence e

(k)
n

is defined as e
(k)
n =

{
1̇, k = n
0̇, k 6= n

.

Let SN be space of non-Newtonian real number sequences, Xα be a sequence
space on Rα and Yβ be a sequence space on Rβ . A non-Newtonian superposi-
tion operator NPf on Xα is a mapping from Xα into SN defined by NPf (x) =
(f (k, xk))

∞
k=1 where f : N× Rα → Rβ satisfies condition (NA1) as follows;

(NA1) f(k, 0̇) = 0̈ for all k ∈ N.
If NPf (x) ∈ Yβ for all x = (xk) ∈ Xα, we say that NPf acts from Xα into Yβ

and write NPf : Xα → Yβ [9].
Also, we shall assume the following conditions:

(NA2) f(k, .) is *-continuous for all k ∈ N.
(NA′2) f(k, .) is β−bounded on every α−bounded subset of Rα for all k ∈ N.

Sağır and Erdoğan [9] have characterized the non-Newtonian superposition op-
erators NPf on c0,α and cα as the following.

Theorem 1.1. Let f : N × Rα → Rβ satisfies the condition (NA′2). Then NPf :

c0,α → `1,β if and only if there exist a α−number µ>̇0̇ and a β−sequence (ck) ∈ `1,β
such that |f (k, t)|β ≤̈ck when |t|α ≤̇µ for all k ∈ N.
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Theorem 1.2. Let f : N × Rα → Rβ satisfies the condition (NA′2). Then NPf :

cα → `1,β if and only if there exist a α−number µ>̇0̇ and a β−sequence (ck) ∈ `1,β
such that |f (k, t)|β ≤̈ck when

∣∣t−̇z∣∣
α
≤̇µ for all z ∈ Rα and for all k ∈ N.

2. Main Results

Definition 2.1. Let (Xα, dα) and
(
Yβ , d

′
β

)
be non-Newtonian sequence spaces. An

operator F : Xα → Yβ is *-bounded if F (A) is β−bounded for every α−bounded
subset A of Xα .

Definition 2.2. Let (Xα, dα) and
(
Yβ , d

′
β

)
be non-Newtonian sequence spaces.

An operator F : Xα → Yβ is *-locally bounded at x0 ∈ Xα if there exist α−number

µ>̇0̇ and β−number η>̈0̈ such that F (x) ∈ Bd′β [F (x0) , η] for x ∈ Bdα [x0, µ]. F

is *-locally bounded if it is *-locally bounded for every x ∈ Xα.

Theorem 2.3. Let (Xα, dα) and
(
Yβ , d

′
β

)
be non-Newtonian metric sequence spaces.

An operator F : Xα → Yβ is *-locally bounded if F is *-bounded.

Proof. Let x ∈ Xα with x ∈ Bdα [x0, µ] for x0 ∈ Xα and µ>̇0̇. Since F is *-
bounded, F (Bdα [x0, µ]) is β−bounded set. Then there exists a β−number η>̈0̈
such that d′β (F (x) , F (x0)) ≤̈η. So we obtain that F (x) ∈ Bd′β [F (x0) , η]. Thus

F is *-locally bounded at x0 ∈ Xα. �

Corollary 2.4. Let Xα be an α−sequence space. F : Xα → `1,β is *-locally
bounded if F is *-bounded.

Theorem 2.5. If the function f : N×Rα → Rβ is *-locally bounded, it is satisfies
the condition (NA′2).

Proof. Let A be an α−bounded subset of Rα. Then there exists [̇a, b]̇ ⊂ Rα such

that A ⊂ [̇a, b]̇. Let c ∈ [̇a, b]̇. Since f is *-locally bounded, there exists δc>̇0̇ and
γc>̈0̈ such that ∣∣f (x) −̈f (c)

∣∣
β
≤̈γc with

∣∣x−̇c∣∣
α
≤̇δc .

Then it is written that f (x) ∈ Bβ [f (c) , γc] for x ∈ Bα [c, δc]. Since∣∣∣|f (x)|β −̈ |f (c)|β
∣∣∣
β
≤̈
∣∣f (x) −̈f (c)

∣∣
β
≤̈γc ,

we get

|f (x)|β ≤̈γc+̈ |f (c)|β
when x ∈ Bα [c, δc]. Every α−closed interval [̇a, b]̇ on Rα is α−compact by *-

Heine Borel Theorem in [9]. Then there exist c1, c2, ..., cn ∈ [̇a, b]̇ such that [̇a, b]̇ ⊂
n⋃
k=1

Bα [ck, δck ], since [̇a, b]̇ ⊂
⋃

c∈[̇a,b]̇

Bα [c, δc]. So we have |f (x)|β ≤̈ι (ck) +̈ |f (ck)|β

for each x ∈ Bα [ck, δck ] where 1 ≤ k ≤ n. If M = β max
{
ι (ck) +̈ |f (ck)|β : 1 ≤ k ≤ n

}
,

then |f (x)|β ≤̈M for x ∈
n⋃
k=1

Bα [ck, δck ]. Since A ⊂ [̇a, b]̇ ⊂
n⋃
k=1

Bα [ck, δck ], we get

|f (x)|β ≤̈M for x ∈ A. �
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Theorem 2.6. Let f : N × Rα → Rβ. Then the non-Newtonian superposition
operator NPf : c0,α → `1,β is *-locally bounded if and only if f satisfies the
condition (NA′2).

Proof. Assume that f satisfies the condition (NA′2). Let z = (zk) ∈ c0,α. Since

NPf : c0,α → `1,β and f satisfies (NA′2), by Theorem 1.1, there exist µ>̇0̇ and
(ck) ∈ `1,β such that

(2.1) |f (k, t)|β ≤̈ck whenever |t|α ≤̇µ

for all k ∈ N. Let ϕ =
µ

2̇
α and x ∈ c0,α such that

∥∥x−̇z∥∥
c0,α
≤̇ϕ. Since α lim

k→∞
|zk|α =

0̇, there exists a positive integer r such that |zk|α ≤̇ϕ for all k ≥ r. Then

(2.2) ‖zλ‖c0,α = α sup
k≥r
|zk|α ≤̇ϕ

for λ ∈ {r, r + 1, ...}. Since
∥∥x−̇z∥∥

c0,α
≤̇ϕ, we get that

(2.3) α sup
k

∣∣xk−̇zk∣∣α ≤̇ϕ
By (2.2) and (2.3), it is written that

|xk|α ≤̇ α sup
n≥r
|xn|α

= α sup
n≥r

∣∣xn−̇zn+̇zn
∣∣
α

≤̇ α sup
n≥r

∣∣xn−̇zn∣∣α +̇ α sup
n≥r
|zn|α

≤̇ ϕ+̇ϕ

= µ

for all k ≥ r. From (2.1), we have |f (k, xk)|β ≤̈ck for all k ≥ r. Then

(2.4) β

∞∑
k=r

|f (k, xk)|β ≤̈ β

∞∑
k=r

ck = β

∞∑
k=r

|ck|β ≤̈ β

∞∑
k=1

|ck|β = ‖(ck)‖`1,β .

Let mk = β sup
|t−̇zk|

α
≤̇ϕ
|f (k, t)|β for all k ∈ N. Since f satisfies the condition (NA′2),

it is seen that mk<̈+̈∞ for all k ∈ N. So we get
∣∣xk−̇zk∣∣α ≤̇ϕ for all k ∈ N by (2.3).

Then we have

(2.5) |f (k, xk)|β ≤̈mk

for all k ∈ N. Using the relations (2.4) and (2.5), it is obtained that

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β

= β

r−1∑
k=1

|f (k, xk)|β +̈ β

∞∑
k=r

|f (k, xk)|β

≤̈ β

r−1∑
k=1

mk+̈ ‖(ck)‖`1,β .
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Then we have∥∥
NPf (x) −̈ NPf (z)

∥∥
`1,β

≤̈ ‖NPf (x)‖`1,β +̈ ‖NPf (z)‖`1,β

≤̈ β

r−1∑
k=1

mk+̈ ‖(ck)‖`1,β +̈ ‖NPf (z)‖`1,β .

Therefore we get that

∥∥
NPf (x) −̈ NPf (z)

∥∥
`1,β
≤̈γ when γ = ‖NPf (z)‖`1,β +̈ β

r−1∑
k=1

mk+̈ ‖(ck)‖`1,β .

Hence, the non-Newtonian operator NPf *-locally bounded at z.
Conversely assume that NPf : c0,α → `1,β is *-locally bounded. Let k ∈ N and

b ∈ Rα. Let y = (yn) be defined as yn =

{
b , n = k
0̇ , n 6= k

. Then (yn) ∈ c0,α. By

assumption, there exist µ>̇0̇ and η>̈0̈ such that

(2.6)
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β
≤̈η whenever

∥∥x−̇y∥∥
c0,α
≤̇µ.

Let a ∈ Rα with
∣∣a−̇b∣∣

α
≤̇µ and let x = (xn) with xn =

{
a , n = k
0̇ , n 6= k

. Then

x ∈ c0,α. Since ∥∥x−̇y∥∥
c0,α

= α sup
n

∣∣xn−̇yn∣∣α =
∣∣a−̇b∣∣

α
≤̇µ,

we get
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β
≤̈η by (2.6). Then we have

∣∣f (k, a) −̈f (k, b)
∣∣
β
≤̈ β

∞∑
n=1

∣∣f (n, xn) −̈f (n, yn)
∣∣
β

=
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β

≤̈ η

Hence f (k, .) is *-locally bounded at b. Since b ∈ Rα is arbitrary, f (k, .) is *-locally
bounded. Thus f (k, .) satisfies the condition (NA′2). �

Corollary 2.7. Let f : N × Rα → Rβ satisfies the condition (NA2). The non-
Newtonian superposition operator NPf is *-locally bounded if NPf : c0,α → `1,β .

Corollary 2.8. Let f : N×Rα → Rβ . If NPf : c0,α → `1,β is *-bounded, f satisfies
the condition (NA′2).

Proposition 2.9. Assume that f : N×Rα → Rβ satisfies the condition (NA′2). If

for each µ>̇0̇ there exists a β−number η (µ) >̈0̈ such that

β

∞∑
k=1

|f (k, xk)|β ≤̈η (µ) whenever |xk|α ≤̇µ

for all k ∈ N, then there exists a c (µ) = (ck (µ)) ∈ `1,β with ck (µ) ≥̈0̈ and

‖c (µ)‖`1,β ≤̈η (µ) for all k ∈ N such that

|f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ .
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Proof. Let µ>̇0̇. We define

A (µ) =
{
t ∈ Rα : |t|α ≤̇µ

}
and ck (µ) = β sup

{
|f (k, t)|β : t ∈ A (µ)

}
for all k ∈ N. Then |f (k, t)|β ≤̈ck (µ) where |t|α ≤̇µ. Since f satisfies the condition

(NA′2), it is obtained that 0̈≤̈ ck (µ) <̈+̈∞ for all k ∈ N. For each ε>̈0̈. there exists
an α-sequence x = (xk) when |xk|α ≤̇µ such that

(2.7) ck (µ) ≤̈ |f (k, xk)|β +̈
ε

2̈kβ
β

for all k ∈ N. By (2.7), we have

β

∞∑
k=1

ck (µ) = β

∞∑
k=1

|ck (µ)|β ≤̈ β

∞∑
k=1

|f (k, xk)|β +̈ β

∞∑
k=1

ε

2̈kβ
β≤̈η (µ) +̈ε .

Thus, ‖ck (µ)‖`1,β ≤̈η (µ) +̈ε. Since ε is arbitrary, it is written that ‖c (µ)‖`1,β ≤̈η (µ)

with c (µ) = (ck (µ)). So there exists a β-sequence c (µ) = (ck (µ)) ∈ `1,β with

ck (µ) ≥̈0̈ and ‖c (µ)‖`1,β ≤̈η (µ) such that |f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ for

each k ∈ N. �

Theorem 2.10. Let f : N×Rα → Rβ. The non-Newtonian superposition operator

NPf : c0,α → `1,β is *-bounded if and only if for all µ>̇0̇ there exists a β-sequence
c (µ) = (ck (µ)) ∈ `1,β such that

|f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ

for each k ∈ N.

Proof. Let x ∈ c0,α and µ>̇0̇ with ‖x‖c0,α ≤̈µ. Then |xk|α ≤̇µ for all k ∈ N.

By the hypothesis, there exists a β-sequence c (µ) = (ck (µ)) ∈ `1,β such that

|f (k, t)|β ≤̈ck (µ) for each k ∈ N. Then

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β ≤̈ β

∞∑
k=1

ck (µ) = β

∞∑
k=1

|ck (µ)|β = ‖c (µ)‖`1,β .

Thus, NPf : c0,α → `1,β is *-bounded.

Conversely, assume that NPf : c0,α → `1,β is *-bounded. Let µ>̇0̇. Then for

each x ∈ c0,α with ‖x‖c0,α ≤̈µ, it is obtained that

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β ≤̈η (µ) <̈+̈∞

for a β-positive integer η (µ). By Corollary 2.8, f satisfies the condition (NA′2).
In view of Proposition 2.9, there exists a β-sequence c (µ) = (ck (µ)) ∈ `1,β with

‖c (µ)‖`1,β ≤̈η (µ) such that |f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ for each k ∈ N. �

Example 2.11. Let function f : N×Rα → Rβ be defined by f (k, t) =
|ι (t)|β

5̈kβ
β for

all k ∈ N and t ∈ Rα. Since there exist γ = 1̇ and (ck) =

(
1̈

5̈kβ
β

)
∈ `1,β such that

|f (k, t)|β ≤̈ck whenever |t|α ≤̇1̇ for each k ∈ N, the non-Newtonian superposition
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operator NPf acts from c0,α to `1,β . Let µ>̇0̇ and t ∈ Rα with |t|α ≤̇µ. Then, for
all k ∈ N

|f (k, t)|β =
|ι (t)|β

5̈kβ
β≤̈ ι (µ)

5̈kβ
β and β

∞∑
k=1

ι (µ)

5̈kβ
β =

(
ι (µ)

4̈kβ
β

)
.

Hence we obtaine that |f (k, t)|β ≤̈ck (µ) whenever (ck (µ)) =

(
ι (µ)

5̈kβ
β

)
∈ `1,β for

all k ∈ N. Then, NPf : c0,α → `1,β is *-bounded by Theorem 2.10.

Theorem 2.12. Let f : N×Rα → Rβ. The non-Newtonian superposition operator

NPf : cα → `1,β is *-locally bounded if and only if f satisfies the condition (NA′2).

Proof. Assume that f satisfies the condition (NA′2). Let z = (zk) ∈ cα. By
Theorem 1.2 there exist µ>̇0̇ and (ck) ∈ `1,β such that

(2.8) |f (k, t)|β ≤̈ck whenever
∣∣t−̇a∣∣

α
≤̇µ

for each a ∈ Rα and for all k ∈ N. Let η>̇0̇ and x ∈ cα with
∥∥x−̇z∥∥

c,α
≤̇η. Since

x ∈ cα, there exists a ∈ Rα such that

(2.9) α lim
k→∞

∣∣xk−̇a∣∣α = 0̇ .

From (2.8), there exist a ρ>̇0̇ and a (ck) ∈ `1,β such that

(2.10) |f (k, t)|β ≤̈ck whenever
∣∣t−̇a∣∣

α
≤̇ρ

for all k ∈ N. By (2.9), there exists i ∈ N

(2.11)
∣∣xk−̇a∣∣α ≤̇ρ

for all k ≥ i. By (2.10) and (2.11), we obtaine that |f (k, xk)|β ≤̈ck for all k ≥ i.
Then

(2.12) β

∞∑
k=i

|f (k, xk)|β ≤̈ β

∞∑
k=i

ck = β

∞∑
k=i

|ck|β ≤̈ β

∞∑
k=1

|ck|β = ‖ck‖`1,β

Let mk = β sup
|t−̇zk|

α
≤̇η
|f (k, t)|β for each k ∈ N. Since f satisfies the condition

(NA′2), mk<̈+̈∞ for all k ∈ N. Since
∥∥x−̇z∥∥

c,α
≤̇η, we have that

∣∣xk−̇zk∣∣α ≤̇η for

all k ∈ N. Then, for all k ∈ N

(2.13) |f (k, xk)|β ≤̈mk

By (2.12) and (2.13),

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β

= β

i−1∑
k=1

|f (k, xk)|β +̈ β

∞∑
k=i

|f (k, xk)|β

≤̈ β

i−1∑
k=1

mk+̈ ‖(ck)‖`1,β .
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Then ∥∥
NPf (x) −̈ NPf (z)

∥∥
`1,β

≤̈ ‖NPf (x)‖`1,β +̈ ‖NPf (z)‖`1,β

≤̈ β

i−1∑
k=1

mk+̈ ‖(ck)‖`1,β +̈ ‖NPf (z)‖`1,β .

Therefore we have that∥∥
NPf (x) −̈ NPf (z)

∥∥
`1,β
≤̈γ when γ = ‖NPf (z)‖`1,β +̈ β

i−1∑
k=1

mk+̈ ‖(ck)‖`1,β .

Hence NPf *-locally bounded at z.
Conversely, assume that NPf : cα → `1,β is *-locally bounded. Let k ∈ N and

b ∈ Rα. Let y = (yn) be as follows

yn =

{
b , n = k
0̇ , n 6= k

for all k ∈ N and b ∈ Rα. Then y ∈ cα. By the hypothesis, there exist µ>̇0̇ and
ϕ>̈0̈ such that

(2.14)
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β
≤̈ϕ whenever

∥∥x−̇y∥∥
c,α
≤̇µ .

Let a ∈ Rα with
∣∣a−̇b∣∣

α
≤̇µ and x = (xn) with xn =

{
a , n = k
0̇ , n 6= k

. Then x ∈ cα.

Since ∥∥x−̇y∥∥
c,α

= α sup
n

∣∣xn−̇yn∣∣α =
∣∣a−̇b∣∣

α
≤̇µ,

by virtue of (2.14), it is written that
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β
≤̈ϕ. Then we have

∣∣f (k, a) −̈f (k, b)
∣∣
β
≤̈ β

∞∑
n=1

∣∣f (n, xn) −̈f (n, yn)
∣∣
β

=
∥∥
NPf (x) −̈ NPf (y)

∥∥
`1,β

≤̈ ϕ

Therefore f (k, .) is *-locally bounded at b. Since b ∈ Rα is arbitrary, f (k, .) is
*-locally bounded. Hence f (k, .) satisfies the condition (NA′2). �

Corollary 2.13. Let the function f : N × Rα → Rβ satisfy the condition (NA2).
Then NPf : cα → `1,β is *-locally bounded.

Corollary 2.14. Let f : N×Rα → Rβ . If NPf : cα → `1,β is *-bounded, f satisfies
the condition (NA′2).

Theorem 2.15. Let f : N × Rα → Rβ. NPf : cα → `1,β is *-bounded if and only

if for every µ>̇0̇ there exists a sequence c (µ) = (ck (µ)) ∈ `1,β such that

|f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ

for all k ∈ N.
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Proof. Let µ>̇0̇ and x ∈ cα with ‖x‖c,α ≤̇µ. Then |xk|α ≤̇µ for all k ∈ N. By the

hypothesis, for each k ∈ N there exists a sequence c (µ) = (ck (µ)) ∈ `1,β such that

|f (k, xk)|β ≤̈ck (µ). Then it is written that

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β ≤̈ β

∞∑
k=1

ck (µ) = β

∞∑
k=1

|ck (µ)|β = ‖c (µ)‖`1,β .

Thus NPf : cα → `1,β is *-bounded.

Conversely, assume that NPf : cα → `1,β is *-bounded. Let µ>̇0̇. There exists a
positive β−number η (µ) such that

‖NPf (x)‖`1,β = β

∞∑
k=1

|f (k, xk)|β ≤̈η (µ)

for each x ∈ cα with ‖x‖c,α ≤̇µ. From Corollary 2.13, f satisfies the condition

(NA′2). By Proposition 2.9, there exists a β-sequence c (µ) = (ck (µ)) ∈ `1,β with

‖c (µ)‖`1,β ≤̈η (µ) such that |f (k, t)|β ≤̈ck (µ) whenever |t|α ≤̇µ for all k ∈ N. �

Example 2.16. Let f : N× Rα → Rβ be as follows

f (k, t) =
(ι (t))

2β

5̈kβ
β

for all k ∈ N. Let µ>̇0̇ and t ∈ Rα with |t|α ≤̇µ. Then

|f (k, t)|β =
(ι (t))

2β

5̈kβ
β≤̈ (ι (µ))

2β

5̈kβ
β

for each k ∈ N. Since

β

∞∑
k=1

(ι (µ))
2β

5̈kβ
β = (ι (µ))

2β ×̈ β

∞∑
k=1

1̈

5̈kβ
β = (ι (µ))

2β ×̈ 1̈

5̈
β×̈ 1̈

1̈−̈ 1̈

5̈
β

β =
(ι (µ))

2β

4̈
β<̈+̈∞,

we have |f (k, t)|β ≤̈ck when ck =
(ι (µ))

2β

5̈kβ
β for each k ∈ N. Hence NPf : cα → `1,β

is *-bounded by Theorem 2.15.

3. Conclusion

In this paper, the well-known boundedness and locally boundedness in classical
calculus were extended to non-Newtonian calculus. Also their properties on some
non-Newtonian sequence spaces were investigated.
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