Bull. Min. Res. Exp. (2022) 168: 11-33

Bulletin of the Mineral
Research and Exploration

http://bulletin.mta.gov.tr

Efficiency of singularity and PCA mapping of mineralization-related geochemical
anomalies: a comparative study using BLEG and <180pm stream sediment

geochemical data

Fatma Nuran SONMEZ*®, Simay KOCKAR*® and Hiiseyin YILMAZ?

*Dokuz Eyliil University, Faculty of Engineering, Department of Geological Engineering, Tinaztepe, Buca, 35160, Izmir, Tiirkiye

Research Article

Keywords:

Singularity Mapping,
C-A, N-S, PCA, Multi-
Fractal Models, Eskisehir.

Received Date: 03.02.2021
Accepted Date: 15.06.2021

ABSTRACT

In gold (Au) exploration, the analysis of both bulk leach extractable gold (BLEG) and acid-extractable
Au in the <180um stream sediment fraction are the two most common approaches. The Eskisehir-
Sivrihisar region in Western Tiirkiye hosts several orogenic type mineral deposits. The purpose of
this study is to delineate geochemical anomalies of ore-related elements and track their dispersion,
which may lead to discovery of unknown ore deposits. This research also compares the capability
of conventional statistical and principal component analysis (PCA), with concentration area (C-
A) and number-size/concentration (N-S/C) fractal methods as well as singularity index method to
differentiate anomalous and background Au distributions. Known Au mineralization in the region
of interest is strongly reflected in stream sediment BLEG Au patterns, which have robust singularity
indices with C-A and N-S multifractal modeling and PCA. A hundred % of the Au deposits were
detected using either BLEG Au and Ag singularity index mapping with C-A fractal analysis whereas
the factor analysis of which revealed 85% efficiency. Several strong Au-Ag anomalies defined by
the singularity index and factor analysis in this study requires further follow up for the discovery of
new deposits.

1. Introduction

Identification  of
related geochemical patterns or anomalies is of
great importance in ore deposit exploration. Several

statistical methods

have been

(Mandelbrot, 1983; Cheng et al., 1996; Afzal et al.,
2011; Zuo, 2011; Sadeghi et al., 2015) and catchment

mineralization- basin analysis (Bonham-Carter et al., 1987; Carranza,

significant

2010a). In recent years there has been a move towards

latter as a more robust approach in the recognition

investigated ~ for of significant geochemical anomalies (Cheng et al.,

generating robust geochemical anomaly maps and
models from geochemical exploration data. These
include conventional parametric and non-parametric
methods (Sinclair, 1991; Govett et al., 1975), and
alternative techniques that are not dependent on
data distribution types or affected by the presence
of outlying populations including fractal modelling

1994; Grunsky, 2007, 2010; Carranza, 2010b; Zuo
and Wang, 2016). In relation, there is also the need
to consider spatial patterns and other processes that
can lead to complexity in defining geochemically
anomalous behavior (Zuo et al., 2013; Parsa et al.,
2017a; Yilmaz et al., 2019). Explatory Data Analysis
(EDA) methods are not as robust as fractal modelling
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in case of sparse geochemical data. Most EDA
methods ignore spatial relations between geochemical
data whereas fractal modelling can be designed so
as to consider spatial relationships between regolith
geochemistry and known mineral deposits (Agterberg
et al., 1990).

Fractal modelling uses the complete geochemical
data set without the necessity of transformations to
meet assumptions about data distribution and effects
of outliers (Luz et al., 2014). Fractal modelling is
predicted on power-law distribution, which means that
some statistical characteristics of the data are invariant
(self-similar) at different scales (Mandelbrot, 1983;
Shen and Cohen 2005). Fractal models that have
gained a considerable application in delineating
geochemical anomalies are the number-size (N-S)
concentration-area (C-A), singularity indexes (SI)
and concentration-volume (C-V) (Mandelbrot, 1983;
Cheng et al., 1996, 2000; Cheng, 2007; Afzal et al.,
2010; Daneshvar, 2017; Yasrebi and Hezarkhani,
2019; Zadmehr and Shahrokhi, 2019; Aliyari et al.,
2020; Mirzaie et al., 2020; Ahmadi et al., 2021). Afzal
et al. (2013) delineated different Au mineralized zones
in the Qolqoleh orogenic gold deposit by the C-V
fractal model. They emphasized that extremely highly
mineralized Au zones identified by the C-V fractal
model had a positive correlation with meta-volcanic
rocks whereas moderately mineralized zones correlate
with sericite schist in the Qolqoeh (Iran) deposit.
Similarly, Mirzaie et al. (2020) determined the zones
based on ores and gangues by using a combination of
fractal and factor analysis in the Chah Gaz iron ore
(Central Iran). They successfully differentiated waste
material from ore zones for proper exploitation. In
other words, the C-V fractal modeling, which has been
used for the classification of different populations
including parameters such as regionalized variables
of environment and economy used to identify
zones of mineralization in various ores (Mirzaie et
al., 2020). Zadmehr and Shahrokhi (2019) has re-
discovered Qolqoleh, Kervian and Qabaghloujeh
(Iran) Au deposits using concentration-area (C-A)
and concentration-number (C-N)-categorized Au,
As, Hg and Bi anomalies. They showed that C-A and
C-N fractal-modeled anomalous results had a very
strong correlation with rock units including highly
deformed acidic and basic metavolcanic and sericite
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schists. Shuguang et al. (2015) has classified fractal
or multifractal approaches employed in geochemical
anomaly definition into hard- and soft-threshold
techniques. The hard-threshold group includes N-S and
C-A fractal models with clear-cut thresholds to define
population breaks and identify anomalies but fails to
identify more subtle changes in fractal behavior typical
of complicated or composite geological environments
(Zuo et al., 2013). The soft-threshold methods include
S-A and SI multifractal techniques. These filtering
methods improve the reliability in setting thresholds
for geochemically anomalous populations but are
unable to determine thresholds for the separation of
geochemical populations (Zuo and Wang, 2016).
Thus, geochemical signatures generated by the S-A
and singularity mapping methods essentially require
additional calibration of geochemical values to adjust
for potential dilution effects following the concepts of
Hawkes (1976). For stream sediment geochemistry
sediment dilution in drainage must also be taken into
account as a potential factor in setting thresholds to
background Au distributions. The typical approach is
to use catchment area weighting This study compares
the results of selected conventional and fractal
methods to define anomalous catchments based on
both raw and catchment-weighted BLEG Au and Ag
values well as <180um Au, Ag, Cu, Pb, Zn, As and
Sb values. Verification of the results attained can be
employed utilizing geochemical properties of already
discovered gold deposits and prospects along with the
rock chip samples in the area.

2. Study Area and Data

2.1. Regional Geology and Tectonic Setting

The study area of ~2.662 km? is situated in the
Eskisehir region of Western Tiirkiye. It is underlain
by three major ore-hosting tectono-stratigraphic units
(Figure 1). These are: a) the Precambrian to Lower
Paleozoic undifferentiated high-grade unit consisting
of gneiss, metagranite, schist, amphibolite and marble,
which are cut by Upper Paleozoic granitoids; b) the
Triassic Karakaya Complex containing low-grade
schists and marbles with meta-sandstone, meta-
mudstone, and meta-volcanic/volcanic intercalations
(Altiner et al., 1991; Okay et al., 1996) and c) Jurassic-
Cretaceous ophiolites or accretionary meta-clastic
rocks intruded by Cenozoic magmatic units (Okay and
Satir, 2000; Yilmaz, 2003). The low-grade schists and
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Figure 1- Simplified geological map of the Karakaya Formation, Cenozoic volcano- plutonic field and sedimentary cover rocks in Eskisehir-

Sivrihisar region, location of the study area and significant mineralizations (after Okay et al., 1996; Okay and Satir, 2000; MTA,

2002; Yilmaz, 2003 and this study).

marbles are considered parts of the Karakaya Complex
(Okay et al., 1996). The Karakaya Complex contains
metamorphosed mafic rocks, which are intercalated
with phyllite and marble, and was strongly affected by
Alpine north-south-trending compressional tectonics
during the Upper Cretaceous-Eocene.

2.2. Local Geology and Mineralization

The Karakaya Complex hosts the probable
orogenic-type Akbastepe Au-As-Sb-W deposit (SE of
Sogiit; MTA, 1965, 1970; Yilmaz, 2003), as well as
the epithermal-style Damdamca and Topkaya Au-Ag
deposits to the NW of Sivrihisar, and the Mayislar and
Tiirkmen deposits (Table 1). In the Akbastepe deposit,
Au mineralization is contained in quartz veins, with
peak grades of 20 g/t Au over a 220 m strike length
and width of 2 m (Eurogold, 1996) in low- grade
schists and marbles. The Damdamca and Topkaya Au-
Ag-As deposits have a combined indicated resource of
1.454 Mt at 4.07 g/t Au, and a resource of 1.950 Mt at

4.9 g/t Au (Koza Gold, 2013). The Damdamca deposit
is hosted in a serpentinite block, being sandwiched
between the Damdamca granite and meta-clastic rocks
whereas the Topkaya deposit is hosted in marble and
meta-clastic rocks. Both deposits occur in the footwall
of a south-verging thrust (Y1lmaz, 2003).

The sub-economic Mayislar polymetallic Cu-
Pb-Zn-As-Mo is hosted in Eocene andesite and
tectonically emplaced Cretaceous ophiolites (Parlak
and Sayili, 2012). In the deposit, altered (silicified,
seriticized, argillized) andesites, which are enriched in
tourmaline, are intersected by quartz and calcite veins.
According to Parlak and Sayil1 (2012), the alteration
mineralogy is characterized by the presence of high
temperature quartz and sericite forming between 270
and 370 °C and, sericite. The ore mineralogy and the
presence of tourmaline suggest the possibility of a
buried granitoid intrusion somewhere at depth (Parlak
and Sayili, 2012).
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The Tiirkmen deposit is located 6 km north of
Tiirkmentokat village and is underlain by Upper
Cretaceous ophiolites intruded by Eocene granodiorite
porphyries.  Altered hosts
stockwork containing abundant sphalerite, galena
and pyrite, and minor chalcopyrite and arsenopyrite
(Eurogold, 1996; Yilmaz, 2003). An Fe-oxide-altered
silica cap overlies the intrusive rocks. The Tirkmen
mineralization has with  porphyry
intrusive-related skarn systems containing a proximal
Pb-Zn-Ag-CuxAu-Mo-W), peripheral Au-Zn-Pb-As,
and distal Pb-Zn-Ag-Au skarn replacements (Y1lmaz,
2003). However, proximal or distal skarn alteration

serpentinite quartz

similarities

and metal-bearing stockwork quartz veins/veinlets in
the porphyry intrusions or serpentinites has not been
recognized yet.

3. Sampling and Chemical Analysis

A total of 258 BLEG, 612 - <180pum stream
sediment and 65 rock chip samples were obtained
from the Sivrihisar-Eskisehir region. BLEG sampling
was conducted at a density of ~1 sample per 10 km?
depending on stream system morphology, with sites
selection designed to exclude sediment input from
higher order streams (Figure 2). The BLEG results
were followed up by collecting -180um stream
sediment samples from higher order streams at a
density of 4 samples per square km. Sampling and

analytical techniques as well as precision set by
Eurogold according to Howarth (1983) for BLEG
and 180um stream sediment were discussed in detail
by Yilmaz et al. (2019) and therefore, the reader is
referred to the article cited hereby. Digital geology
was provided by MTA (2002). Singularity mapping
was carried out by using A MATLAB-based code.
C-A and N-S calculations were completed in Excel
and PCA using SPSS. Interpolation data for rastering
was carried out using ArcMap10.5.

4. Multifractal Modeling Methods

The C-A and N-S fractial models were used
to separate populations in the geochemical data.
Although such hard methods are used in the separation
of geochemical populations, they are inefficient in
recognizing settled and composite anomalies (Zuo and
Wang, 2016). As for the soft threshold techniques, they
applied spectrum-area (S-A) model and singularity
mapping (SM). However, SM method has been widely
used while returning robust meaningful results during
statistical treatment of geochemical data (Zuo et al.,
2013). On the other hand, the soft techniques are
filtering methods and unearth the weak and complex
geochemical signatures camouflaged by extreme values
in the area under investigation (Parsa et al., 2017b).
It is suggested that the soft-threshold techniques may
first be used to increase ability of anticipating the
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Figure 2- Location of major mineral deposits and prospects along with sampling sites for BLEG
stream sediments, <180um stream sediments and rock chips.
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geochemical signatures and thereafter, hard-threshold
techniques are used for the separation of multifractal
geochemical anomalies. The singularity processes
related to mineralizing events are, by definition,
associated with accumulation of highly elevated
metal concentrations within a narrow spatial-temporal
interval (Halsey et al., 1986). More specifically, weak
anomalies, which were not recognized because of the
influences of strong background deviations or deep
burial (Wang et al., 2018) can be robustly delineated.
Cheng (2007) also strongly emphasized that the
concept of singularity and the singularity technique
are useful in delineating anomalies stemmed from
mineralization and thereby predicting the locations of
undiscovered ore deposits. Theory and concept of the
SI (Singularity index) fractal method are described by
numerous authors (Halsey et al., 1986; Cheng, 2007,
Zuo and Wang, 2016; Parsa et al., 2017a; Yilmaz et
al., 2019) and therefore, it is not necessary to repeat
them in hereat.

5. Results

5.1. Delineation of BLEG and <180um Stream
Sediment Geochemical Anomalies

5.1.1. Descriptive Statistics

Histograms and Q-Q plots of BLEG Au and
Ag in BLEG and Au, Ag, Cu, Pb, Zn, As and Sb
in the <180um stream sediment, along with key
statistical parameters are presented in the Supplement
(Supplementary Table 1 and Figures 1, 2 and 3).

5.1.2. Concentration-Area (C-A) Fractal Statistics

If the study area is treated as one mineral district
without considering the effects of changing geology
on geochemical background weak geochemical
anomalies would not be recognized by means of
Inverse Distance Weighting (IDW) because they
will be camouflaged within the background variance
(Arias et al., 2012). Based on log-log plots of element
concentrations versus cell area with values greater
than a concentration value (Figure 3) C-A plots for
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BLEG Au and AuxCA may be modeled with four (4)
straight lines segments whereas C-A plots for BLEG
Ag and AgxCA can be modeled with five (5) straight
lines segments. For Au and AuxCA (Figure 3a, b)
the left-hand line segment represents backgrounds
whereas the two middle line segments represent
low to moderate anomalies and the right-hand line
segments represent strong anomalies (Figure 3a, b).
For Ag and AgxCA (Figure 3c, d) the left-hand line
segment represents backgrounds whereas the three
middle line segments (Figure 3c, d) represent low to
strong anomalies and the right-hand line segments
represents very strong anomalies. Figure 4 shows
spatial distribution of BLEG Au, AuxCA, Ag and
AgxCA background, weak, moderate, strong and very
strong anomalies defined by C-A fractal modeling
(Figure 3) and their relationship to already known
deposits/prospects. As is shown in Figure 4, moderate
Au and AuxCA anomalies encompass whole deposits/
prospects (Figure 4c, d) whereas strong and very
strong Ag and AgxCA anomalies (Figure 4c, d) cover
85% of the deposits/prospects.

5.1.3. Spatial Patterns of Multi-Element Geochemical
Signatures Using C-A Statistics Model

In this study in order to extract enhanced multi-
element geochemical signatures, ordinary PC as
a multivariate analysis tool was applied to log-
transformed data of 7 elements including Au, Ag, As,
Sb, Cu, Pb and Zn from <180um stream sediments.
Geochemical related to different
deposit types and geochemical processes in stream
systems may be obtained using PC, some of which
may be interpreted as pathfinders for the deposit
type including Au, Ag, As, Sb, Cu, Pb and Zn from
<180pum stream sediments. Geochemical associations
related to different deposit types and geochemical
processes in stream systems may be obtained using

associations

PC, some of which may be interpreted as pathfinders
for the deposit type sought. As illustrated in Table 2
three components were extracted based on the
significant eigenvalues (>0.9). The PCA results
demonstrated that the log-transformed <180pum stream
sediments data were classified into the following two
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PC2 account for ~30% and ~28% of total variability,
respectively. Gold, Cu, Pb, Zn and As have significant
positive PCA1 loadings and represents the effects of
a mixture of orogenic, porphyry and skarn-related
mineralization- in the study area. PC2 is representative
of Ag and Sb mineralization. C-A and N-S fractal
models were applied to the PCA scores (Figure 8) for
comparison with the BLEG and BLEG Au-AgxCA
and BLEGxCA Au-Ag models. The C-A fractal model
indicated four BLEG Au-Ag or BLEGXCA Au-Ag
populations (Figure 5). The N-S fractal model of PC1
returned 5 distinct geochemical populations of strong,
moderate and weak anomalies plus background and
low background for Au in <180um data (Figure 5Se, f)
whereas PC2 of the <180um stream sediment data was
classified into 3 populations. Gold deposits/prospects
of the area are mainly confined to the moderate to
strong anomalous zones of PC1 BLEG data whereas
the Akbastepe deposit is located in the background
zone of PC1 of BLEGxCA data with others occurring
mostly in moderately anomalous zones (Figure 5b, d).
The efficiency of PCA method is evaluated using five
mineral deposits/prospects. Four of these deposits/
prospects of the study area fall over the moderate
to strongly anomalous zones of PC1 with positive
Au-Cu-Pb-Zn-As loadings > 0.5 (80% efficiency)
whereas PC2 has 40% efficiency (Figure Se-h).
From geological index point of view both principal
components represent Au mineralization in the area
and anomalous contents of these components coincide
with metamorphic (i.e. Akbastepe) and ophiolitic rock
(i.e. Mayuislar, Tirkmen) types that host Au deposits
and base metal prospects, respectively.

5.1.4. Spatial Patterns of Mono-Element Geochemical
Signatures Using C-A and N-S Statistics Model
in BLEG and <180um Stream Sediment Data.

To augment the geochemical characteristics, the
singularity mapping has been implemented to the
geochemical results of BLEG and <180um stream
sediment samples. Five window sizes with minimum
size of 7i=500 m and an interval of 500 m were used to
determine singularity indices in the study area and the
singularity index (a values) specific to each catchment
basins obtained (Yilmaz et al., 2019). Gold and
AuxCA o values ranged from 1.13 to 2.66 and 1.17 to
3.26, respectively whereas for Ag and AgxCA ranged
from 1.17 to 3.27 and 0.95 to 3.62, respectively. The
C-A fractal model of singularity indexes (Figure 6)
indicated four distinct Au geochemical populations for
BLEG Au data (Figure 6a). Likewise, the c-a fractal
model has identified 5 geochemical groups ranging
from strong through moderate to weak anomalies
as well as background and low backgrounds for
AuxCA, Ag and AgxCA (Figure 6b, c, d). Figure 6e,
f, g, h also illustrates the areal dispersal of identified
geochemical groups. Known gold mineralizations in
the study area are confined to the strong and moderate
Au and AuxCA BLEG anomaly zones (Figure 6e,
f). Singularity anomaly patterns coincide much on
pointing to mineralization and carbonate-mica altered
metamorphic rocks in the western part (Akbastepe/
Sogiit), argillic-chlorite-talc-altered ophilites in the
central part (Tirkmen) and argillic-altered high-
pressure metamorphic rocks in the eastern part
(Topkaya, Damdamca, Okgu, Kiziloéren) of the study
area.

Table 2- Rotated component matrix PCA on Ln-logarithmically transformed data. Loadings in bold exhibit significant geochemical indicators.

Element PC1 PC2 PC3
Au 0.501 —-0.398 0.448
Ag —0.11 0.752 0.228
Cu 0.683 0.039 0.381
Pb 0.522 —0.654 -0.24
Zn 0.810 0.242 0.094
As 0.603 0.259 —0.651
Sb 0.290 0.813 -0.023
Eigenvalue 2.206 1.338 0.901
Var.% 29.725 27.711 12.705
Var.% cum. 29.725 57.435 70.141

18



Bull. Min. Res. Exp. (2022) 168: 11-33

[}
%]
1

Ln area of catchments
> o
T T

\
= Strong anomaly
— Moderate anomaly
Weak anomaly 1
— Background
13 ! 1 1
15

0.0 05 1.0 .
Ln BLEG stream sediment PC1 (Au-Ag)

Ln -80# stream sediment PC1 Au values

O —

e M
N

— Moderate anomaly
Weak anomaly
— Background

Ln sample frequency
I
>

| 1 | Il

L~ 22 N
)
g
_g — Strong anomaly
2w — Moderate anomaly
b Weak anomaly
§ — Background
&
s 16
—
I 1 l ]
-0.5 0.0 0.5 1.0 1.5 2.0
Ln BLEG stream sediment PC2 (Au/AgxCA)
M7
Y \
5
= 3 — Strong anomaly
k= — Moderate anomaly
o Weak anomaly
£ [ * — Background
8 — Low Background
<
o
1 1 1 ]
2.0 -1.0 0.0 1.0 2.0 3.0

-1.0 0.5 0.0 0.5 1.0 15
Ln -80# stream sediment PC2 Au values

20

©

o

Legend

SeGil [
To! \

Istanbul \\\\

BLEG PC1 values
with C-A classification

Alpagut

o
as‘e? ;

‘

280000 mE

s A2}

Mayislar

From-3.18 to 0.22 (Background) = Town/village
From 0.22 to 1.20 (Weak anomaly)
I From 1.20 to 2.29 (Moderate anomaly)

I From 2.29 to 2.72 (Strong anomaly)

320000 mE

* Deposit/prospect
== Access road

!

20
——

Kilometers

360000 mE

4440000 mN-

4400000 mN-

To)
istanbul

Legend

BLEG PCA2 values
with C-A classification
From-2,65 to 0,16 (Background)
From 0,16 to 0,72 (Weak anomali)

[ From 0,72 to 1,85 (Moderate anomali)
I From 1,85 to 2,67 (Strong anomali)

m  Town/villag
% Deposit/prospect
w—m Access road

4440000 mN

4400000 mN+

Legend
-80# PC1 values

>
ngay
&

with raster contouring

[ From-2.56 t0-0.60 (Low Background)
25 From-0,60 to 0.50 (Background)

From 0.50 to 1.35 (Weak anomaly)
I From 1.35 to 3.20 (Moderate anomaly)
I From 3.20 to 4.79 (Strong anomaly)

iirkmen

Topkaya.

% Deposit/prospect
s Access road

) 280000 mE 320000 mE 360000 mE .
e ( s « t 4440000 mN+
pagut .
yﬁkbasm" *Maysslar 20
——
\‘\ s Kilometers

*Kﬂcadrcn
Topkay#Okgu ToAnkara
\ ‘*) ¥ -
Dam cd 1iISAR
m  Town/village (iunynz.

4400000 mN-

. 280000 mE 320000 mE 360000 mE
ccith
L]
BT » vt 4440000 mN-{
SOGUT. . Alpagut - !
1 H %baslcpe'; *Mayislar 20
Istanbul g —
Kilometers

Legend
-80# PC2 values

with raster contouring

[ JFrom-2,73 to

-0,86 (Background)

] From-0,86 to 1,76 (Weak anomaly)

I From 1,76 to 2,74 (Moderate anomaly)

280000 mE

i Karagay
L]
‘\.\*ankmcn
Topk:
\2) aya.
Topkayl?kcu
Dam ag jHis

B Town/village

% Deposit/prospect
e Access road

320000 mE

#Kizilcadren

360000 mE

4400000 mN-

To.Ankara

®,

Figure 5- a), b) PC1 with fractal models and delineated geochemical anomaly population maps of Au, c¢), d) AuxCA in BLEG samples, e), f)
PC1 and PCA2 with fractal models and delineated geochemical anomaly population maps of loaded Au+Cu+Pb+Zn+As and, g), h)

Ag+Sb in <180um stream sediment samples.

19



Bull. Min. Res. Exp. (2022) 168: 11-33

24 - 24
— ﬁ = Strong anomaly
z2 ., — Strong anomaly i b — Moderate anomaly
3T — Moderate anomaly @ Weak anomaly
= ~—— Weak anomaly = —— Background
= » L — Background g 2 — Low Background
+— -—'-:
3 S B[
18 [
g =
E -“é’ 16 -
16 = . .
— S =
) '_] 14 1 1 1 J
14 1 1 1 1 0.0 0.5 1.0 1.5 2.0
2 5
% g= '.'0 e o Ln alfa values of AuxCA in BLEG samples
Ln alfa values of Auin BLEG samples @ ®
. [~ 21 F
“ — — Strong anomaly
Z — Strong anomaly — Moderate anomaly
g »r — Moderate anomaly ~ » > [ . g’eaﬂ( 3"0"2]31)'
. = — Backgroun
5 Weak anomaly = _— Low Background
® 2 | —— Background ot ~
o
< — Low Background = \
o
S 18 g BT
S p
= o
e 16 L = 16 F
c 3
—_
14 1 \ 1 1 14 1 1 1 1 1 1 1
2 2 22
0.0 05 10 15 2.0 02 0. 12 17 22
Ln alfa values of Ag in BLEG samples © Ln alfa values of AgxCA in BLEG samples ()
cGit 1-
5 [t 4440000 mN- ‘t 4440000 mN-
20 20
— —
T‘,\ Kilometers Kilometers
Istanbul
4400000 mN
Legend
Legend ;\Iﬁ:}\l/‘aél(xics ofAluxCA
Alfa values of Au of ) SAmpies.
for BLEG samples - ]};mm :‘l); '012‘953] (Sh:(’:g)
W From 0.130 to 2.05 (Strong) B Town/village = F:g:: 2:5] :g 3:26 :W:alt;ale) m Town/village
EI Il:zz gg; ig %gg :x:::)m'e) *  Deposit/prospect From 3,26 to 3,57 (Background) Y% Deposit/prospect
1 From 2.66 to 4,59 (Background) Access road From 3,57 to 5,08 (Low Background) amm  Access road
) 280000 mE 320000 mE 360000 mE @ . j 280000 mE 320000 mE 360000 mE .
't 4440000 mN J«k 4440000 mN-{
20 20
—
Kilometers Kilometers
4400000 mN-| 4400000 mN-|
Legend Legend
Alfa values of Ag To Ankara Alfa values of AgxCA To Ankara
for BLEG samples. - for BLEG samples. .
B From 1,17 to 2,11 (Strong) B From 0,95 to 2,07 (Strong)
I From 2,11 to 2,45 (Moderate) )  From 2,07 to 2,45 (Moderate) a Town/villa
[ From 2,45 to 3,27 (Weak) = Town/village o From 2,45 10 3,62 (Weak) .
From 3,27 to 3,58 (Background) % Deposit/prospect From 3,62 to 4,25 (Background) % Deposit/prospect
From 3,58 10 5,07 (Low Background) = Access road From 4,25 to 5.26 (Low Background) . Access road
‘ 280000 mE 320000 mE 360000 mE @ . 280000 mE 320000 mE 360000 mE )

Figure 6- C-A fractal model applied to singularity indexes of; a) Au, b) AuxCA, c) Ag, d) AgxCA, e) delineated geochemical anomaly
population of Au, f) AuxCA, g) Ag and h) AgxCA in BLEG samples.

20



Bull. Min. Res. Exp. (2022) 168: 11-33

5.1.5. Delineation of <180um Stream Sediment
Geochemical Anomalies

<180 um stream sediment samples were analyzed
for Au, Cu, Pb, Zn As and Sb. The descriptive statistics
of these elements has shown that they have positively
skewed distributions (Supplementary Table 1) and thus
they likely contain multiple populations. Therefore,
multifractal analysis was implemented to delineate
geochemical populations of these elements, which are
related to mineralization. The procedure as applied
to BLEG data, the results of geochemical analyses of
<180um stream sediments were initially subjected to
singularity multifractal technique, with the window
and interval size similar to procedure as applied to the
BLEG data. To model the areal dispersion of the SI
o values, a square window-based singularity mapping
technique was applied as individual samples cannot be
directly linked to unique catchment basins. Hence the
N-S fractal model was used for the <180um data. Four
different classes of geochemical signatures of Au, As,
Sb were obtained using N-S fractal model (Figure
7a, f, g) whereas the 5 geochemical populations were
received for the geochemical signature of Ag, Cu, Pb
and Zn in stream sediment data (Figure 7b c, d, e).
The geographical dispersion maps of <180um stream
sediment a-Au, a-Cu, 0-Ag, a-Pb, a-Zn, a-As and
a-Sb shows the anomalies with low singularity values
(Figure 8). Akbastepe, Mayislar, Tiirkmen, Okcu and
Kizilcadren deposits fall over the areas with low a-Au,
a-Ag, a-Zn singularity values whereas Tiirkmen base
metal deposit is defined by high a-Au, o-Cu, o-Ag,
a-Pb, 0-Zn, o-As and a-Sb singularity values. To
quantitatively measure the geographical correlation
between areas with a and the locality of known Au
deposits, the singularity maps of Au, Ag, Cu, Pb,
Zn, As and Sb (Figure 8a-g), and the a values were
recategorized implementing the N-S fractal model.
The known gold deposits were nearly related to the
lower a values (mostly less<2.2) of Au, Ag, Cu,
Pb, Zn, As and Sb (Figure 8) despite of the slightly
differing geographic distribution of Au, Cu, Pb, Zn,

As and Sb anomalies. Besides, 100% (5), 100% (5),
60% (3), 80% (4), 100% (5), 100% (5), 60% (3)
of known deposits coincide with the moderate to
strong anomalies of Au, Ag, Cu, Pb, Zn, As and Sb,
respectively (Figure 9). This suggests that Au, Ag,
Pb, Zn and As are suitable pathfinder elements in the
study area as the singularity mapping technique may
recognize precious/base metal deposits/prospects.

5.1.6. Verification of the Anomalies Delineated

Figure 9 shows the efficiency assessment of the
delineated BLEG and <180um stream sediment
geochemical anomalies regarding the known gold
prospects and deposits of the study area. According
to Figures 3-8, >85% of known gold and base metal
deposits are located within the Au, AuxCA, Ag and
AgxCA based on the singularity index, C-A fractal
analysis and PCA. However, these values are highly
variable for <180pm stream sediment data. 100% of
the known deposits are located within the anomalous
zones of <180pum stream sediment Zn, As and Sb based
on singularity and log-transformed data with N-S
fractal modeling (Figure 9). Besides, singularity index
and log-transformed data of <180pum Ag and Cu with
N-S fractal modeling also returned moderate to strong
anomalies encompassing 100% of the deposits and
prospects. Interpretation of rock sample results verify
the power of the BLEG and <180um stream sediment
sampling in accurate detection of orogenic Au-As-
Sb-W (Akbastepe), Cu-Pb-Zn-As-Mo (Mayislar), Cu-
Pb-Zn-Ag-As-Sb-Au (Tiirkmen) and Au-Ag deposits
(west of Sivrihisar Town). The anomalous zones
(strong-moderate anomaly) of BLEG Au suggest that
these areas deserve additional exploration campaigns.
The BLEG and <180um stream sediment geochemical
Au and Ag as well as base metal anomalies recognized
are encompassed by illite-sericite-silica-bearing
rocks, and therefore, are of high-priority targets for
supplementary exploration in addition to the already
discovered occurrences (Figures 3-8).
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6. Discussion

The strength of stream sediments geochemical
anomalies typically diminishes downstream due
to dilution of element abundances (Parsa et al.,
2017a, b; Yilmaz et al., 2019) in addition to errors
induced by sampling and analytical errors (Parsa
et al., 2016) coupled with smoothing effect by
common moving average interpolation techniques
(Yuan et al., 2015; Yousefi, 2017a, b). Nevertheless,
multifractal interpolation methods (e.g., MIDW
and multifractal Kriging) may use singularity and
moving average interpolation to simultaneously
measure local singularities and the spatial correlation
between data, thereby also overcoming the smoothing
effect of applying a moving average interpolation
method (Cheng et al, 1999). These methods simplify
the distinction of geochemical populations by
enhancing geochemical anomalies and segregation
from geochemical background values (Cheng et al.,
2000; Yuan et al., 2015). Hard threshold techniques
are not always able to identify weak anomalies (e.g.,
traditional statistical techniques and C-A fractal
modeling), particularly in intensely altered lateritic
covers (Shuguang et al., 2015). Nevertheless, when
window-based contrast filtering methods, e.g.,
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singularity mapping (Cheng et al., 1999; Cheng,
2007) are implemented as soft threshold techniques,
numerous discoveries of weak geochemical anomalies
have been encountered quite often (Zuo et al., 2015;
Yuan et al., 2015; Yousefi, 20174, b). Once the
local singularity indexes (o values) are integrated
in multifractal moving average interpolation, as in
this study, the MIDW-interpolated geochemical data
represents enhanced geochemical models, allowing
for the recognition of weak anomalies. BLEG Au
and Ag anomalies highly correlates with those of
<180 pm stream sediment abnormalities showing the
dependability of the results of sampling and analytical
techniques. In addition to these, high-grade rock-chip
assays as well as the discovery of mineralizations in
the recognized zones of BLEG and <180um stream
sediment anomalies suggested that these BLEG and
<180pm stream sediment anomaly zones without
undetected mineralizations deserve further exploration.
BLEG Au and Ag geochemical signatures derived
from SI, C-A, N-S and PCA multifractal techniques
can justify gold deposition in the study area due to the
affiliation of BLEG geochemical signatures with gold
mineralization (Figures 3-9). Besides, <180um stream
sediments singularity index Au and Ag geochemical
anomalies have strong geographic correlation with
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gold mineralization over the areas with argillic and
silicic alterations. Moreover, the singularity index-
based geochemical signatures of the Pb-Zn-As-Sb
and C-A fractal values of Cu-Pb-Zn-As elements
in <180um stream sediment samples show strong
association with gold mineralization (Figure 9). Even,
<180pum stream sediments with PCA1 loadings > 0.5
(Au-Cu-Pb-Zn-As) display strong association with
known ore deposits at 80% efficiency level. Auand Ag
geochemical anomalies, which were derived from the
traditional statistical analysis of raw BLEG data had
associations with known deposits with 57% and 15%
underlain by moderate to weak anomalies, respectively
(Supplementary Figure 3 and Figure 9). However,
Log-transformed BLEG Au and Ag signatures display
association with the known deposits at 100% and 30
efficiency level, respectively. It was demonstrated that
IDW interpolation of Log-transformed Au anomalies
derived from median +20, 30 and 4c detected all the
deposits/prospects. However, multifractal analysis
also generates additional moderate to strong, even
weak, BLEG Au and Ag anomalies, which may be
targets for discovering additional significant Au
deposits (Supplementary Figure 3c, d and Figures
4-6). This shows that multifractal analysis is robust and
very efficient in identifying ore-related geochemical
anomalies, which have been probably missed by
traditional statistical analysis. The geochemical
anomalies derived from SI coupled with C-A and N-S
fractal/multifractal models should be accompanied
by further prospecting and structural mapping. This
would probably give way to the identification of new
mineralization sites encompassed by low o values <2.
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Supplementary Material

1. Descriptive Statistics

The skewness and kurtosis of the raw Au and Ag
concentrations in the BLEG stream sediments are 8.9
and 10.3, and 102 and 122 whereas these are 4.9 and
7.4, and 28.4 and 58.8, respectively for AuxCA and
AgxCA (Figure 1). The skewness and kurtosis of the
Ln Au and Ln Ag concentrations in the BLEG are 0.3
and -0.6 and, 1.8 and -0.6 respectively, indicating that
the BLEG Au have slightly negative skewness and
low kurtosis whereas the BLEG Ag have negative
skewness and low kurtosis. Again, Ln-transformed Au
and Ag data do not fully follow a normal distribution
(as shown by Table 1) and histograms, and Q-Q plots in
Figure 1. In addition, the histogram of the logarithmic
Ag concentrations has a multimodal pattern for the
BLEG ( Figure 1h). These statistical characteristics
may suggest that the Eskisehir-Sivrihisar region
have had multiple geochemical framework and
has undergone multi-geological processes, thereby
displaying a complex Ag ore-formation during Eocene
time. The skewness of the raw Au, Ag, Cu, Pb, Zn, As
and Sb concentrations in the <180um stream sediment
dataare 6.9,5.6,4.8,11.1,7.2,7.5and 2.7, respectively
(Table 1 and Figure 1). This indicates that the data are
positively skewed containing large positive tailing
values with very excessive kurtosis (Au: 66.8, Ag:
43.7, Cu: 31.7, Pb: 148.1, Zn: 61, As: 84.7 and Sb:
9.1) and the data do not follow a normal distribution
(as shown in the Table 1 and histograms in Figure 2
a-g). Ln Cu, Pb and Zn histograms display moderately
normal and leptokurtic distributions (Figure 2h, q)
with Ln Cu and As displaying negative skewness.
However, Ln-transformed Au, Ag, As and Sb data do
not fully follow a normal distribution (as shown in
Figure 2. In and addition, the histograms of the Ln Au,
Ag, Cu, Pb, Zn, As and Sb concentrations have weak
to strong multimodal patterns for the <180um stream
sediments (Figure 2). These statistical characteristics
as in the BLEG data imply that the Eskigehir-Sivrihisar
region have had multiple geochemical framework and
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has undergone multi-geological processes, thereby
complex ore-formations during Eocene time. As
is typical for trace element geochemical data, the
distributions are skewed with an overall tendency
towards right, but significant deviations from In-
normality due to the complex interplay of factors such
as parent lithology controlling element distributions
(Reimann and Filzmoser, 2000; Ren et al., 2015). The
size of BLEG Au- and Ag-anomalous areas above
background generated by traditional statistics using
median+2S.D (Table 1) was calculated using IDW
interpolation by ArcGis 10.5 version. Maximum
anomalous areas above the background for raw Au and
Ag data are 266 km? (Figure 3a) and 31 km? (Figure
3b) whereas these are 2895 km? ( Figure 3¢) for Ln Au
and 683 km? (Figure 3d) for Ln Ag, which are derived
from 3580 km? BLEG-sampled area. The ratio of raw
Au and Ag anomalous areas to that of BLEG-sampling
is 1/15 and 1/115, respectively whereas these are
1/1.25 for LnAu and 1/1.4 for LnAg. However, these
ratios may be decreased to 1/5 and 1/3.7 of BLEG-
sampled area for LnAu and for LnAg, respectively,
at median+3SD (Red highlighted areas in Figure 3c,
d). Number of deposits/prospects detected by raw Au
and raw Ag anomalies are 3 (45%) and 1 (15%) out of
7, respectively whereas percentage of discoveries of
deposits/prospects by weak to strong LnAu and LnAg
anomalies are 100 and 85%, respectively, with the
majority of mineralizations covered by strong LnAu
anomalies.
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Table 1- Summary statistics for BLEG Au and Ag, and <180 um Stream sediment Au, Ag, Cu, Pb, Zn, As and Sb.

BLEG

Au (ppb) AuxCA Ag (ppb) AgxCA
Mean 1.4 152 12.72 122.1
Std. Deviation 29 292 44.64 382.5
Skewness 8.9 49 10.28 7.4
Kurtosis 101.9 28.4 121.81 58.8
Minimum or DL 0.0 0.3 0.01 0.1
Maximum 38.1 252.8 595.51 3763.6
N 258 258 258 258

<180 pm stream sediment
Au (ppb) Ag (ppm) Cu (ppm) Pb (ppm) Zn (ppm) As (ppm) Sb (ppm)

Mean 15.2 12 49.7 95.2 925 412 5.4
Std. Deviation 429 35 51.6 386.1 202.3 70.3 8.7
Skewness 6.9 5.6 438 11.1 7.2 7.5 2.7
Kurtosis 66.8 43.7 31.7 148.1 61.0 84.7 9.1
Minimum or DL 0.3 0.0 3.0 1.0 5.0 1.0 1.0
Maximum 587.0 40.1 539.2 6292.5 24412 1056.6 61.7
N 612 612 612 612 612 612 612

BLG: Bulk Leach Extractable Gold, CA: Concentration times area in square km, N: Number of samples, DL: Detection limit
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Figure 1- The Au-Ag statistical charts from the BLEG stream sediment samples in the Eskisehir-Sivrihisar region; a) the raw Au, b) Ln Au, ¢)
Q-Q Au, d) Raw AuxCA, e) Ln AuxCA, f) Q-Q Ln Au, g) the raw Ag, h) Ln Ag, i) Q-Q Ag, j) Raw AgxCA, k) Ln AgxCA, 1) Q-Q
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Figure 2- The Au, Ag, Cu, Pb, Zn, As and Sb statistical charts from the<180um stream sediment samples in the Eskisehir-Sivrihisar
region; a) the raw Au, b) Ln Au, ¢) Q-Q Au, d) Raw Ag, ¢) Ln Ag, f) Q-Q Ln Ag, g) the raw Cu, h) Ln Cu, i) Q-Q Cu, j) Raw
Pb, k) Ln Pb, 1) Q-Q Ln Pb, m) Raw Zn, n) Ln Zn, 0) Q-Q Ln Zn, p) Raw As, q) Ln As, r) Q-Q Ln As, s) Raw Sb, t) Ln Sb,
u) Q-Q Ln Sb.
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Figure 2- Continued.
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Figure 3- Areal extent of raw; a) Au-anomalous, b) Ag-anomalous areas generated by median+2S.D, and c), d) Ln-transformed Au-Ag-
anomalous fields derived from median+2SD, 3SD and 4SD in the Eskisehir-Sivrihisar area. Median+1SD refers to background.
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